
Introduction

Groundwater is an important water resource. Reason-
able utilization and proper management of groundwater
require an assessment of its availability and the related
properties. Researchers have been interested in identi-
fying the spatial distribution of the hydraulic conduc-
tivity or transmissivity for groundwater models for the
last decades (Yeh and Yoon 1981; Yeh 1986; Zheng and
Wang 1996; Sophocleous et al. 1999; Abdulla et al. 2000;
Lin et al. 2001; Tsai et al. 2003a, 2003b). They used
different approaches to calibrate parameters for
groundwater models. For example, Yeh and Yoon
(1981) and Yeh et al. (1983) applied the finite element
interpolation to construct the spatial distribution of
transmissivity. Tung and Chou (2002) and Tung et al.

(2003) utilize the pattern zonation methods to calculate
the transmissivity.

Sun et al. (1998) reported that the parameterization
may be restricted by the parameter uncertainty and the
model structure error. The spatial distribution of
hydraulic conductivity is important for groundwater
simulation. Before running the simulation model, the
study area is divided into grids. Different interpolation
methods can be used to assign parameters for each grid.
Hydraulic conductivity assigned correctly to each grid
will result in reasonable simulated hydraulic heads, but
determination of the parameters for each grid will have
too many variables. It may cause difficulty to find a
satisfied optimal solution or to find unique and stable
optimal solutions, i.e. same initial solution may converge
to different final solutions. If the data insufficient, such
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Abstract This study applies an
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spatial distribution of groundwater
hydraulic conductivity for a con-
fined aquifer in north Taiwan. The
parameter structure is determined by
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tern, and an uniform hydraulic
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zone. The proposed optimal proce-
dure uses the Voronoi diagram in
describing zonation and applies
simulated annealing algorithm to
optimize its pattern and associated
hydraulic conductivity. Three crite-
ria are defined to stop the searching
process, including the residual error,
the parameter uncertainty, and the
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2001 and hydraulic conductivity va-
lue from pumping tests are used. The
results show that the parameter
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the three criteria and, thus, is rec-
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to optimize the parameter structure.
However, which optimization algo-
rithm is more efficient is not dis-
cussed and requires further study.

Keywords Groundwater Æ Inverse
problem Æ Simulated annealing Æ
Voronoi diagram Æ Taiwan

Environ Geol (2005) 47: 1062–1071
DOI 10.1007/s00254-005-1239-9 ORIGINAL ARTICLE

C.-P. Tung (&) Æ C.-C. Tan (&)
Department of Bioenvironmental Systems
Engineering, National Taiwan University,
Taipei, 106, Taiwan
E-mail: cptung@ntu.edu.tw
E-mail: aliking@sdl.ae.ntu.edu.tw
Tel.: +886-2-23620327
Fax: +886-2-23635854



as observed hydraulic heads, high uncertainty is what
will be involved. Zonation methods can reduce the
dimension of parameterization problems, but requires
optimization algorithm to identify the promising zona-
tion and its associated hydraulic conductivity in
groundwater simulation.

Over-pumping of groundwater from a confined
aquifer, the Chingmei Layer, in the north of Taiwan
caused land subsidence in the 1950s. The land subsi-
dence has been stopped and the groundwater level has
been restored over the original level since a reservoir was
built to provide the water supply and groundwater
pumping has been prohibited since two severe droughts
in 2002 and 2003 provoked the local water authority to
reconsider the groundwater as a supplemental water
resource. However, it needs to know how groundwater
levels will be controlled to avoid reactivation of the land
subsidence. Thus, identification of the spatial distribu-
tion of hydraulic conductivity for a reasonable head
simulation becomes a first task.

A procedure to identify the spatial distribution of
hydraulic conductivity is developed and applied to the
Chingmei Layer in this study. The Voronoi diagram
(VD) (Dirchlet 1850; Voronoi 1908) is used to define the
zonation of hydraulic conductivity, and then simulated
annealing (SA) algorithm is utilized to optimize the
zonation with the objective to minimize the differences
between the observed and simulated hydraulic heads.
Meanwhile, the zonation method, VD, is initiated with
two zones and one zone is added at one time. Parameter
uncertainty, PU (Yeh and Yoon 1981), and the structure
error, SE (Sun et al. 1998) are used as termination cri-
teria for additional number of zones.

In Materials and methods section, which introduces
VD and SA to formulate the optimal procedure. During
the optimal procedure, there are three criteria for
determining the optimal structure of parameters, and
they are the residual error (RE), the PU, and the SE.
These criteria are discussed in Structure identification
criteria section. The Case study section addresses the
application of the optimal procedure to the Chingmei
Layer. The conclusions and suggestions are provided in
the last section.

Materials and methods

The spatial distribution of hydraulic conductivity is de-
scribed by several zones and each zone has a uniform
hydraulic conductivity in this study. Thus, the optimi-
zation procedure needs to determine the number of
zones, the zonation pattern, and the values of associated
hydraulic conductivities. The flowchart to identify the
spatial distribution of hydraulic conductivity is shown in
Fig. 1. Initially, two zones and two randomly assigned

hydraulic conductivities are given. Then, the zonation
pattern is depicted by the VD and optimized by SA. If
the procedure does not meet the three termination cri-
teria, the number of zones will be increased gradually.
The zonation method, VD, and the optimization algo-
rithm, SA, are briefly introduced here, while the three
criteria are addressed in a later section.

Voronoi diagram

The VD was first introduced by mathematicians Di-
richlet (1850) and Voronoi (1908), and it has been ap-
plied to many fields. For example, the Thiessen method
(1911) used the Voronoi diagram in hydrology to define
the spatial pattern of precipitation for calculating the
areal average rainfall. Tsai et al. (2003a, 2003b) and
Tung et al. (2003) have applied the Voronoi diagram to
optimize the zonation of hydraulic conductivity. Al-
though VD has been studied more than one and half
centuries, it remains a powerful tool for spatial and
pattern analysis (Okabe et al. 1992).

In this paper, VD is used as a zonation method and
each Voronoi polygon refers to one individual zone
which has a uniform hydraulic conductivity. To con-
struct VD, a finite number of points, n, in Euclidean
plane are first considered and assumed that 2 £ n<¥.
The n points are respectively labeled by p1,..., pn with
location vectors x1; :::; xn: The n points are distinct in
the sense that xi 6¼ xj for i 6¼ j; i; j belong to Inð1; :::; nÞ:

Fig. 1 Flowchart of the optimal procedure
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Let p be an arbitrary point in the Euclidean plane with
location vector x. Then the Euclidean distance form p to
pi is given by dðp; piÞ ¼ jjx� xijj: If pi is the nearest
point from p, i.e. jjx� xijj6jjx� xjjj for all j 6¼ i; p is
assigned to the zone V(pi) containing pi. Therefore, each
Voronoi polygon, V(pi), can be represented as the
following:

V ðpiÞ ¼ xj x� xik k6 x� xj
�
�

�
�; for j 6¼ i; j 2 In

� �

ð1Þ

where the Euclidean distance from p to pi is given by

x� xik k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x� xið ÞT x� xið Þ
q

(which T denotes the
transpose operator) and each Voronoi polygon associ-
ated with pi. Then, a plane V can be divided in to a set of
Voronoi polygons and is given as Eq. 2.

V ¼ fV ðp1Þ; . . . ; V ðpnÞg ð2Þ

where pi is the generator point of Voronoi polygon V(pi),
and the set p={ p1 ,..., pn } is called the generator set of
VD(V). An example with six generator points is shown
in Fig. 2. For the rigorous mathematical properties and
applications of VD, readers can refer to Okabe et al.
(1992).

Voronoi diagram can partition a domain into several
sub-domains after the locations of generator points are
determined. The different spatial patterns can be defined
by changing the locations of generator points. The best
locations of generators to identify spatial distribution of
hydraulic conductivity can be optimized by the simu-
lated annealing algorithm.

Simulated annealing

The SA has received much attention in recent years,
because it has a mechanism to escape from a local
optimum and thus has more chances to reach the global
optimum. The basic concept of SA was first introduced
by Metropolis et al. (1953). Then, Kirkpatrick et al.
(1983) successfully applied the method to combinatorial
optimization problems. The optimization procedure of
SA is analog to the annealing process of a solid. At high

temperatures, all possible states can be reached. Then,
the cooling process reduces the number of accessible
states and the system is finally frozen in its stable state.
As in an optimization process, a system initially has
higher probability to accept inferior solutions to explore
more alternatives. Gradually, the strategy of intensifi-
cation dominates the searching process and thus the
acceptable probability of inferior solutions becomes less
and less. Finally, the search process converges to an
optimal state.

The SA adopts the acceptance probability as shown
in Eq. 3 to allow moving to the inferior neighbor
solution, which brings SA more chances to escape from
local optimum and then move toward the global
optimum.

Bij sð Þ ¼ exp � DCij

s

� �

if DCij > 0

1 if DCij60

(

ð3Þ

where Bij is the probability of accepting a move,
DCij=Cj)Ci which Ci and Cj denote the values of
objective function of the current and neighboring
solutions, respectively. When DCij £ 0, the neighboring
solution is better for minimization problem and the
probability to move is equal to 1. On the other hand,
when DCij>0, the neighboring solution is worse and
the chance to move is less than one. Besides, the larger
Cj, the smaller probability to accept a movement. The
inferior solution is accepted only when n £ Bij, which
n is a sampled uniform random number between 0
and 1.

The parameter s in Eq. 3 is temperature parameter,
but it has nothing to do with the real groundwater
temperatures. It relates to the cooling schedule which
has three parameters: (1) the initial temperature (si),
(2) the ending temperature (se), and (3) the decrement
(r) in temperature, 0<r<1. Each temperature state
has the same searching iteration number L. After L
iterations are reached, new temperature (s) at state
u+1 is calculated as su+1=r · su. For more details
about how to set the parameters in the cooling sche-
dule can refer to Kirkpatrick (1984), Aarts and van
Laarhoven (1985), and Dougherty and Marryott
(1991).

Simulated annealing includes four major steps: (a)
determine an initial solution and the initial temperature
(si) for Eq. 3; (b) randomly sample a solution from the
neighborhood of current solution, and then evaluate the
value of objective function of the solution; (c) calculate
the probability to accept the sampled solution, and
generate an uniformly distributed random number to
determine whether the sampled solution is accepted; (d)
check whether reduction of temperature parameter is
required and whether new temperature su+1 is lower
than se to end the searching process. Otherwise, go to
step (b).Fig. 2 An example of Voronoi diagram with six zones
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Structure identification criteria

The VD zonation method is applied to depict the
parameter spatial distribution for the groundwater
simulation model. A parameter structure relates to its
number of zones and can be described by Eq. 4. Dif-
ferent parameter structures represent different parameter
spatial distribution.

Xn ¼ VD½V ðPi; kiÞ; i ¼ 1; . . . ; n� ð4Þ

where Wn represents the spatial distribution of hydraulic
conductivity K with n Voronoi polygons. Each Voronoi
polygon is determined by locating the associated gen-
erator point and has an assigned attribute of K-value.
For example, if n is equal to 2, there are two generator
points to determine two zones and each is associated
with one hydraulic conductivity. Grids within the same
zone have the same K-value. Different numbers and
locations of generator points depict different parameter
structure Wn.

In this study, SA is applied to optimize the location of
generator points and associated K-values. Then, the
optimal parameter structure Wn* is expected to be iden-
tified and input to the model to simulate the most accu-
rate hydraulic heads. In the optimal procedure, the
number of zones starts with two zones (n=2) and in-
creases one zone at a time until the optimal parameter
structure is identified (Tung et al. 2003a, b). The
parameter structure with one zone is not considered here.
The optimal number of zones n is determined based on
three criteria, the RE to minimize simulation error of
hydraulic heads, the PU, and the SE.

Residual error

To determine weather, the optimal parameter structure
is identified to compare observed information with
simulated information. In most cases, the detailed
information of a real field is hardly known. There is just
some prior information, such as the sited K-values from
the pumping tests and the observed hydraulic heads
from wells. Therefore, RE can be quantified by Eq. 5.

REn ¼Min
1

Nh � T

XNh

l¼1

XT

t¼1

hl Xn; tð Þ � ho
l tð Þ

ho
l tð Þ

� �2
(

þ k
1

Nk

XNk

v¼1

Kv Xnð Þ � Kprior
v

Kprior
v

� �2
)

ð5Þ

where T is the simulation periods; k is a weighting factor;
Nh and Nk are the numbers of observation wells and
pumping test well, respectively; REn is the minimized
residual errors due to parameter structure Wn. There are
two parts of the RE considered in Eq. 5. The first part
is to minimize the difference between the simulated and

observed hydraulic heads, and the second is to compare
hydraulic conductivities obtained from pumping test with
the identified ones by the proposed procedure. In Eq. 5,
hl and ho

l are simulated and observed hydraulic heads
for well l, and Kv and Kprior

v are assigned K-based on
parameter structure Wn and known K from the pump-
ing test for site m, respectively. If there is no prior
information of hydraulic conductivity in the study area, k
can be zero.

Parameter uncertainty

The increase in the number of zones and, thus, increase
in the parameter dimensions, will result in the decrease
in the residual error. However, the parameter structure
is becoming more and more complicated. The more
unknown parameters need to be determined, the more
uncertainty can be expected when prior information is
limited. Thus, only using previously described RE to
determine the optimal parameter structure is insufficient.
A covariance matrix as given by Yeh and Yoon (1981) is
adopted to quantify the parameter uncertainty. The
trace or the norm of the covariance matrix can be used
to compute the parameter uncertainty. Yeh and Yoon
(1981) suggested the maximal dimension before a steep
raise of parameter uncertainty is recommended as the
optimal parameter dimension.

Structure error

Once the number of zones is defined, an optimal
parameter structure W n* (n‡2) can be identified by SA.
Theoretically, the global optimum can be reached by SA
(Aarts and Van Laarhoven 1985). Thus, the W n* should
be analogous to the real case with n approaching the
infinite zones. However, the number of n is limited due
to parameter uncertainty discussed previously. During
the simplifying of the parameter structure, there is a
structure error (SEn,n-1) between two consecutive opti-
mal parameter structures. Sun et al. (1998) proposed
three kinds of spaces to illustrate the SEn,n-1, including
the observation space, parameter space, and prediction
space.

SEn;n�1 ¼ dobs
n;n�1 X�n;X

�
n�1

	 


þ x1dpar
n;n�1 X�n;X

�
n�1

	 


þ x2d
pre
n;n�1 X�n;X

�
n�1

	 


ð6Þ

where x1 and x2 are weighting factors.
If there is sufficient prior information and observed

hydraulic heads, the higher dimension of the optimal
parameter structure can be identified to approximate
more to the real case. As the result, the trend of SEn,n-1

between X�n and X�n�1 is going down with the increasing
number of zones. However, SEn,n-1 is analyzed by three

1065



kinds of spaces respectively in this optimal procedure.
Then, the optimal parameter structure might be identi-
fied by considering the conjunction of the results from
three kinds of spaces. A Case study case is discussed in
the following section.

A case study

The optimal procedure to identify the spatial distribu-
tion of hydraulic conductivity (K) is applied to a con-
fined aquifer, the Chingmei Layer in northern Taiwan.
The study area is about 240 km2 as shown in Fig. 3. The
results are also compared with those obtained from
traditional gradient method.

Numerical model of the study area

The Processing MODFLOW developed by International
Ground Water Model Center (IGWMC) is used in this
study. The study area is first divided into 21 columns
and 18 rows and the size of each grid is 1·1 km, as
shown in Fig. 4. There are total 23 observation wells
in this area and Fig. 4 shows the locations of these
wells denoted as #1�#23. Time-variant heads are
set as the boundary conditions according to the
observed data from ten wells close to the boundaries
(#8,#12,#13,#14,#15,#16,#17,#19,#20, and#23).

Moreover, some prior information of hydraulic con-
ductivity for ten drilling wells (*1�*10) within the basin
is used in this study. The locations of these wells are
depicted in Fig. 4 and their hydraulic conductivities are

listed in Table 1. The values of hydraulic conductivity
shown in Table 1 are reported by Water Resources
Agency in Taiwan, which are calculated by the Theis
groundwater flow equation with data collected from field
pumping tests. The specific storage (Ss) is constant and
set to be 0.001 referred to a previous study (Hsu 1985).
During the last three decades, pumping of groundwater
is almost forbidden in this area and thus is omitted
during the simulation. In addition recharge to the con-
fined aquifer is assumed to be negligible.

Formulation of the optimal model

Refer to Eq. 5, the objective function can be defined and
combined with the constraints to formulate the optimal
model.

Table 1 The values of hydraulic conductivity K of ten drilling wells

Well K (m/s)

*1 4·10)4

*2 1·10)3

*3 9·10)4

*4 7·10)5

*5 2·10)3

*6 4·10)4

*7 6·10)4

*8 3·10)3

*9 5·10)4

*10 2·10)3
Fig. 3 The location of Taipei municipal basin

Fig. 4 The locations of hydraulic head observation wells and
pumping test wells in the simulation area
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Min Z ¼ 1

Nh � T

XNh

l¼1

XT

t¼1

hl Xn; tð Þ � ho
l tð Þ

ho
l tð Þ

� �2
(

þ k
1

Nk

XNk

v¼1

Kv Xnð Þ � Kprior
v

Kprior
v

� �2
)1=2

ð7aÞ

S:T :

Ts
@2h
@X 2
þ Ts

@2h
@Y 2
¼ S

@h
@t

Ts ¼ K � b; S ¼ Ss � b ð7bÞ

Xl6Xi6Xu; i ¼ 1; . . . ; n ð7cÞ

Yl6Yi6Yu; i ¼ 1; . . . ; n ð7dÞ

Xn ¼ VD½V ðPi; kiÞ; i ¼ 1; . . . ; n� ð7eÞ

Ki ¼ ai � 10bi i ¼ 1; . . . ; n ð7fÞ

n ¼ f ðPUn; SEn;n�1Þ ð7gÞ

where Nh is the number of observed wells (Nh=9,
including #1,#3,#4,#5,#6,#7,#10,#11, and #21). The hl

and ho
l are the simulated and observed hydraulic heads

at time t. Ts is the transmissivity defined as the product
of the horizontal conductivity K and the known thick-
ness b of the confined aquifer. S is the storage coefficient
defined as the product of the specific storage Ss and the
known thickness b of the confined aquifer. In Eqs. 7c
and 7d, the terms Xl. Xu, Yl, and Yu are given lower and
upper bounds of the generator point coordinates. In the
study, Xl and Yl are set to 1 and Xu and Yu are set to 21
and 18, respectively. The location (Xi, Yi) of generator
point Pi is decision variables. The step of the generator
point movement is two grids (DX=2, DY=2). The
hydraulic conductivity Ki is also a decision variable, and
decomposed as Eq. 7f to speed the searching process by
determining ai and bi. Thus, the decision variables of this
optimization problem can be defined as {Xi, Yi, ai, bi,
i=1,..., n}. Moreover, the optimized number (n) of zones
is constrained by the parameter uncertainty (PUn) and
the structure error (SEn,n-1) as Eq. 7g.

Specification of SA

Before SA is applied to optimize the spatial distribution
of K, the cooling schedule must be given. According to
Kirkpatrick et al. (1983), the number of iterations, L is
set to be several times the number of decision variables
{Xi, Yi, ai, b i, i=1,...,n}. The starting temperature (si)
yields an initial 80% acceptable probability to move at
least and is set to be 1. The value of 0.8 is assigned to the
decrement of temperature. The ending temperature (se)
is set to be 0.01 to give a last 95% refused moving

probability at least to ensure the convergence of the
optimization.

Results and discussions

The proposed optimal procedure is applied to the
Chingmei Layer to identify the optimal parameter
structure. During the optimal procedure, the heads data
observed in the year of 2000 are used for evaluating the
RE, the PU and the observation space of SE, and those
in 2001 are used for evaluating the prediction space of
SE. Otherwise, the prior information of K-values is used
for evaluating the parameter space of SE. Then, the
optimal structure is determined by three criteria, the RE,
the PU, and the SE.

The results of the optimal procedure are summarized
in Tables 2 and 3. Figure 5 illustrates the RE, PU and
SE with different numbers of zones, respectively. Fig. 5a
shows that RE becomes flat after four zones. Mean-
while, whether the known data are sufficient to afford a
higher parameter dimension should be considered. Thus,
the PU and SE are further discussed based on Fig. 5b, c.

Figure 5b indicates there are two turning points with
obviously increasing slopes after three zones and five
zones. However, the slope after five zones is steeper than
after three zones. Furthermore, the improvement of RE
from three zones to four zones is significant. As a result,
the suggesting parameter dimension determined by PU
is the optimal structure with five zones.

The structure error is also discussed for the determi-
nation of parameter dimension. In Fig. 5c, the trend of
SEn,n-1 is decreasing. Referred to three kinds of spaces
separately, the dobs

n;n�1 is oscillated. Tsai et al. (2003b)
suggested a stopping criterion that if dobs

n;n�1 is smaller
than 2g, which g is the head observation error, the n) 1
zones is enough and adequate. However, there are only
dobs
32 and dobs

54 smaller than 2g where g is 0.05. Although
both dobs

32 and dobs
54 conformed to the suggested stopping

criterion, dobs
54 is more appropriate to be applied to

determine the optimal structure. Because considering the
improvement of RE from three zones to four zones is
significant, the parameter dimension should be

Table 2 Results summary for the Taipei Basin

Two
Zones

Three
Zones

Four
Zones

Five
Zones

Six
Zones

K1 (m/s) 4·10)3 4·10)3 4·10)3 4·10)3 4·10)3

K2 (m/s) 8·10)5 4·10)5 8·10)5 8·10)5 8·10)5

K3 (m/s) – 8·10)4 8·10)4 8·10)4 6·10)4

K4 (m/s) – – 2·10)4 6·10)4 4·10)4

K5 (m/s) – – – 6·10)5 4·10)4

K6 (m/s) – – – – 2·10)4

RE 0.143 0.129 0.105 0.099 0.098
PU (·106) 0.075 0.431 1.567 1.860 3.190
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increased. Here, the optimal structure with five zones is
recommended.

Figure 5c shows that the trend of dpar
n;n�1 is decreasing

with increasing the number of zones and dpre
54 is smaller

than dpre
65 and similar to dpre

32 . As a result, the optimal
structure with five zones is the most appropriate. From
the analyses of three kinds of spaces, the conjunction of
these results is the optimal structure with five zones.
Thus, the conclusion of SE is also the same with the
conclusion of PU.

Figure 6 illustrates the parameter structure of K in
two, three, four, and five zones, respectively. From these
figures, it can be shown that the similarity increases with
adding the number of zones. Figure 7 illustrates the
simulated and observed hydraulic heads of the obser-
vation space and the prediction space at the observation
well#4. The hydraulic heads simulated by the optimal
structure with five zones are approximate to the ob-
served ones in both observation and prediction spaces.

Comparison with hill-climbing method

Tung et al. (2003) has proved that the zonation method
with SA searching algorithm is better than MODFLOW
built in inverse solver which using the Gauss–Marqu-
ardt–Levenberg method. In this study, the traditional
hill-climbing (gradient) method is used to substitute SA
to optimize the spatial distribution of hydraulic con-
ductivity for further comparison. The hill-climbing
method improves alternatives from current solution to its
better neighbor solution. When there is no better neigh-
bor solution, the searching process stops. Thus, the hill-
climbing method tends to find a local optimal solution.

Table 4 shows residual errors of initial solution and
optimal solutions identified by SA and the hill-climbing
method, respectively. SA and the hill-climbing method
have the same initial solution. According to Table 4,
when the number of zone increases, residual errors are
reduced for both SA and hill-climbing method. How-
ever, the SA always results in smaller residual error for
different zonation patterns. The hill-climbing method is
a local searching method and thus tends to find the local
optimal. SA has the ability to escape from the local
optimums and increase the probability to reach the
global optimum, and thus has better results.

Conclusions and suggestions

The optimal procedure proposed in this study integrates
VD with SA to optimize the spatial distribution of
hydraulic conductivity and is applied to the Chingmei
Layer, a confined aquifer. With three criteria, the opti-
mal parameter structure of the groundwater model is
identified successfully. The optimal structure with five
zones provides reasonable hydraulic head simulation
and even the prediction. It can be expected that the more
prior information and observed data can result in more
robust optimal parameter structure by using this optimal
procedure.

The zonation method, VD, has been proved to be
able to capture the spatial distribution of K effectively
for the groundwater model in this case study. Further-
more, there are some advanced VDs, such as multipli-
catively weighted VD, and additively weighted VD
(Okabe et al. 1992), may be integrated to strengthen the
proposed procedure in the future. For example, the

Table 3 Structure errors
between different optimal
structures

Structure Observation
space, dobs

n;n�1

Parameter
space, dpar

n;n�1

Prediction
space, dpre

n;n�1

SEn,n-1

(x1=1, x2=0.1)

2�3 0.071 1.520 0.137 1.604
3�4 0.167 1.360 0.276 1.554
4�5 0.094 0.977 0.145 1.086
5�6 0.192 0.360 0.392 0.591

Fig. 5 a residual errors, b parameter uncertainty, and c structure
errors resulting from different number of zones
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anisotropic and even sinuous patterns can be depicted by
the refined and robust VDs. Tung and Chou (2004) also
applied different zonation methods to depict the spatial
distribution of parameter.

The spatial distribution of K can be optimized effi-
ciently by SA with finite searching iterations. However,
when the parameter dimension increases, the feasible
solution space will extend enormously. Thus, a refined
cooling schedule of SA may be required in the further
study. Other heuristic algorithms, such as tabu search
and genetic algorithm, may also be able to play the role
of SA to find optimal structure. However, which algo-
rithm is more efficient is not discussed in this study and
requires further study.

Fig. 6 The optimal structure with a two zones, b three zones, c four
zones, d five zones

Fig. 7 Simulated and observed heads with five zones in the
observation well#4 a observation space, b prediction space

Table 4 The comparisons of residual errors between SA and Hill-
climbing method

The number of zones

Two Three Four Five Six

Initial solution 0.236 0.332 0.349 0.363 0.186
Hill-climbing 0.231 0.184 0.181 0.179 0.178
SA 0.143 0.129 0.105 0.099 0.098
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Appendix

Covariance matrix for parameter uncertainty

A covariance matrix as given by Yeh and Yoon (1981) is
used quantify the parameter uncertainty. The equation is
listed as follows:

Covn ¼
1

Nh � T � n

XNh

l¼1

XT

t¼1

hlðX�n; tÞ � ho
lðtÞ

hlðX�n ; tÞ

 !2

JTJ
� ��1

where J is the Jacobian matrix of hydraulic head with
respect to K.

Structure error

The three components of structure error are calculated
as follows:

dobs
n;n�1
¼
XNg

g¼1

XT

t¼1

hg X�n; t
	 


� hg X�n�1; t
	 


hg X�n; t
	 
























dpar
n;n�1 ¼

XNg

g¼1

Kg X�n
	 


� KgðX�n�1Þ
Kg X�n
	 
























dpre
n;n�1 ¼

XNg

g¼1

XT

t¼1

hg X�n; t
	 


� hg X�n�1; t
	 


hg X�n; t
	 
























where Ng is the number of grids and T is the simulation
or prediction periods.

References

Aarts EHL, Van Laarhoven PJM (1985)
Statistical cooling: A general approach
to combinatorial optimization prob-
lems. Philips J Res 40:193–226

Abdulla FA, Al-Khatib MA, Al-Ghazzawi
ZD (2000) Development of groundwa-
ter modeling for the AZROQ basin.
Environ Geol 40(1/2):11–18

Dirchlet GL (1850) Uber die Reduction der
Positeven quadratischen Formen mit
drei unbestimmten ganzen Zahlen.
Journal of fur die Reine und Ange-
wandte Mathematik 40:209–227

Dougherty DE, Marryott RA (1991) Opti-
mal groundwater management 1. simu-
lated annealing. Water Resour Res
27(10):2493–2508

Hsu RT (1985) Application of parameter
identification on groundwater pumpage
inverse problem. MS Thesis Graduate
Institute of Agricultural Engineering
National Taiwan University

Kirkpatrick S (1984) Optimization by sim-
ulated annealing: quantitative studies. J
Stat Phys 34(5/6):975–986

Kirkpatrick S, Gelatt CD, Vecchi MP
(1983) Optimization by simulated
annealing. Science 220:671–680

Lin YP, Tan YC, Rouhani S (2001) Iden-
tifying spatial characteristics of trans-
missivity using simulated annealing and
kriging methods. Environ Geol 41:200–
208

Metropolis N, Rosenbluth A, Rosenbluth
M, Teller A, Teller E, Chem J (1953)
Equation of state calculations by fast
computation machines. Phys 21:1087–
1092

Okabe A, Boots B, Sugihara K (1992)
Spatial tessellations: concepts and
applications of Voronoi Diagrams, 1st
edn. John Wiley & Sons, Chichester

Sophocleous MA, Koelliker JK, Gov-
indaraju RS, Birdie T, Ramireddygari
SR, Perkins SP (1999) Integrated
numerical modeling for basin-wide wa-
ter management: the case of the Rat-
tlesnake Creek basin in south-central
Kansas. J Hydrol 214: 179–196

Sun NZ, Yang SL, Yeh WWG (1998) A
proposed stepwise regression method
for model structure identification. Wa-
ter Resour Res 34(10):2561–2572

Thiessen AH (1911) Precipitation averages
for large areas. Monthly Weather Rev
39:1082–1084

Tsai FTC, Sun NZ, Yeh WWG (2003a)
Global-local optimization for parame-
ter structure identification in three-
dimensional groundwater modeling.
Water Resour Res 39(2):1043–1056

Tsai FTC, Sun NZ, Yeh WWG (2003b) A
Combinatorial optimization scheme for
parameter structure identification in
ground water modeling. Ground Water
41(2):156–169

Tung CP, Chou CA (2002) Application of
tabu search to groundwater parameter
zonation. J Am Water Resour Assoc
38(4):1115–1126

Tung CP, Chou CA (2004) Pattern classi-
fication using tabu search to identify the
spatial distribution of groundwater
pumping. Hydrogeol J 12:488–496

Tung CP, Tan CC, Lin YP (2003)
Improving groundwater flow modeling
using optimal zoning methods. Environ
Geol 44:627–638

Voronoi G (1908) Nouvelles applications
des parameters continues a la theorie
des formes quadratiques. Deuxieme
Memoire: Recherches sur les parallel-
loedres primitives. Journal fur die Reine
und Angewandte Mathematik 134:198–
287

1070



Yeh WWG (1986) Review of parameter
identification procedures in groundwa-
ter hydrology: The inverse problem.
Water Resour Res 22(2):95–108

Yeh WWG, Yoon YS (1981) Aquifer
parameter identification with optimum
dimension in parameterization. Water
Resour Res 17(3):664–672

Yeh WWG, Yoon YS, Lee KS (1983)
Aquifer parameter identification with
kriging and optimum parameterization.
Water Resour Res 19(1):225–233

Zheng C, Wang P (1996) Parameter struc-
ture identification using tabu search and
simulated annealing. Adv in Water Re-
sour 19(4):215–224

1071


	Sec1
	Sec2
	Sec3
	Fig1
	Sec4
	Fig2
	Sec5
	Sec6
	Sec7
	Sec8
	Sec9
	Sec10
	Sec11
	Tab1
	Fig3
	Fig4
	Sec12
	Sec13
	Tab2
	Sec14
	Sec15
	Tab3
	Fig5
	Fig6
	Fig7
	Tab4
	Sec16
	Sec17
	Sec18
	Bib
	CR1
	CR2
	CR3
	CR4
	CR5
	CR6
	CR7
	CR8
	CR9
	CR10
	CR11
	CR12
	CR13
	CR14
	CR15
	CR16
	CR17
	CR18
	CR19
	CR20
	CR21
	CR22
	CR23

