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Abstract 
    In this paper, a framework of designing a low-error and 
power-efficient two’s-complement fixed-width Booth 
multiplier that receives two n-bit numbers and produces an 
n-bit product is proposed. The design methodology of the 
framework involving four steps results in one better error-
compensation bias. The better error-compensation bias can 
be mapped to a simple low-error fixed-width Booth 
multiplier with a little penalty of power consumption. For 
the benchmark of 8x8 multipliers, the simulation results 
show that a reduction of 82.04% average error compared 
to that using the direct-truncated fixed-width Booth 
multiplier can be obtained. Moreover, the power 
consumption can be saved 40.68% compared to that of 
full-precision Booth multiplier design. 

1. Introduction 
    During the past decade, digital signal processing (DSP) 
kernels stand the test for widely multimedia-
communication applications. Among many DSP kernels 
such as digital filters [1] and wavelet transform, it is 
desirable to maintain constant output word length and low 
power operations. The Baugh-Wooley based fixed-width 
multipliers  have been widely studied in [1-5]. Recently, 
the Booth based fixed-width multipliers have been mainly 
attracted and actively researched [8-11]. The modified 
Booth algorithm proposed by the MacSorley [6] in which a 
triplet of bits is scanned at a time. Area saving of a fixed-
width Booth multiplier can be achieved by directly 
truncating n least significant columns and preserving n 
most significant columns. In this paper, we are motivated 
to propose a systematic framework for low-error power-
efficient Booth multipliers. The methodology of the 
framework includes the following steps in order: 1) 
Propose an error-compensation bias with a new binary 
thresholding for a fixed value of w; 2) simulate the value 
of K and error performance of the proposed error-
compensation bias using our generalized index, and then 
select the best index having lower error and satisfying the 
same value of K for limited width n; 3) verify the 
realizable error compensation bias by statistical techniques. 
4) construct a low-error fixed-width Booth multiplier 
structure. According to our proposed framework, while 
w=2, the proposed fixed-width Booth multiplier possesses 
lower error than those in [8, 10, 11] at the expense of 
slightly increased power consumption with respect to each 
value of w. Thus, the proposed architecture is of error-
aware and power-efficient. The organization of this paper 

is as follows. The modified Booth algorithm is concisely 
reviewed in Section 2. In Section 3, we propose a 
framework to design a better error-compensation bias and 
present the simulation results for limited width n . The 
improved error-compensation bias can be mapped to a new 
structure with respect to each value of w. The performance 
as well as implementation results of the proposed structure 
are described in Section 4. Finally, brief remarks in 
Section 5 conclude the presentation. 

2. Modified Booth Multiplier 
     Considering the multiplication of two 2’s-complement 
integers with n-bit multiplicand A  and n-bit multiplier B  
as 
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Assume n is even and the n-bit multiplier B  can be 
rewritten as 
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where i
iiii AbbbS 2

12212 2)2( +− −+= , and it is known that 
the scanning of triplets begins from 1−b  to the MSB with 
one-bit overlapping.  
    We define the following notation  
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where jiS ,  represents the bit product of the  i-th row. 
According to the sign-generate sign extension scheme [7], 
for an 8 by 8 multiplier, the sign of the final result can be 
expressed as  
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where S  is the final sign result. From Eq. (5), the partial 
products of the Booth algorithm only need to add two 

810-7803-8834-8/05/$20.00 ©2005 IEEE.



elements (1, 7,iS ) for each row and add an extra ‘1’ in the 
82 -weighting column. Thus, the sign-generate sign 

extension scheme can reduce many redundant full adders 
compared to the conventional sign extension method. It is 
worth mentioning that we can obtain various fixed-width 
Booth multipliers based on keeping n+w most significant 
columns of the subproduct array, where w is a nonnegative 
integer between 0 and n-1. 

3. Framework of Fixed-Width Booth 
Multiplier Design 

3.1 Framework Formulation 
    The 2n-bit product for n by n 2’s-complement 
multiplication can be divided into two sections as 
     LPMPABP +== .                  (6) 
The most accurate truncation product is given by 
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Without loss of generality, for n=8, Eq. (8) can be written 
as 
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Then we define the main-part and remain-part error terms 
as  

     7,05,13,21,3 SSSSEmain +++= ,            (10) 
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Thus, we can rewrite Eq. (9) as 
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It is convenient to perform exhaustive simulation if we 
define the useful index. Here the useful index for an 8x8 
multiplier is defined as 
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where the binary parameters  123 ,, qqq  and }1,0{0 ∈q . 
Note that if the value of the second index of subscription 
is less than zero, iq

jiS >< ,  is equal to zero. In Eq. (13), 
the operator  
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in which T  is the complement of binary T . Furthermore, 
, 3 2 1 0( , , , )in d e x w q q q qθ is referred to as wQ,θ , where 
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For instance, the value of Q  has a range from 0 to 15 for 
w=0 and 1. In similar behavior, for w=2 and 3, the value of 
Q is located at the range from 0 to 7. Since the reduction 
and rounding errors do not own the same most significant 
column, we adopt S-Ss’ method [4] to concurrently treat 
reduction and rounding error. By applying Eqs. (13) to (15) 
into Eq. (12), we get  
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Herein, the second index of the control signal in Eq. (18) 
determines whether the control signal exists. In case the 
value of the second index is less than zero, the control 
signal can be neglected. In [10, 11], although we have 
provided two specific fixed-width Booth multiplier 
designs for w=0 and w=1, respectively, we have not yet 
proposed a systematic framework for 1≥w . Next, a 
framework analysis is proposed in the following 
statements. 
3.2 Framework Analysis 
    According to the preceding framework, we can 
complete the analysis through the four design steps. In the 
first step, so as to design a realizable error-compensation 
bias, one type of binary thresholding for the error-
compensation bias can be modeled as      
 Type 1: 
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where 1K  and 2K  are defined as those of [1] but for 

1≥w . The restriction of the value of K can be modified as 
[ ] }2 ,12 ,1 ,0 { 11 −− −∈ ww

riK  for i=1, and 2. Since the 
analysis for w=1 has been addressed in [11], herein, we 
focus on the investigation of w=2. In similar behavior, the 
analysis for other values of w can be easily followed. 
Corresponding to the rounding values of 1K  and 2K , we 
simulate average error by exhaustive search simulation. 
Considering the goal of lower error and the restriction of 
K , we can observe that the specific index, 2,0 == wQθ , 
achieves superior error performance. Thus, the simple 
error-compensation bias of the proposed fixed-width 
Booth multiplier under w=2 can be described as: 
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where 5,03,11,22,0 SSSwQ ++===θ . So far, the second step 
is achieved. Here, due to the limited page space, we ignore 
the 3rd step. Finally, Eq. (21) can be mapped to a new 
proposed low-error fixed-width 8 × 8 Booth multiplier 
with 2,0 == wQθ  as shown in Fig. 1 and the detailed 
implementation issues are exposed in the next section. 
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Fig. 1. Proposed low-error fixed-width 8 × 8 Booth 
multiplier with 2,0 == wQθ . 

4. Performance Comparisons and 
Implementation Issues 

    In this section, we first simulate error performance in 
terms of maximum error, average error, and variance of 
error as listed in Table 1 for J-T-T’s fixed-width Booth 
multiplier [8], C-L-P’s fixed-width Booth multiplier [9], 

and the proposed fixed-width Booth multiplier. It is 
clearly seen that the error performance of this work and 
two previous proposed fixed-width multipliers can be 
superior to that of J-T-T’s fixed-width multiplier. Most 
importantly, the proposed Type 1 structure with 2,0 == wQθ  
has the best error performance among the existing fixed-
width Booth multipliers.    
    About the implementation, the cell-based design flow 
with Artisan standard cell library is adopted and the 
proposed fixed-width multiplier has been implemented in 
UMC 0.18um CMOS process. The Synopsys Design 
Compiler is used to synthesize the RTL design of the 
proposed multiplier and the Synopsys Apollo is adopted 
for placement and routing (P&R). The active chip area of 
the final layout as shown in Fig. 2 is 77.2 um by 72.6 um. 
In the worst case, the power consumption measured via 
the Synopsys Nanosim is 0.805 mW at an average 
operation rate of 100 MHz. The critical delay time 
obtained from the static timing analysis (STA) in 
Synopsys Apollo is 5.93 ns calculated in worst-case 
condition. Table 2 summarizes chip characteristics. 
Moreover, in order to clarify whether the structure owns 
the feature of power efficiency, we re-synthesis and re-
simulate other six multipliers for comparison as listed in 
Table 3.  The power-consumption of Type 1 fixed-width 
multiplier with 2,0 == wQθ  is less than that of C-L-P’s fixed-
width multiplier. That is, the proposed Type 1 fixed-width 
multiplier possesses error-aware and power-efficiency 
features.    
  

Table 1: Comparison Results of Three Kinds of Errors 
among Different Booth Multipliers 

Multiplier Width Maximu
m Error 

Average 
Error 

Variance of 
Error 

4 32 10.88 66.43 
6 192 70.50 874.76 

Direct- 
Truncated 
Multiplier 8 1024 384.25 18479.23 

4 15 4.69 26.87 
6 85 23.24 435.88 

 
J-T-T’s 

multiplier 
[8] 

8 443 107.10 7703.31 

4 11 3.95 15.36 
6 56 17.80 159.60 

C-L-P’s 
multiplier 

[9] 8 224 73.00 2018.40 
4 16 4.59 23.45 
6 85 21.60 390.77 

Type 2 
with 

Q=0, w=0 8 443 103.12 6489.46 
4 12 4.01 18.78 
6 62 18.17 218.39 

Type 1 
with 

Q=0, w=1 8 298 79.69 2534.44 
4 8 3.28 9.18 
6 53 15.25 110.67 

Type 1 
with 

Q=0, w=2 8 218 69.00 1799.43 
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Fig. 2. Type 1 fixed-width Booth multiplier layout with 

2,0 == wQθ .    
 

Table 2: Chip Characteristics 
Multiplier & Multiplicand Word 
Length (n) 

8 bits 

Product Word Length (n) 8 bits 

Critical Delay Time 5.93 ns 

Power Supply 1.8 V 

Power Consumption @ 100MHz  0.805 mW 

Active Chip Area 77.2um x 72.6um 

Process Technology UMC 0.18 um CMOS 

 
Table 3: Comparison Results of Power Consumption 

among Different Booth Multipliers for 8=n  
Multiplier Area (um x um) 

 
Power (mW) 
@ 100 MHz 

Full Precision 
Multiplier  

91.1 x 87.7 1.357 

Direct-
Truncated 
Multiplier 

60.7 x 57.4 0.393 

J-T-T’s 
multiplier [8] 

67.3 x 62.5 0.517 

C-L-P’s 
multiplier [9] 

79.9 x 77.6 0.909 

Type 2 with 
Q=0, w=0 

68.0 x 67.5 0.550 

Type 1 with 
Q=0, w=1 

73.3 x 72.6 0.656 

Type 1 with 
Q=0, w=2 

77.2 x 72.6 0.805 

5. Conclusions 
    This paper develops a systematic methodology for 
designing one low-error and power-efficient fixed-width 
Booth multiplier. By properly choosing binary 
thresholding and the generalized index, we can derive one 
better error-compensation bias to improve the truncation 
error. Furthermore, the error-compensation bias can be 
easily constructed as a lower-error fixed-width Booth 
multiplier at the expense of slightly increased power 
consumption. It is very suitable for VLSI digital signal 
processing applications where the accuracy, power, speed, 
and area issues are crucial. 
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