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THE NOETHER INEQUALITY FOR GORENSTEIN
MINIMAL 3-FOLDS

JUNGKAI A. CHEN AND MENG CHEN

Abstract. We prove the Conjecture of Catenese–Chen–Zhang:
the inequality K3

X ≥ 4

3
pg(X) − 10

3
holds for all projective Goren-

stein minimal 3-folds X of general type.

1. Introduction

In the classification theory of algebraic varieties, the Noether inequal-
ity, which asserts that K2 ≥ 2pg − 4 for minimal surfaces of general
type, plays a pivotal role. It is thus natural and important to explore
the higher dimensional analogue.

There are several attempts toward this direction. A naive guess
is that, for minimal variety X of general type, KdimX

X ≥ 2(pg(X) −
dimX), which holds in dimension 1 and 2. However, Kobayashi [6]
constructed examples of canonically polarized threefolds with pg(X) =
3k+4 and K3

X = 4k+2 for k ≥ 1. Hence the inequality K3
X ≥ 2pg(X)−

6 fails in dimension 3 and one can only expect that K3
X ≥ 4

3
pg(X)− 10

3
.

The aim of this paper is to confirm the conjecture ([5, Conj. 4.4], in
2006) of Catanese–Chen–Zhang and to prove the following:

Theorem 1.1. The inequality

K3
X ≥

4

3
pg(X)−

10

3

holds for all projective Gorenstein minimal 3-folds X of general type.

Theorem 1.1 was proved by the second author [2] when X is canon-
ically polarized and by Catanese–Chen–Zhang [5] while X is smooth
minimal. We refer to the relevant work [6, 2, 3, 5] for more details of
the history of this topic.

The main obstacle in proving the above theorem is the existence
of Gorenstein terminal singularities in the base locus of the canoni-
cal linear system |KX |, while X is canonically fibred by a family of
curves of genus 2. By using certain conceived and explicit resolution
of Gorenstein terminal singularities, which we call feasible Goresntein

The first author was partially supported by National Science Council of Taiwan
and NCTS. The second author was supported by National Natural Science Founda-
tion of China (#11171068, #11121101, #11231003) and Doctoral Fund of Ministry
of Education of China (#20110071110003).

1

http://arxiv.org/abs/1310.7709v1


2 J. A. Chen and M. Chen

resolution, we are able to resolve the base locus and prove the state-
ment.

Throughout we work over the complex number field C.

2. Special resolutions to Gorenstein terminal singularities
(X,P ), pairs (X,D) and linear systems (X, |M |)

First of all, we recall the following result of the first author:

Theorem 2.1. ([1, Theorem 1.3]) Let X be an algebraic 3-fold with
at worst terminal singularities. For any terminal singularity P ∈ X,
there exists a sequence of birational morphisms:

τP : Y = Xm → Xm−1 → . . . → X1 → X0 = X,

such that Y is smooth on τ−1

P (P ) and, for all i, the morphism πi :
Xi+1 → Xi is a divisorial contraction to a singular point Pi ∈ Xi of
index ri ≥ 1 with discrepancy 1/ri.

Indeed, given a Gorenstein terminal singularity (P ∈ X), the reso-
lution can be constructed in explicit as follows.

(1) Take a divisorial contraction π1 : X1 → X contracting E1 to
the point P with discrepancy 1, i.e. KX1

= π∗

1(KX) + E1.
(2) If there are some higher index points on E1 ⊂ X1, there exists

a Gorenstein partial resolution

Xn1
→ Xn1−1 → . . . → X2 → X1

such that,
• for any j > 0, the birational morphism πj+1 : Xj+1 → Xj is
a divisorial contraction to a point Pj ∈ Xj of index rj > 1
with discrepancy 1

rj
;

• Xn1
has only Gorenstein terminal singularities of which

each one is “milder” than P ∈ X .
(3) Inductively, we have a sequence of birational morphisms

τP : Y = Xnl
→ Xnl−1

→ . . . → Xn1
→ X,

such that the birational morphism τj+1 : Xnj+1
→ Xnj

is con-
structed parallel to those in Steps (1) and (2), Xnj+1

has only

Gorenstein terminal singularities and Y is non-singular on τ−1

P (P ).

Definition 2.2. Given a Gorenstein terminal singularity P ∈ X , the
birational map Xn1

→ X ∋ P constructed as in Steps (1) and (2) is
called a feasible Gorenstein partial resolution of P ∈ X , or fG partial
resolution for short. The birational morphism τP : Y → X ∋ P con-
structed as in Step (3) is called a feasible resolution of P ∈ X . Clearly,
Xnj+1

is a fG partial resolution of Xnj
for any j > 0.
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Now given a Gorenstein projective 3-fold X with terminal singular-
ities. Let P ∈ X be a singular point and D be an effective Cartier
divisor on X with P ∈ D. We may consider a fG partial resolution of
P ∈ X , say

Z := Xn → . . . → X1 → X0 = X, (2.1)

so that the birational morphism πP : Z → X is composed of a sequence
of divisorial contractions Xi+1 → Xi to points Pi ∈ Xi of index ri > 1
with discrepancy 1/ri for all i > 1 together with a divisorial contraction
X1 → X to P ∈ X with discrepancy 1. Clearly, Z is still a projective
Gorenstein 3-fold with at worst terminal singularities.

For any i > 0, let Di be the proper transform of D in Xi and write
DZ/X := π∗

P (D) − Dn. Similarly, let Ki be the canonical divisor of
Xi and write KZ/X := KZ − π∗

P (KX). Also let Ei be the exceptional
divisor of the contraction morphism Xi → Xi−1 and Ei,Xj

denote the
proper transform of Ei on Xj.

Theorem 2.3. Given a projective Gorenstein 3-fold X with terminal
singularities. Let P ∈ X be a singular point and D be an effective
Cartier divisor on X with P ∈ D. Let πP : Z → X be the fG partial
resolution as in (2.1). Then DZ/X ≥ KZ/X .

Proof. First of all, we have KX1/X = E1 and DX1/X = b1E1, where b1 =
multPD ∈ Z>0 is the multiplicity. Clearly, we have DX1/X ≥ KX1/X .

Suppose we have DXi/X ≥ KXi/X . Write KXi/X =
∑i

j=1
ajEj , and

DXi/X =
∑i

j=1
bjEj with bj ≥ aj ∈ Z for all j. Since πi : Xi+1 → Xi is

a divisorial contraction to a point Pi of index r > 1 with discrepancy
1/r. Let

π∗

i (Ej,Xi
) = Ej,Xi+1

+
αi,j

r
Ei+1;

π∗

i (Di) = Di+1 +
βi

r
Ei+1 (2.2)

where αi,j ≥ 0 for each j and βi ≥ 0. It follows that

KXi+1/X =
i∑

j=1

ajEj + (

∑i
j=1

ajαi,j

r
+

1

r
)Ei+1;

DXi+1/X =
i∑

j=1

bjEj + (

∑i
j=1

bjαi,j

r
+

βi

r
)Ei+1. (2.3)

Since (X,P ) is Gorenstein, both
∑i

j=1
ajαj

r
+ 1

r
and

∑i
j=1

bjαj

r
+ βi

r
are

positive integers. Hence
∑i

j=1
ajαi,j + 1

r
= ⌈

∑i
j=1

ajαi,j

r
⌉ ≤ ⌈

∑i
j=1

bjαi,j

r
⌉ ≤

∑i
j=1

bjαi,j + βi

r
.

Therefore, DXi+1/X ≥ KXi+1/X . We are done by induction. �
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Now, for the given terminal Gorenstein singularity P ∈ X , the fea-
sible resolution τP as in the above Step (3) can be rephrased as:

τP : Zl → Zl−1 → · · · → Z1 → X ∋ P (2.4)

by setting Zj := Xnj
, where Zl is smooth on τ−1

P (P ) and each birational
morphism Zi → Zi−1 is a fG partial resolution for all i. Therefore
Theorem 2.3 and simple induction directly imply the following:

Corollary 2.4. For the feasible resolution (2.4), we have DZj/X ≥
KZj/X for 1 ≤ j ≤ l.

In the last part of this section, we focus on moving linear systems.
Suppose that |M | is a moving linear system (i.e. without fixed part)
on the given projective Gorenstein terminal 3-fold X with Bs|M | 6= ∅.
Similar to usual resolution of indeterminancies, we can have a Goren-
stein resolution of indeterminancies as follows:

(i) If |M | is free out of singularities, i.e. Bs|M | ∩ Sing(X) = ∅,
then we do nothing.

(ii) If there is a point P ∈ Bs|M | ∩ Sing(X), we take a fG-partial
resolution Z1 → X ∋ P and consider the linear system |M1|,
where M1 is the proper transform of M on Z1.

(iii) Inductively, we will end up with a chain of fG partial resolutions
Zn → . . . → Z1 → X so that |Mn| is free out of singularities
of Zn (see (2.4)), since 3-dimensional terminal singularities are
isolated.

(iv) If |Mn| is base point free on Zn, then we stop. Note that Zn is
a Gorenstein terminal 3-fold.

(v) If |Mn| has base points, then Bs|Mn| consists of smooth points of
Zn by our construction. We then consider the usual resolution
of indeterminancies over Bs|Mn|, say Zk → . . . → Zn, which
is composed of a sequence of blow-ups along smooth points or
curves by Hironaka’s big theorem.

(vi) Thus we may end up with a 3-fold Zk so that |Mk| is base point
free. We call

µ : Zk
τk−→ . . .

τn+1

−→ Zn
τn−→ . . .

τ1−→ X (2.5)

a Gorenstein resolution of indeterminancies of |M |. Note that
Zk is a Gorenstein terminal 3-fold in general.

Theorem 2.5. Let |M | be a moving linear system on a projective
Gorenstein terminal 3-fold X and D ∈ |M | be a general member. Let
µ : Zk → X be the Gorenstein resolution of indeterminancies as in
(2.5). Then 2DZk/X ≥ KZk/X .

Proof. We keep the notation as in above Steps (i)∼ (vi). For each i < n,
we have DZi+1/Zi

≥ KZi+1/Zi
by Theorem 2.3. For each i ≥ n, τi+1 is a

blowup along a smooth curve or a smooth point, contained in DZi
. Let

Ei+1 be the exceptional divisor. Then 2DZi+1/Zi
≥ 2Ei+1 ≥ KZi+1/Zi

.



The Noether inequality 5

Since DZi+1/X = τ ∗i+1DZi/X + DZi+1/Zi
and KZi+1/X = τ ∗i+1KZi/X +

KZi+1/Zi
. The statement now follows easily by induction. �

3. The canonical family of curves of genus 2

Let X be a projective Gorenstein minimal 3-fold of general type.
The fact that K3

X being even allows us to assume pg(X) ≥ 5 in order
to prove Theorem 1.1. Thus we may always consider the non-trivial
canonical map ϕ1. Set d := dimϕ1(X).

The following inequalities are already known:

I. If d 6= 2, then

K3
X ≥ min{2pg(X)− 6,

7

5
pg(X)− 2}

by [3, Theorem 5 (1)] and Catanese–Chen–Zhang [5, Theorem
4.1].

II. If d = 2 and X is canonically fibred by curves C of genus
g(C) ≥ 3, then K3

X ≥ 2pg(X)− 4 by [3, Theorem 4.1(ii)].

Theorem 3.1. Let X be a projective minimal smooth 3-fold of general
type. Suppose that d = 2 and X is canonically fibred by curves of genus
2. Then

K3
X ≥

1

3
(4pg(X)− 10).

The inequality is sharp.

Proof. Write |KX | = |M | + F , where |M | is the moving part and F is
the fixed part. Let

µ : X ′ = Zk → . . . → Z1 → X

be the Gorenstein resolution of indeterminancies as (2.5). Let g =
ϕ1 ◦ µ and take the Stein factorization, we have the induced fibration
f : X ′ −→ W .

A general fiber of f is a smooth curve of genus 2 by assumption of
the theorem. Let D be a general member of |M | and S := DX′ be the
general member of the moving part of |µ∗M |. Then we have

µ∗KX = µ∗M + µ∗F = S +DX′/X + µ∗F.

Set E ′ := DX′/X + µ∗F .
On the surface S, set L := µ∗(KX)|S. We also have S|S ≡ aC

where a ≥ pg(X)−2 and C is a general fiber of the restricted fibration
f |S : S −→ f(S). Note that the above C lies in the same numerical
class as that of a general fiber of f . One has

(µ∗K2
X · S) ≥ (µ∗KX ·S S) ≥ a(L · C) ≥ (L · C)(pg(X)− 2).

If (L ·C) ≥ 2, then we have already K3
X ≥ (µ∗K2

X ·S) ≥ 2pg(X)−4. It
remains to consider the case (L · C) = 1. Note that, in this situation,
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|M | must have base points. Otherwise, µ = identity and

(L · C) = (KX |S · C) = ((KX + S)|S · C) = (KS · C) = 2,

a contradiction.
Denote E ′|S := E ′

V + E ′

H , where E ′

V is the vertical part and E ′

H is
the horizontal part with respect to f |S. Since (E ′

H · C) = (E ′|S · C) =
(L ·C) = 1, E ′

H is an irreducible curve and is a section of the restricted
fibration f |S.

DenoteKX′/X |S := EV +EH , where EV is the vertical part and EH is
the horizontal part. From (KS ·C) = 2, one sees that (KX′/X |S ·C) = 1
and hence (EH · C) = 1. This also means that EH is an irreducible
curve and we may assume that EH = E0|S for some µ-exceptional
divisor E0. Notice that 2E ′ ≥ KX′/X by Theorem 2.5. In particular
E0 is contained in E ′. Therefore, E ′

H = EH and 2E ′

V ≥ EV .
Let G := EH = E ′

H . Since 2E
′

V −EV is effective and vertical, we see
that 2(E ′

V ·G) ≥ (EV ·G). On the surface S, we have

(2µ∗KX |S + E ′

V ) ·G
= (µ∗KX |S + S|S + 2E ′

V + E ′

H) ·G
≥ (µ∗KX |S + S|S + EV + EH) ·G
= (µ∗KX +KX′/X |S + S|S) ·G
= (KS ·G) ≥ −2−G2

We also have

(µ∗KX |S − E ′

V ) ·G = (S|S ·G) + (E ′

H ·G)
= a(C ·G) +G2

≥ pg(X)− 2 +G2.

Combining these, we get 3(µ∗(KX)|S ·G) ≥ pg(X)− 4 and therefore

(µ∗(KX)|S · E ′|S) ≥ (µ∗(KX)|S ·G) ≥
1

3
(pg(X)− 4).

Finally we have

K3
X = µ∗(KX)

3 ≥ (µ∗(KX)
2 · S)

= (µ∗(KX)|S · S|S) + (µ∗(KX)|S · E ′|S)
≥ (pg(X)− 2) + 1

3
(pg(X)− 4) = 2

3
(2pg(X)− 5).

The inequality is sharp by virtue of Kobayashi’s example [6]. �

Theorem 1.1 follows directly from known results I, II and Theorem
3.1.

We would like to ask the following:

Open problem 3.2. Is the inequality K3
X ≥ 4

3
pg(X)− 10

3
true for any

projective minimal 3-fold X of general type?

Some known results includes: if pg(X) ≥ 3, then K3
X ≥ 1 and if

pg(X) ≥ 4, then K3
X ≥ 2 (cf. [4, Theorem 1.5]).
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