THE NOETHER INEQUALITY FOR GORENSTEIN MINIMAL 3-FOLDS

JUNGKAI A. CHEN AND MENG CHEN

Abstract

We prove the Conjecture of Catenese-Chen-Zhang: the inequality $K_{X}^{3} \geq \frac{4}{3} p_{g}(X)-\frac{10}{3}$ holds for all projective Gorenstein minimal 3 -folds X of general type.

1. Introduction

In the classification theory of algebraic varieties, the Noether inequality, which asserts that $K^{2} \geq 2 p_{g}-4$ for minimal surfaces of general type, plays a pivotal role. It is thus natural and important to explore the higher dimensional analogue.

There are several attempts toward this direction. A naive guess is that, for minimal variety X of general type, $K_{X}^{\operatorname{dim} X} \geq 2\left(p_{g}(X)-\right.$ $\operatorname{dim} X$), which holds in dimension 1 and 2. However, Kobayashi 6] constructed examples of canonically polarized threefolds with $p_{g}(X)=$ $3 k+4$ and $K_{X}^{3}=4 k+2$ for $k \geq 1$. Hence the inequality $K_{X}^{3} \geq 2 p_{g}(X)-$ 6 fails in dimension 3 and one can only expect that $K_{X}^{3} \geq \frac{4}{3} p_{g}(X)-\frac{10}{3}$.

The aim of this paper is to confirm the conjecture ([5, Conj. 4.4], in 2006) of Catanese-Chen-Zhang and to prove the following:

Theorem 1.1. The inequality

$$
K_{X}^{3} \geq \frac{4}{3} p_{g}(X)-\frac{10}{3}
$$

holds for all projective Gorenstein minimal 3-folds X of general type.
Theorem [1.1 was proved by the second author [2] when X is canonically polarized and by Catanese-Chen-Zhang [5] while X is smooth minimal. We refer to the relevant work [6, 2, 3, 5] for more details of the history of this topic.

The main obstacle in proving the above theorem is the existence of Gorenstein terminal singularities in the base locus of the canonical linear system $\left|K_{X}\right|$, while X is canonically fibred by a family of curves of genus 2. By using certain conceived and explicit resolution of Gorenstein terminal singularities, which we call feasible Goresntein

[^0]resolution, we are able to resolve the base locus and prove the statement.

Throughout we work over the complex number field \mathbb{C}.

2. Special resolutions to Gorenstein terminal singularities (X, P), pairs (X, D) and linear systems $(X,|M|)$

First of all, we recall the following result of the first author:
Theorem 2.1. (11, Theorem 1.3]) Let X be an algebraic 3-fold with at worst terminal singularities. For any terminal singularity $P \in X$, there exists a sequence of birational morphisms:

$$
\tau_{P}: Y=X_{m} \rightarrow X_{m-1} \rightarrow \ldots \rightarrow X_{1} \rightarrow X_{0}=X
$$

such that Y is smooth on $\tau_{P}^{-1}(P)$ and, for all i, the morphism π_{i} : $X_{i+1} \rightarrow X_{i}$ is a divisorial contraction to a singular point $P_{i} \in X_{i}$ of index $r_{i} \geq 1$ with discrepancy $1 / r_{i}$.

Indeed, given a Gorenstein terminal singularity $(P \in X)$, the resolution can be constructed in explicit as follows.
(1) Take a divisorial contraction $\pi_{1}: X_{1} \rightarrow X$ contracting E_{1} to the point P with discrepancy 1, i.e. $K_{X_{1}}=\pi_{1}^{*}\left(K_{X}\right)+E_{1}$.
(2) If there are some higher index points on $E_{1} \subset X_{1}$, there exists a Gorenstein partial resolution

$$
X_{n_{1}} \rightarrow X_{n_{1}-1} \rightarrow \ldots \rightarrow X_{2} \rightarrow X_{1}
$$

such that,

- for any $j>0$, the birational morphism $\pi_{j+1}: X_{j+1} \rightarrow X_{j}$ is a divisorial contraction to a point $P_{j} \in X_{j}$ of index $r_{j}>1$ with discrepancy $\frac{1}{r_{j}}$;
- $X_{n_{1}}$ has only Gorenstein terminal singularities of which each one is "milder" than $P \in X$.
(3) Inductively, we have a sequence of birational morphisms

$$
\tau_{P}: Y=X_{n_{l}} \rightarrow X_{n_{l-1}} \rightarrow \ldots \rightarrow X_{n_{1}} \rightarrow X
$$

such that the birational morphism $\tau_{j+1}: X_{n_{j+1}} \rightarrow X_{n_{j}}$ is constructed parallel to those in Steps (1) and (2), $X_{n_{j+1}}$ has only Gorenstein terminal singularities and Y is non-singular on $\tau_{P}^{-1}(P)$.

Definition 2.2. Given a Gorenstein terminal singularity $P \in X$, the birational map $X_{n_{1}} \rightarrow X \ni P$ constructed as in Steps (1) and (2) is called a feasible Gorenstein partial resolution of $P \in X$, or $f G$ partial resolution for short. The birational morphism $\tau_{P}: Y \rightarrow X \ni P$ constructed as in Step (3) is called a feasible resolution of $P \in X$. Clearly, $X_{n_{j+1}}$ is a fG partial resolution of $X_{n_{j}}$ for any $j>0$.

Now given a Gorenstein projective 3 -fold X with terminal singularities. Let $P \in X$ be a singular point and D be an effective Cartier divisor on X with $P \in D$. We may consider a fG partial resolution of $P \in X$, say

$$
\begin{equation*}
Z:=X_{n} \rightarrow \ldots \rightarrow X_{1} \rightarrow X_{0}=X \tag{2.1}
\end{equation*}
$$

so that the birational morphism $\pi_{P}: Z \rightarrow X$ is composed of a sequence of divisorial contractions $X_{i+1} \rightarrow X_{i}$ to points $P_{i} \in X_{i}$ of index $r_{i}>1$ with discrepancy $1 / r_{i}$ for all $i>1$ together with a divisorial contraction $X_{1} \rightarrow X$ to $P \in X$ with discrepancy 1. Clearly, Z is still a projective Gorenstein 3 -fold with at worst terminal singularities.
For any $i>0$, let D_{i} be the proper transform of D in X_{i} and write $D_{Z / X}:=\pi_{P}^{*}(D)-D_{n}$. Similarly, let K_{i} be the canonical divisor of X_{i} and write $K_{Z / X}:=K_{Z}-\pi_{P}^{*}\left(K_{X}\right)$. Also let E_{i} be the exceptional divisor of the contraction morphism $X_{i} \rightarrow X_{i-1}$ and $E_{i, X_{j}}$ denote the proper transform of E_{i} on X_{j}.

Theorem 2.3. Given a projective Gorenstein 3-fold X with terminal singularities. Let $P \in X$ be a singular point and D be an effective Cartier divisor on X with $P \in D$. Let $\pi_{P}: Z \rightarrow X$ be the $f G$ partial resolution as in (2.1). Then $D_{Z / X} \geq K_{Z / X}$.

Proof. First of all, we have $K_{X_{1} / X}=E_{1}$ and $D_{X_{1} / X}=b_{1} E_{1}$, where $b_{1}=$ mult $_{P} D \in \mathbb{Z}_{>0}$ is the multiplicity. Clearly, we have $D_{X_{1} / X} \geq K_{X_{1} / X}$.

Suppose we have $D_{X_{i} / X} \geq K_{X_{i} / X}$. Write $K_{X_{i} / X}=\sum_{j=1}^{i} a_{j} E_{j}$, and $D_{X_{i} / X}=\sum_{j=1}^{i} b_{j} E_{j}$ with $b_{j} \geq a_{j} \in \mathbb{Z}$ for all j. Since $\pi_{i}: X_{i+1} \rightarrow X_{i}$ is a divisorial contraction to a point P_{i} of index $r>1$ with discrepancy $1 / r$. Let

$$
\begin{align*}
\pi_{i}^{*}\left(E_{j, X_{i}}\right) & =E_{j, X_{i+1}}+\frac{\alpha_{i, j}}{r} E_{i+1} \\
\pi_{i}^{*}\left(D_{i}\right) & =D_{i+1}+\frac{\beta_{i}}{r} E_{i+1} \tag{2.2}
\end{align*}
$$

where $\alpha_{i, j} \geq 0$ for each j and $\beta_{i} \geq 0$. It follows that

$$
\begin{align*}
& K_{X_{i+1} / X}=\sum_{j=1}^{i} a_{j} E_{j}+\left(\frac{\sum_{j=1}^{i} a_{j} \alpha_{i, j}}{r}+\frac{1}{r}\right) E_{i+1} \\
& D_{X_{i+1} / X}=\sum_{j=1}^{i} b_{j} E_{j}+\left(\frac{\sum_{j=1}^{i} b_{j} \alpha_{i, j}}{r}+\frac{\beta_{i}}{r}\right) E_{i+1} . \tag{2.3}
\end{align*}
$$

Since (X, P) is Gorenstein, both $\frac{\sum_{j=1}^{i} a_{j} \alpha_{j}}{r}+\frac{1}{r}$ and $\frac{\sum_{j=1}^{i} b_{j} \alpha_{j}}{r}+\frac{\beta_{i}}{r}$ are positive integers. Hence

$$
\frac{\sum_{j=1}^{i} a_{j} \alpha_{i, j}+1}{r}=\left\lceil\frac{\sum_{j=1}^{i} a_{j} \alpha_{i, j}}{r}\right\rceil \leq\left\lceil\frac{\sum_{j=1}^{i} b_{j} \alpha_{i, j}}{r}\right\rceil \leq \frac{\sum_{j=1}^{i} b_{j} \alpha_{i, j}+\beta_{i}}{r} .
$$

Therefore, $D_{X_{i+1} / X} \geq K_{X_{i+1} / X}$. We are done by induction.

Now, for the given terminal Gorenstein singularity $P \in X$, the feasible resolution τ_{P} as in the above Step (3) can be rephrased as:

$$
\begin{equation*}
\tau_{P}: Z_{l} \rightarrow Z_{l-1} \rightarrow \cdots \rightarrow Z_{1} \rightarrow X \ni P \tag{2.4}
\end{equation*}
$$

by setting $Z_{j}:=X_{n_{j}}$, where Z_{l} is smooth on $\tau_{P}^{-1}(P)$ and each birational morphism $Z_{i} \rightarrow Z_{i-1}$ is a fG partial resolution for all i. Therefore Theorem 2.3 and simple induction directly imply the following:

Corollary 2.4. For the feasible resolution (2.4), we have $D_{Z_{j} / X} \geq$ $K_{Z_{j} / X}$ for $1 \leq j \leq l$.

In the last part of this section, we focus on moving linear systems. Suppose that $|M|$ is a moving linear system (i.e. without fixed part) on the given projective Gorenstein terminal 3 -fold X with $\mathrm{Bs}|M| \neq \emptyset$. Similar to usual resolution of indeterminancies, we can have a Gorenstein resolution of indeterminancies as follows:
(i) If $|M|$ is free out of singularities, i.e. $\operatorname{Bs}|M| \cap \operatorname{Sing}(X)=\emptyset$, then we do nothing.
(ii) If there is a point $P \in \operatorname{Bs}|M| \cap \operatorname{Sing}(X)$, we take a fG-partial resolution $Z_{1} \rightarrow X \ni P$ and consider the linear system $\left|M_{1}\right|$, where M_{1} is the proper transform of M on Z_{1}.
(iii) Inductively, we will end up with a chain of fG partial resolutions $Z_{n} \rightarrow \ldots \rightarrow Z_{1} \rightarrow X$ so that $\left|M_{n}\right|$ is free out of singularities of Z_{n} (see (2.4)), since 3-dimensional terminal singularities are isolated.
(iv) If $\left|M_{n}\right|$ is base point free on Z_{n}, then we stop. Note that Z_{n} is a Gorenstein terminal 3 -fold.
(v) If $\left|M_{n}\right|$ has base points, then $\mathrm{Bs}\left|M_{n}\right|$ consists of smooth points of Z_{n} by our construction. We then consider the usual resolution of indeterminancies over $\mathrm{Bs}\left|M_{n}\right|$, say $Z_{k} \rightarrow \ldots \rightarrow Z_{n}$, which is composed of a sequence of blow-ups along smooth points or curves by Hironaka's big theorem.
(vi) Thus we may end up with a 3 -fold Z_{k} so that $\left|M_{k}\right|$ is base point free. We call

$$
\begin{equation*}
\mu: Z_{k} \xrightarrow{\tau_{k}} \ldots \xrightarrow{\tau_{n+1}} Z_{n} \xrightarrow{\tau_{n}} \ldots \xrightarrow{\tau_{1}} X \tag{2.5}
\end{equation*}
$$

a Gorenstein resolution of indeterminancies of $|M|$. Note that Z_{k} is a Gorenstein terminal 3 -fold in general.

Theorem 2.5. Let $|M|$ be a moving linear system on a projective Gorenstein terminal 3 -fold X and $D \in|M|$ be a general member. Let $\mu: Z_{k} \rightarrow X$ be the Gorenstein resolution of indeterminancies as in (2.5). Then $2 D_{Z_{k} / X} \geq K_{Z_{k} / X}$.

Proof. We keep the notation as in above Steps (i) \sim (vi). For each $i<n$, we have $D_{Z_{i+1} / Z_{i}} \geq K_{Z_{i+1} / Z_{i}}$ by Theorem [2.3. For each $i \geq n, \tau_{i+1}$ is a blowup along a smooth curve or a smooth point, contained in $D_{Z_{i}}$. Let E_{i+1} be the exceptional divisor. Then $2 D_{Z_{i+1} / Z_{i}} \geq 2 E_{i+1} \geq K_{Z_{i+1} / Z_{i}}$.

Since $D_{Z_{i+1} / X}=\tau_{i+1}^{*} D_{Z_{i} / X}+D_{Z_{i+1} / Z_{i}}$ and $K_{Z_{i+1} / X}=\tau_{i+1}^{*} K_{Z_{i} / X}+$ $K_{Z_{i+1} / Z_{i}}$. The statement now follows easily by induction.

3. The canonical family of curves of genus 2

Let X be a projective Gorenstein minimal 3 -fold of general type. The fact that K_{X}^{3} being even allows us to assume $p_{g}(X) \geq 5$ in order to prove Theorem 1.1. Thus we may always consider the non-trivial canonical map φ_{1}. Set $d:=\operatorname{dim} \overline{\varphi_{1}(X)}$.

The following inequalities are already known:
I. If $d \neq 2$, then

$$
K_{X}^{3} \geq \min \left\{2 p_{g}(X)-6, \frac{7}{5} p_{g}(X)-2\right\}
$$

by [3, Theorem 5 (1)] and Catanese-Chen-Zhang [5, Theorem 4.1].
II. If $d=2$ and X is canonically fibred by curves C of genus $g(C) \geq 3$, then $K_{X}^{3} \geq 2 p_{g}(X)-4$ by [3, Theorem 4.1(ii)].

Theorem 3.1. Let X be a projective minimal smooth 3-fold of general type. Suppose that $d=2$ and X is canonically fibred by curves of genus 2. Then

$$
K_{X}^{3} \geq \frac{1}{3}\left(4 p_{g}(X)-10\right)
$$

The inequality is sharp.
Proof. Write $\left|K_{X}\right|=|M|+F$, where $|M|$ is the moving part and F is the fixed part. Let

$$
\mu: X^{\prime}=Z_{k} \rightarrow \ldots \rightarrow Z_{1} \rightarrow X
$$

be the Gorenstein resolution of indeterminancies as (2.5). Let $g=$ $\varphi_{1} \circ \mu$ and take the Stein factorization, we have the induced fibration $f: X^{\prime} \longrightarrow W$.

A general fiber of f is a smooth curve of genus 2 by assumption of the theorem. Let D be a general member of $|M|$ and $S:=D_{X^{\prime}}$ be the general member of the moving part of $\left|\mu^{*} M\right|$. Then we have

$$
\mu^{*} K_{X}=\mu^{*} M+\mu^{*} F=S+D_{X^{\prime} / X}+\mu^{*} F
$$

Set $E^{\prime}:=D_{X^{\prime} / X}+\mu^{*} F$.
On the surface S, set $L:=\left.\mu^{*}\left(K_{X}\right)\right|_{S}$. We also have $\left.S\right|_{S} \equiv a C$ where $a \geq p_{g}(X)-2$ and C is a general fiber of the restricted fibration $\left.f\right|_{S}: S \longrightarrow f(S)$. Note that the above C lies in the same numerical class as that of a general fiber of f. One has

$$
\left(\mu^{*} K_{X}^{2} \cdot S\right) \geq\left(\mu^{*} K_{X} \cdot{ }_{S} S\right) \geq a(L \cdot C) \geq(L \cdot C)\left(p_{g}(X)-2\right)
$$

If $(L \cdot C) \geq 2$, then we have already $K_{X}^{3} \geq\left(\mu^{*} K_{X}^{2} \cdot S\right) \geq 2 p_{g}(X)-4$. It remains to consider the case $(L \cdot C)=1$. Note that, in this situation,
$|M|$ must have base points. Otherwise, $\mu=$ identity and

$$
(L \cdot C)=\left(\left.K_{X}\right|_{S} \cdot C\right)=\left(\left.\left(K_{X}+S\right)\right|_{S} \cdot C\right)=\left(K_{S} \cdot C\right)=2,
$$

a contradiction.
Denote $\left.E^{\prime}\right|_{S}:=E_{V}^{\prime}+E_{H}^{\prime}$, where E_{V}^{\prime} is the vertical part and E_{H}^{\prime} is the horizontal part with respect to $\left.f\right|_{S}$. Since $\left(E_{H}^{\prime} \cdot C\right)=\left(\left.E^{\prime}\right|_{S} \cdot C\right)=$ $(L \cdot C)=1, E_{H}^{\prime}$ is an irreducible curve and is a section of the restricted fibration $\left.f\right|_{S}$.

Denote $\left.K_{X^{\prime} / X}\right|_{S}:=E_{V}+E_{H}$, where E_{V} is the vertical part and E_{H} is the horizontal part. From $\left(K_{S} \cdot C\right)=2$, one sees that $\left(\left.K_{X^{\prime} / X}\right|_{S} \cdot C\right)=1$ and hence $\left(E_{H} \cdot C\right)=1$. This also means that E_{H} is an irreducible curve and we may assume that $E_{H}=\left.E_{0}\right|_{S}$ for some μ-exceptional divisor E_{0}. Notice that $2 E^{\prime} \geq K_{X^{\prime} / X}$ by Theorem 2.5. In particular E_{0} is contained in E^{\prime}. Therefore, $E_{H}^{\prime}=E_{H}$ and $2 E_{V}^{\prime} \geq E_{V}$.

Let $G:=E_{H}=E_{H}^{\prime}$. Since $2 E_{V}^{\prime}-E_{V}$ is effective and vertical, we see that $2\left(E_{V}^{\prime} \cdot G\right) \geq\left(E_{V} \cdot G\right)$. On the surface S, we have

$$
\begin{aligned}
& \left(\left.2 \mu^{*} K_{X}\right|_{S}+E_{V}^{\prime}\right) \cdot G \\
= & \left(\left.\mu^{*} K_{X}\right|_{S}+\left.S\right|_{S}+2 E_{V}^{\prime}+E_{H}^{\prime}\right) \cdot G \\
\geq & \left(\left.\mu^{*} K_{X}\right|_{S}+\left.S\right|_{S}+E_{V}+E_{H}\right) \cdot G \\
= & \left(\mu^{*} K_{X}+\left.K_{X^{\prime} / X}\right|_{S}+\left.S\right|_{S}\right) \cdot G \\
= & \left(K_{S} \cdot G\right) \geq-2-G^{2}
\end{aligned}
$$

We also have

$$
\begin{aligned}
\left(\left.\mu^{*} K_{X}\right|_{S}-E_{V}^{\prime}\right) \cdot G & =\left(\left.S\right|_{S} \cdot G\right)+\left(E_{H}^{\prime} \cdot G\right) \\
& =a(C \cdot G)+G^{2} \\
& \geq p_{g}(X)-2+G^{2} .
\end{aligned}
$$

Combining these, we get $3\left(\left.\mu^{*}\left(K_{X}\right)\right|_{S} \cdot G\right) \geq p_{g}(X)-4$ and therefore

$$
\left(\left.\left.\mu^{*}\left(K_{X}\right)\right|_{S} \cdot E^{\prime}\right|_{S}\right) \geq\left(\left.\mu^{*}\left(K_{X}\right)\right|_{S} \cdot G\right) \geq \frac{1}{3}\left(p_{g}(X)-4\right)
$$

Finally we have

$$
\begin{aligned}
K_{X}^{3} & =\mu^{*}\left(K_{X}\right)^{3} \geq\left(\mu^{*}\left(K_{X}\right)^{2} \cdot S\right) \\
& =\left(\left.\left.\mu^{*}\left(K_{X}\right)\right|_{S} \cdot S\right|_{S}\right)+\left(\left.\left.\mu^{*}\left(K_{X}\right)\right|_{S} \cdot E^{\prime}\right|_{S}\right) \\
& \geq\left(p_{g}(X)-2\right)+\frac{1}{3}\left(p_{g}(X)-4\right)=\frac{2}{3}\left(2 p_{g}(X)-5\right) .
\end{aligned}
$$

The inequality is sharp by virtue of Kobayashi's example [6].
Theorem 1.1 follows directly from known results I, II and Theorem 3.1.

We would like to ask the following:
Open problem 3.2. Is the inequality $K_{X}^{3} \geq \frac{4}{3} p_{g}(X)-\frac{10}{3}$ true for any projective minimal 3-fold X of general type?
Some known results includes: if $p_{g}(X) \geq 3$, then $K_{X}^{3} \geq 1$ and if $p_{g}(X) \geq 4$, then $K_{X}^{3} \geq 2$ (cf. [4, Theorem 1.5]).

References

[1] J. A. Chen, Explicit resolution of three dimensional terminal singularities, (to appear) in Minimal Models and Extremal Rays, Proceedings of the conference in honor of Shigefumi Mori's 60th birthday, Advanced Studies in Pure Mathematics, arXiv 1310.6445.
[2] M. Chen, Minimal threefolds of small slope and the Noether inequality for canonically polarized threefolds, Math. Res. Lett. 11 (2004), 833-852.
[3] M. Chen, Inequalities of Noether type for 3-folds of general type, J. Math. Soc. Japan 56 (2004), 1131-1155.
[4] M. Chen A sharp lower bound for the canonical volume of 3-folds of general type, Math. Ann. 337 (2007), 887-908.
[5] F. Catanese, M. Chen, D.-Q. Zhang, The Noether inequality for smooth minimal 3-folds, Math. Res. Lett. 13 (2006), no. 4, 653-666.
[6] M. Kobayashi, On Noether's inequality for threefolds, J. Math. Soc. Japan 44 (1992), 145-156.

National Center for Theoretical Sciences, Taipei Office, and Department of Mathematics, National Taiwan University, Taipei, 106, Taiwan

E-mail address: jkchen@math.ntu.edu.tw
Department of Mathematics \& LMNS, Fudan University, Shanghai, 200433, People's Republic of China

E-mail address: mchen@fudan.edu.cn

[^0]: The first author was partially supported by National Science Council of Taiwan and NCTS. The second author was supported by National Natural Science Foundation of China (\#11171068, \#11121101, \#11231003) and Doctoral Fund of Ministry of Education of China (\#20110071110003).

