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Abstract

In this paper, we propose efficient numerical methods for computing the ground
states of spin-1 Bose-Einstein condensates (BECs) with/without the Ioffe-Pritchard
magnetic field B(x). When B(x) 6= 0, a numerical method is introduced to compute
the ground states and applied to study properties of the ground states. Numerical
results suggest that the densities of mF = ±1 components in the ground states are
identical for any nonzero B(x). In particular, if B(x) ≡ B is a constant, the ground
states satisfy the single-mode approximation. When B(x) ≡ 0, efficient and simpler
numerical methods are presented to solve the ground states of spin-1 BECs based on
their ferromagnetic/antiferromagnetic characterizations. Numerical simulations show
that our methods are more efficient than those in the literature. In addition, some
conjectures are made from our numerical observations.

Keywords: Spin-1 Bose-Einstein condensate; Ground state; Ferromagnetic; Anti-
ferromagnetic; Single-mode approximation.

1 Introduction
{section1}

Since its first realization in 1995, Bose–Einstein condensation (BEC) has become an im-
portant tool to study behaviors of quantum many-body systems. In earlier BEC exper-
iments, the atoms were confined in a magnetic trap, where their spin degree of freedom
was frozen [1, 11]. Recently, the development of optical trapping techniques has enabled
to confine atoms independently of their spin orientation and thus result in so-called spinor
condensates. The spinor BEC has revealed numerous exciting new phenomena which are
not possessed by single-component (spin-frozen) condensates. It has provided a unique
possibility of exploring fundamental concepts of quantum mechanics in a remarkably con-
trollable and tunable environment [28, 29, 27].

In the mean-field approximation, a spin-F (F ∈ N) condensate can be described by
coupled Gross-Pitaevskii equations (GPEs) consisting of 2F + 1 equations, each of which
governs one of the 2F +1 hyperfine states (mF = −F,−F +1, . . . , F − 1, F ). For a spin-1

∗Department of Mathematics and Center for Computational Science and Engineering, National Uni-
versity of Singapore, Singapore 119076 (bao@math.nus.edu.sg).

†Department of Applied Mathematics and Center of Mathematical Modeling and Scientific Computing,
National Chiao Tung University, Hsinchu, 30010, Taiwan (chern@math.nctu.edu.tw).

‡Department of Mathematics and Statistics, Missouri University of Science and Technology, Rolla, MO
65409-0020, USA (Corresponding author, zhangyanz@mst.edu).

1



BEC, the three component dimensionless GPEs have the following form [7, 5, 6, 28]:

i∂tψ1(x, t) =
(
H + βs(|ψ1|2 + |ψ0|2 − |ψ−1|2)

)
ψ1 + βsψ

2
0ψ

∗
−1 +Bψ0,

i∂tψ0(x, t) =
(
H + βs(|ψ1|2 + |ψ−1|2)

)
ψ0 + 2βsψ1ψ

∗
0ψ−1 +B∗ψ1 +Bψ−1, (1.1) {GPEs}

i∂tψ−1(x, t) =
(
H + βs(|ψ−1|2 + |ψ0|2 − |ψ1|2)

)
ψ−1 + βsψ

∗
1ψ

2
0 +B∗ψ0,

where ψj(x, t) is the complex-valued wave function of the j-th (j = 1, 0,−1) component
with x ∈ Rd (for d = 1, 2, 3) and t ≥ 0. The operator H is defined by

H = −1

2
∇2 + Vd(x) + βn

1∑

j=−1

|ψj |2, (1.2) {Hoperator}

where Vd(x) represents the external trapping potential and it is determined by the type of
system under investigation. For instance, if a three-dimensional (3D) harmonic potential
is considered, it takes the form V3(x) =

1
2(ω

2
xx

2 + ω2
yy

2 + ω2
zz

2) with ωx, ωy and ωz being
the dimensionless trapping frequencies in x-, y- and z-directions, respectively. The con-
stants βn and βs describe the spin-independent interaction and spin-dependent exchange
interaction, respectively, and they are proportional to N , the total number of atoms in
the condensate. When βn > 0 (resp. < 0), the spin-independent interaction is repulsive
(resp. attractive); while βs > 0 (resp. < 0), the spin-exchange interaction is antiferromag-
netic (resp. ferromagnetic). The dimensionless function B(x) ∈ C represents the external
Ioffe-Pritchard magnetic field [12, 14, 16]. In addition, f∗ represents the conjugate of the
function f .

There are two important invariants of (1.1): the normalization of the wave functions,

‖Ψ(·, t)‖2 =
1∑

j=−1

‖ψj(·, t)‖2 :=
1∑

j=−1

∫

Rd
|ψj(x, t)|2dx ≡ ‖Ψ(·, 0)‖2 = 1, t ≥ 0, (1.3) {Normal}

with Ψ(x, t) = (ψ1(x, t), ψ0(x, t), ψ−1(x, t))
T , and the energy

E(Ψ(·, t)) := E0(Ψ(·, t)) + 2Re

(∫

Rd
B(ψ∗

1ψ0 + ψ∗
0ψ−1)dx

)
≡ E(Ψ(·, 0)), t ≥ 0, (1.4) {energy}

with Re(f) denoting the real part of the function f and

E0(Ψ(·, t)) :=
∫

Rd

[
1∑

j=−1

(
1

2
|∇ψj |2 + Vd(x)|ψj |2

)
+
βn
2

(
|ψ1|2 + |ψ0|2 + |ψ−1|2

)2

+
βs
2

(
|ψ1|2 − |ψ−1|2

)2
+ βs|ψ0|2

(
|ψ1|2 + |ψ−1|2

)
+ 2βsRe

(
ψ∗
1ψ

2
0ψ

∗
−1

) ]
dx, (1.5) {energy0}

for t ≥ 0, i.e., E0(Ψ(·, t)) represents the energy when B(x) ≡ 0. Furthermore, in the case
of B(x) ≡ 0, the total magnetization is also conserved, i.e.,

M(Ψ(·, t)) :=
∫

Rd

(
|ψ1(x, t)|2 − |ψ−1(x, t)|2

)
dx ≡M(Ψ(·, 0)) =M, t ≥ 0, (1.6) {Magnetic}

with −1 ≤M ≤ 1.
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Among all stationary states, ground states which have the lowest energy play an im-
portant role in understanding the properties of BECs. There have been many studies on
ground states of spin-1 condensates. In [26], the phase diagram of the ground states of
spin-1 BECs was first reported in the Thomas-Fermi regime. The phenomena of broken
axisymmetry phase were observed in [23] for a spin-1 ferromagnetic condensate. Recently,
Matuszewski et al. compared the phase separation of the ground states in the ferromag-
netic and antiferromagnetic systems [19, 20]. Cao et al. proved the existence of the ground
states in one-dimensional condensates [8]. On the other hand, some numerical methods
have been proposed in recent literatures to compute the ground states of spin-1 BECs in
the absence of the external Ioffe-Pritchard magnetic field (i.e., B(x) ≡ 0 in (1.1)). For
instance, Bao and Wang presented a continuous normalized gradient flow (CNGF) and
constructed a Crank-Nicolson finite difference scheme to discretize it [5]. To improve the
computational efficiency of the method in [5], later Bao and Lim introduced a gradi-
ent flow with discrete normalization (GFDN) to replace the CNGF, where an addition
normalization condition was imposed [6, 17]. Chen et al. proposed a pseudo-arclength
continuation method to compute the ground states of spin-1 BECs [9]. To the best of
our knowledge, all these methods focus on computing the ground states of spin-1 BECs
where B(x) = 0 and so far there are still no numerical reports about the ground states
when B(x) 6= 0. In addition, to obtain the ground states in the cases of B(x) = 0, all
the available methods solve three-component GPE type equations, which makes the sim-
ulations very costly. Note that when B(x) = 0, the ground states of spin-1 BECs can
be simplified to a single-mode (resp. two-component) reduction for ferromagnetic (resp.
antiferromagnetic) systems [15, 30, 18]. Thus, in this case the ground states can be ef-
fectively found by solving the reduced single or two-component systems instead of the
original three-component one. In this paper, we aim to propose i) a numerical method for
computing ground states of spin-1 BECs when B(x) 6= 0; ii) efficient and simpler methods
for the case of B(x) ≡ 0, by taking into account their ferromagnetic and antiferromagnetic
characterizations.

This paper is organized as follows. In Section 2, we propose a numerical method
for the case when the Ioffe-Pritchard magnetic field B(x) 6= 0. While when B(x) ≡ 0,
the ground states of the three-component system (1.1) are characterized by those of the
corresponding reduced systems, i.e., the single-mode and two-component reductions for
the ferromagnetic and antiferromagnetic condensates, respectively. The reductions of the
ground states for ferromagnetic and antiferromagnetic spin-1 BECs are discussed in Section
3, followed by their numerical discretizations. Numerical results of ground states as well
as comparison between different methods are presented in Section 4. In Section 5, we draw
some conclusions and conjectures based on our numerical observations.

2 Numerical methods for ground states with nonzero B

{section2}
In this section, we study the ground states of spin-1 BECs with an Ioffe-Pritchard magnetic
field, i.e., B(x) 6= 0 in (1.1). Some numerical methods have been recently proposed in the
literature [5, 6, 17, 9] to compute the ground states of spin-1 BECs in the absence of B(x).
However, there is still no numerical report on the ground states when B(x) 6= 0.

When B(x) 6= 0, the ground state Φg(x) = (φ1,g(x), φ0,g(x), φ−1,g(x))
T is defined by

minimizing the energy functional E in (1.4) subject to the normalization of the wave func-
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tions, i.e.,

Find (Φg ∈ S), such that

Eg := E(Φg) = min
Φ∈S

E(Φ), (2.1) {minimizer6}

where the set S is defined by

S :=
{
Φ = (φ1, φ0, φ−1)

T | ‖Φ‖2 = 1, E(Φ) <∞
}
.

It is easy to see that the ground state Φg defined in (2.1) satisfies the following Euler-
Lagrange equations

µφ1(x) =
(
H + βs(|φ1|2 + |φ0|2 − |φ−1|2)

)
φ1 + βs φ

2
0φ

∗
−1 +Bφ0,

µφ0(x) =
(
H + βs(|φ1|2 + |φ−1|2)

)
φ0 + 2βs φ1φ

∗
0φ−1 +B∗φ1 +Bφ−1, (2.2) {SGPEs-B}

µφ−1(x) =
(
H + βs(|φ−1|2 + |φ0|2 − |φ1|2)

)
φ−1 + βs φ

∗
1φ

2
0 +B∗φ0,

with the constraint

‖Φ‖2 =
∫

Rd

(
|φ1(x)|2 + |φ0(x)|2 + |φ−1(x)|2

)
dx = 1, (2.3) {constraint6}

where the operator H is defined in (1.2). The eigenvalue µ is the Lagrange multiplier
(or called as chemical potential) corresponding to the constraint in (2.3), which can be
computed from its eigenfunction Φ by

µ = µ(Φ) = E(Φ) +

∫

Rd

[
βn
2

(
|φ1|2 + |φ0|2 + |φ−1|2

)2
+
βs
2

(
|φ1|2 − |φ−1|2

)2

+βs|φ0|2
(
|φ1|2 + |φ−1|2

)
+ 2βsRe

(
φ∗1φ

2
0φ

∗
−1

) ]
dx.

In fact, the system in (2.2) can also be obtained from the time-dependent GPEs in (1.1)
by substituting the ansatz

ψj(x, t) = e−iµt φj(x), j = 1, 0,−1. (2.4) {}

The eigenfunctions Φ of the constrained nonlinear eigenvalue problem (2.2)–(2.3) are usu-
ally called as stationary states of spin-1 BECs. Among all stationary states, the eigen-
function with minimum energy is called as the ground state and those with larger energies
are usually called as excited states.

Various algorithms have been proposed in the literature to find the minimizer of the
energy functional under constraints. While the imaginary time method (i.e., replacing t
with −iτ in (1.1)) is one of the most popular approaches in studying the ground states of
BECs. It is mathematically justified by the normalized gradient flow [10, 2]. In this paper,
we will develop our numerical methods for computing ground states of spin-1 BECs based
on the discretized normalized gradient flow; see more information in [2]. Choose a time
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step ∆t > 0 and define the time sequence as tn = n∆t for n = 0, 1, . . . . Then in each time
interval [tn, tn+1], the gradient flow with discrete normalization (GFDN) is given by

∂tφ1(x, t) = −
(
H + βs(|φ1|2 + |φ0|2 − |φ−1|2)

)
φ1 − βs φ

2
0φ

∗
−1 −Bφ0,

∂tφ0(x, t) = −
(
H + βs(|φ1|2 + |φ−1|2)

)
φ0 − 2βs φ1φ

∗
0φ−1 −B∗φ1 −Bφ−1, (2.5) {DNGL}

∂tφ−1(x, t) = −
(
H + βs(|φ−1|2 + |φ0|2 − |φ1|2)

)
φ−1 − βs φ

∗
1φ

2
0 −B∗φ0,

followed by a projection step as

φj(x, t
+
n+1) :=

φj(x, t
−
n+1)

‖Φ(·, t−n+1)‖
, j = 1, 0,−1, (2.6) {Projection}

where φj(x, t
±
n+1) = limt→t±

n+1

φj(x, t) (j = 1, 0,−1). The gradient flow in (2.5)–(2.6) can

be viewed as first applying the steepest descent method to the energy functional in (1.4)
without constraint and then projecting the solution back to the unit sphere to satisfy the
normalization constraint in (2.3).

In order to solve (2.5)–(2.6) numerically, we discretize (2.5) by using the sine pseudo-
spectral method for spatial derivatives and the backward/forward Euler scheme for lin-
ear/nonlinear terms for temporal derivatives [3, 31]. Then at the end of each time step,
the normalization is achieved by the projection described in (2.6). In the following, we will
give a detailed description of our numerical method. Notice that because of the confine-
ment of the trapping potential, the wave function Φ in (2.5) decays to zero exponentially
fast when |x| → ∞. Thus, in practical computations, we can truncate the problem into a
bounded computational domain Ω with homogeneous Dirichlet boundary conditions, i.e.,

φj(x, t)|∂Ω = 0, t ≥ 0, j = 1, 0,−1. (2.7) {}

For simplicity of notations, next we will introduce the scheme for the one-dimensional
(1D) GFDN in a bounded domain Ω = [a, b]. Generalizations to higher dimensions are
straightforward for tensor product grids. For an integer K > 0, define the spatial mesh
size ∆x = (b − a)/K > 0 and denote grid points xk = a + k∆x for k = 0, 1, . . . ,K. Let
φnj,k be the approximation of φj(xk, tn) and Φn

j be a vector consisting of φnj,k for the j-th
component. Denote Φn a vector with sub-vectors Φn

j for j = 1, 0,−1. Then over each
interval [tn, tn+1], the GFDN in (2.5) is discretized as

φ †
j,k − φnj,k

∆t
=

1

2
Ds

xxφ
†
j,k|x=xk

− αn
j

(
φ †
j,k − φnj,k

)
+ Pn

j,k, 1 ≤ k ≤ K − 1, (2.8) {scheme1}

for j = 1, 0,−1, and the projection step in (2.6) is discretized as

φn+1
j,k =

φ †
j,k

‖Φ †‖ with ‖Φ †‖ =

√√√√∆x
1∑

j=−1

K−1∑

k=1

|φ †
j,k|2 , (2.9) {}

where Pn
j,k (j = 1, 0,−1) are defined by

Pn
1,k := −

(
V1(xk) + βn

1∑

j=−1

|φnj,k|2 + βs(|φn1,k|2 + |φn0,k|2 − |φn−1,k|2)
)
φn1,k
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−βs(φn0,k)2(φn−1,k)
∗ −B(xk)φ

n
0,k,

Pn
0,k := −

(
V1(xk) + βn

1∑

j=−1

|φnj,k|2 + βs(|φn1,k|2 + |φn−1,k|2)
)
φn0,k

−2βsφ
n
1,k(φ

n
0,k)

∗φn−1,k −B∗(xk)φ
n
1,k −B(xk)φ

n
−1,k,

Pn
−1,k := −

(
V1(xk) + βn

1∑

j=−1

|φnj,k|2 + βs(|φn−1,k|2 + |φn0,k|2 − |φn1,k|2)
)
φn−1,k

−βs(φn0,k)2(φn1,k)∗ −B∗(xk)φ
n
0,k.

In (2.8), Ds
xx is a pseudo-spectral differential operator approximating ∂xx, which is defined

by

Ds
xxU |x=xk

=
K−1∑

l=1

(
−µ2l Ûl

)
sin (µl(xk − a)) , 1 ≤ k ≤ K − 1, (2.10) {operator}

where Ûl denotes the l-th coefficient of the sine transform of the vector U = (U1, U2, . . . , UK−1)
T ,

i.e.,

Ûl =
2

K

K−1∑

k=1

Uk sin (µl(xk − a)) and µl =
lπ

b− a
, 1 ≤ l ≤ K − 1.

The constant αn
j ≥ 0 (j = 1, 0,−1) is the stabilization parameter, which is chosen in

the “optimal” form (such as the time step can be chosen as large as possible) (see, e.g.
[31, 6, 17]). The initial condition is discretized as

φ0j,k = φj(xk, 0), 0 ≤ k ≤ K, j = 1, 0,−1, (2.11) {dinitial}

and the boundary conditions are

φnj,0 = φnj,K = 0, n = 0, 1, . . . , j = 1, 0,−1. (2.12) {dbc}

The discrete system (2.8), (2.11) and (2.12) can be efficiently solved by the sine trans-
form. In fact, taking the sine transform at both sides of (2.8), we get

φ̂ †
j,l − φ̂nj,l
∆t

= −1

2
µ2l φ̂

†
j,l − αn

j

(
φ̂ †
j,l − φ̂nj,l

)
+ P̂n

j,l, l = 1, 2, . . . ,K − 1, (2.13) {}

which implies that

φ̂ †
j,l =

(
1 + αn

j∆t
)
φ̂nj,l + P̂n

j,l

1 +
(
αn
j + µ2l /2

)
∆t

, j = 1, 0,−1 (2.14) {}

for l = 1, 2, . . . ,K − 1 and n = 0, 1, . . . . Since the sine transform is used, the memory
required to solve the above system is O(K) and computational cost per time step is
O(K ln(K)). The simulation is stopped by requiring that

max
−1≤j≤1

max
1≤k≤K−1

|φn+1
j,k − φnj,k|

∆t
< ε, (2.15) {}

where ε is a chosen tolerance. The resulting solution Φ := limn→∞Φn+1 is the ground
state of the spin-1 BECs.
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3 Numerical methods for ground states with B = 0
{section3}

In Section 2, we present a numerical method to compute the ground states of spin-1 BECs
when B(x) 6= 0, while in this section we will consider the case with B(x) ≡ 0. In the for-
mer case, the ground state is defined as the minimizer of the energy under the constraints
of normalization. However, when B(x) ≡ 0, they also need to satisfy the conservation of
magnetization defined in (1.6). In detail, the ground state Φ0,g(x) in this case is defined by

Find (Φ0,g ∈ S0) such that

E0,g := E0(Φ0,g) = min
Φ∈S0

E0(Φ), (3.1) {minimizer1}

where E0 is the energy functional defined in (1.5) and S0 is a nonconvex set defined by

S0 :=
{
Φ = (φ1, φ0, φ−1)

T | ‖Φ(·)‖2 = 1, ‖φ1(·)‖2 − ‖φ−1(·)‖2 =M, E0(Φ) <∞
}
,

with −1 ≤ M ≤ 1 a given fixed total magnetization. In the case of B(x) ≡ 0, when
βn > 0, |βs| ≤ βn and lim|x|→∞ Vd(x) = ∞, the existence of a minimizer of the nonconvex
minimization problem (3.1) follows from the standard theory [8]. In fact, E0(α · Φ0,g) =
E0(Φ0,g) for all constant vector α = (eiθ1 , eiθ0 , eiθ−1)T with θ1 + θ−1 − 2θ0 = 2mπ for any
integer m. Thus, the uniqueness is up to gauge transform [28] and was studied in [18].

Similarly, the ground state Φ0,g(x) can also be considered as the eigenfunctions of the
following Euler-Lagrange equations:

(µ+ λ)φ1 =
(
H + βs(|φ1|2 + |φ0|2 − |φ−1|2)

)
φ1 + βs φ

2
0φ

∗
−1,

µφ0 =
(
H + βs(|φ1|2 + |φ−1|2)

)
φ0 + 2βs φ1φ

∗
0φ−1, (3.2) {SGPEs}

(µ− λ)φ−1 =
(
H + βs(|φ−1|2 + |φ0|2 − |φ1|2)

)
φ−1 + βs φ

∗
1φ

2
0,

under the constraints

‖Φ(·)‖2 :=
1∑

j=−1

∫

Rd
|φj(x)|2dx = 1,

∫

Rd

(
|φ1(x)|2 − |φ−1(x)|2

)
dx =M, (3.3) {constraint1}

where µ and λ are the Lagrange multipliers (or chemical potentials) of the coupled time-
independent GPEs (3.2)–(3.3). The GPEs in (3.2) can be also obtained from its time-
dependent counterpart (1.1) with B(x) ≡ 0 by substituting the ansatz

ψ±1(x, t) = e−i(µ±λ)tφ±1(x), ψ0(x, t) = e−iµtφ0(x). (3.4) {ansatz}

Recently, there have been numerical methods proposed in the literature (see, e.g.,
[5, 6, 17, 9]) to compute the ground states of spin-1 BECs when B(x) = 0, in which the
system of three-component equations was solved. However, we notice that when B(x) =
0, the ground states of spin-1 BECs in fact can be described by a single-mode or two-
component reduction based on their ferromagnetic or antiferromagnetic characterizations
[18]. As a result, we can introduce numerical methods based on the characterization of
spin-1 BECs so as to reduce the computational costs of the methods given in the literature.
In the following, we will discuss the ferromagnetic and antiferromagnetic system separately,
and for each system, we will start with reviewing its characterization properties and then
propose numerical methods for the reduced system.
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3.1 Ferromagnetic system
{section3-1}

Experimental observations [15, 24, 13] and numerical simulations [30, 5, 6, 17] suggest that
in ferromagnetic (βs < 0) spin-1 BECs, each component of the ground state is a multiple
of one single density function. This is so-called the single-mode approximation (SMA) in
the literature, which has been justified rigorously in mathematics by Lin and Chern in
[18]. In this case, one can compute just one density function instead of three. To do this,
we denote ρ(x) ≥ 0, for x ∈ Rd, as a scalar real-valued density function and require it
satisfy the normalization condition

‖ρ(·)‖2 =
∫

Rd
ρ2(x) dx = 1. (3.5) {normal-rho}

Let1 Φg(x) = (φ1,g, φ0,g, φ−1,g)
T be the ground state of a ferromagnetic spin-1 BEC and

according to the single-mode approximation, we can set

φj,g(x) = |φj,g(x)| = γj ρ(x), j = 1, 0, −1, (3.6) {SMA}

with constants γj ≥ 0 (for j = 1, 0,−1). Noticing that the ground state Φg(x) is defined
under the constraints of normalization and magnetization given in (3.3), we obtain

γ21 + γ20 + γ2−1 = 1, γ21 − γ2−1 =M. (3.7) {gamma}

Substituting (3.6) into (1.5) and taking (3.7) into account, we have

E0(Φg) =

∫

Rd

[
1

2
|∇ρ(x)|2 + Vd(x)ρ

2(x) +
βn
2
ρ4(x)

+
βs
2

(
M2 + 2γ20(γ1 + γ−1)

2
)
ρ4(x)

]
dx. (3.8) {1componentE}

Notice that the minimization of (3.8) over ρ and (γ1, γ0, γ−1) is separable. Thus, we can
take minimization of (3.8) first over (γ1, γ0, γ−1) and then over ρ. Furthermore, since
βs < 0, we should consider

max
γ1,γ0,γ−1

{
M2 + 2γ20(γ1 + γ−1)

2
}
, subject to (3.7),

which gives the constants

γ0 =

√
1

2
(1−M2), γ±1 =

1

2
(1±M) . (3.9) {coefficient}

Taking (3.9) into account, we define the SMA energy

Esma(ρ) =

∫

Rd

[
1

2
|∇ρ(x)|2 + Vd(x)ρ

2(x) +
κ

2
ρ4(x)

]
dx (3.10) {SMAE}

with the constant κ = βn + βs. It is obvious that the function ρ in (3.6) should minimize
the SMA energy in (3.10) with the constraint (3.5) [18].

1For simplicity of notation, in the following sections we will also use Φg(x) to represent the ground
state of the condensate with B(x) ≡ 0. To distinguish it from those when B(x) 6= 0, one should refer to
the context of the discussion.
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We see that for a ferromagnetic system, one can first solve for the density function ρ
which minimizes the SMA energy Esma subject to the normalization constraint in (3.5),
and then obtain the ground state of the corresponding spin-1 BECs by considering (3.6)
and (3.9). In detail, we solve the following single-component minimization problem:

Find (ug(x) ∈ Ssma) such that

Esma,g := Esma(ug) = min
u∈Ssma

Esma(u) (3.11) {minimizer-SMA}

over the set

Ssma =

{
u(x) ∈ R |

∫

Rd
u2 dx = 1, Esma(u) <∞

}
.

Then the density ρ(x) in (3.6) is given by ug(x), i.e., ρ(x) ≡ ug(x). The Euler-Lagrange
equation corresponding to (3.11) is given by

µsma u(x) = −1

2
∇2u(x) + Vd(x)u(x) + κu3(x), (3.12) {1componentGPE}

with the constraint ‖u(·)‖2 = 1. This is a nonlinear eigenvalue problem with the normal-
ization constraint and the eigenvalue µsma can be computed by

µsma(u) =

∫

Rd

[
1

2
|∇u(x)|2 + Vd(x)u

2(x) + κu4(x)

]
dx. (3.13) {}

Similar to that in Section 2, our numerical scheme will be introduced based on the gra-
dient flow with discrete normalization and its discretization will be presented for 1D case
for simplicity. Generalizations of the method to higher dimensions are straightforward.
For t ∈ [tn, tn+1], the 1D GFDN corresponding to (3.11) is given by

∂tu(x, t) =
1

2
∇2u− V1(x)u− κu3, x ∈ [a, b], t ∈ [tn, tn+1], (3.14) {DNGF}

u(x, t+n+1) :=
u(x, t−n+1)

‖u(·, t−n+1)‖
, x ∈ [a, b], (3.15) {projection}

where the computational domain is truncated into a sufficiently large interval [a, b] and
homogeneous Dirichlet boundary conditions u(a, t) = u(b, t) = 0 are imposed. At time
t = 0, the initial condition is given by

u(x, 0) = u0(x), x ∈ [a, b] with ‖u0(·)‖ = 1. (3.16) {initial-single}

To discretize the gradient flow (3.14)–(3.16), we use the sine pseudo-spectral method for
spatial derivatives and the backward/forward Euler scheme for linear/nonlinear terms for
the time derivative. The scheme is given as below:

u†k − unk
∆t

=
1

2
Ds

xxu
†|x=xk

− αn(u†k − unk) + Fn
k , k = 1, 2, . . . ,K − 1, (3.17) {scheme}

un+1
k =

u †
k

‖u †‖ , k = 1, 2, . . . ,K − 1, n = 0, 1, . . . . (3.18) {}
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where ‖u †‖ =
√
∆x

∑K−1
k=1 (u

†
k )

2, and

Fn
k := F (unk) = −

(
V1(xk)u

n
k + κ(unk)

3
)
, k = 1, 2, . . . ,K − 1. (3.19) {}

The operator Ds
xx is defined as in (2.10). The stabilization parameter αn ≥ 0 is chosen as

[31, 4]

αn =
1

2

[
max

1≤k≤K−1

(
V1(xk) + κ(unk)

2
)
+ min

1≤k≤K−1

(
V1(xk) + κ(unk)

2
)]
.

The initial and boundary conditions are discretized as

u0k = u0(xk), k = 0, 1, . . . ,K; un0 = unK = 0, n = 0, 1, . . . , (3.20) {}

respectively. This discrete system can be efficiently solved in the same manner as that for
(2.8), (2.11) and (2.12).

3.2 Antiferromagnetic system
{section3-2}

In an antiferromagnetic (βs > 0) system, the density distribution of atoms in ground
states highly depends on the total magnetization M . It was shown in [18] that if M 6= 0,
the ground states have vanishing zeroth mF = 0 component, i.e., φ0,g(x) ≡ 0. As a
result, the original three-component system is indeed characterized by a two-component
reduction. However, if M = 0, the ground states of three components have the same
density distribution so that they can be described by the SMA as given in (3.6). But
different from ferromagnetic systems, in this case the constants γj are not unique and
they are given by γ1 = γ−1 = ξ and γ0 =

√
1− 2ξ2 for any constant ξ ∈ [0, 1/

√
2].

For the detailed mathematical proof, we refer the readers to [18]. In the following, we
review the two-component reduction and discretize it for computing the ground state of
antiferromagnetic spin-1 BECs whenM 6= 0. For the case ofM = 0, the numerical method
is identical to that we described in Section 3.1 and thus it is omitted here for brevity.

Let Φg(x) be the ground state of an antiferromagnetic spin-1 BEC with M 6= 0. Since
φ0,g(x) ≡ 0, the ground state energy E0,g reduces to

E0(Φg) =

∫

Rd

[
1

2

(
|∇φ1,g|2 + |∇φ−1,g|2

)
+ Vd(x)

(
|φ1,g|2 + |φ−1,g|2

)

+
χ

2

(
|φ1,g|4 + |φ−1,g|4

)
+ ν|φ1,g|2|φ−1,g|2

]
dx, (3.21) {}

where the constants χ = βn + βs and ν = βn − βs. From the constraints of normalization
and magnetization in (3.3), it is easy to obtain

∫

Rd
|φ1,g(x)|2dx =

1 +M

2
,

∫

Rd
|φ−1,g(x)|2dx =

1−M

2
. (3.22) {constraints-TMA}

On the other hand, we define a two-component energy

Etca(u1, u2) :=

∫

Rd

[ 2∑

j=1

(
1

2
|∇uj |2 + Vd(x)|uj |2

)
+
χ

2

(
|u1|4 + |u2|4

)
+ ν|u1|2|u2|2

]
dx. (3.23) {}
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It is easy to verify that the ground state (φ1,g, φ−1,g) minimizes the energy Etca under
the constraints (3.22). Hence, the minimization problem defined in (3.1) to find the
ground state of an antiferromagnetic spin-1 condensate can be reduced to the following
two-component minimization problem:

Find ((u1,g, u2,g) ∈ Stca), such that

Etca,g := Etca(u1,g, u2,g) = min
(u1,u2)∈Stca

Etca(u1, u2) (3.24) {minimizer5}

over the set

Stca =
{
(u1, u2) | ‖u1‖2 = (1 +M)/2, ‖u2‖2 = (1−M)/2, Etca(u1, u2) <∞

}
.

The ground state of the associated antiferromagnetic spin-1 BECs can be obtained by

φ1,g(x) = u1,g(x), φ0,g(x) ≡ 0, φ−1,g(x) = u2,g(x). (3.25) {}

The Euler-Lagrange equations corresponding to the minimization problem in (3.24) are
given by

µtca1 u1(x) =

(
−1

2
∇2 + Vd(x) + χ|u1(x)|2 + ν|u2(x)|2

)
u1(x),

µtca2 u2(x) =

(
−1

2
∇2 + Vd(x) + ν|u1(x)|2 + χ|u2(x)|2

)
u2(x),

(3.26) {2componentGPE}

with the constrains ‖u1‖2 = (1+M)/2 and ‖u2‖2 = (1−M)/2, where the two-component
chemical potentials are defined by

µtcaj =

∫

Rd

[
1

2
|∇uj |2 + Vd(x)|uj |2 + χ|uj |4 + ν|uj |2|ul 6=j |2

]
dx, j, l = 1, 2. (3.27) {}

To find the ground states defined in (3.24), a gradient flow with discrete normalization
for two-component system is used over each time interval [tn, tn+1] for n = 0, 1, . . ., i.e.,

∂tuj(x, t) =

(
1

2
∇2 − Vd(x)− χ|uj |2 − ν|ul 6=j |2

)
uj(x, t), j, l = 1, 2, (3.28) {BMA1}

u1(x, tn+1) =

√
1 +M

2

u1(x, t
−
n+1)

‖u1(·, t−n+1)‖
, u2(x, tn+1) =

√
1−M

2

u2(x, t
−
n+1)

‖u2(·, t−n+1)‖
, (3.29) {BMA3}

and at time t = 0, the initial conditions are given by

uj(x, 0) = uj,0(x), j = 1, 2 with ‖u1,0(·)‖ =

√
1 +M

2
, ‖u2,0(·)‖ =

√
1−M

2
. (3.30) {initial1}

In practical computations, the above gradient flow can be solved in a bounded domain Ω
with the homogeneous Dirichlet boundary conditions

u1(x, t) = u2(x, t) = 0, x ∈ ∂Ω, t ≥ 0, (3.31) {BC}

due to the confinement of the external potential.
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Next we will give the discretization of (3.28)–(3.31) in the 1D case with Ω = [a, b]. Let
unj,k be the numerical approximation of uj(xk, tn) for j = 1, 2. Then we have

u †
j,k − unj,k

∆t
=

1

2
Ds

xx u
†
j |x=xk

− αn
j (u

†
j,k − unj,k) +Gn

j,k, j = 1, 2, (3.32) {discretization2}

un+1
1,k =

√
1 +M

2

u †
1,k

‖u †
1‖
, un+1

2,k =

√
1−M

2

u †
2,k

‖u †
2‖
, 1 ≤ k ≤ K − 1, (3.33) {}

where ‖u†
j‖ =

√
∆x

∑K−1
k=1 |u†j,k|2 for j = 1, 2, and

Gn
j,k = −

(
V1(xk) + χ|unj,k|2 + ν|unl 6=j,k|2

)
unj,k, 1 ≤ k ≤ K − 1

for j, l = 1, 2, and the stabilization parameters αn
j (j = 1, 2) are chosen as

αn
j =

1

2

[
max
k

(
V1(xk) + χ|unj,k|2 + ν|unl 6=j,k|2

)
+min

k

(
V1(xk) + χ|unj,k|2 + ν|unl 6=j,k|2

)]
.

The operator Ds
xx is defined in (2.10). The homogeneous Dirichlet boundary conditions

are discretized as

un+1
1,0 = un+1

1,K = un+1
2,0 = un+1

2,K = 0, n = 0, 1, . . . , (3.34) {}

and the initial conditions are discretized as

u01,k = u01(xk), u02,k = u02(xk), k = 0, 1, . . . ,K. (3.35) {initial2}

For each time step, the discrete system (3.32)–(3.35) can be solved in the same manner as
that for (2.8), (2.11) and (2.12).

3.3 Relation between different minimization problems
{section3-3}

As we have seen, the ground states of spin-1 BECs are always defined by constrained
minimization problems, e.g., (2.1) for B 6= 0 and (3.1) for B ≡ 0. In the following, we will
describe the relation between different minimization problems.

When B = 0, the ground state can be obtained by minimizing the energy functional
E0 subject to the conservation of both normalization and magnetization. While B 6= 0,
the energy E is minimized by requiring only the conservation of normalization. To see the
relation between these two minimization problems, we can introduce ΦM

g defined by

Find (ΦM
g ∈ SM ), such that

EM
g := E(ΦM

g ) = min
Φ∈SM

E(Φ), (3.36) {minimizer9}

where for a given M ∈ [−1, 1], the set SM is defined as

SM :=
{
Φ = (φ1, φ0, φ−1)

T | ‖Φ(·)‖2 = 1, ‖φ1(·)‖2 − ‖φ−1(·)‖2 =M, E(Φ) <∞
}
.

That is, ΦM
g is a minimizer of the energy functional E subject to the conservation of both

normalization and magnetization M . To obtain the minimizer of the energy E with only
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the constraint of normalization, one needs to further minimizer EM
g in (3.36) with respect

to −1 ≤M ≤ 1. Thus, the minimization problem in (2.1) is equivalent to

Find (Φg ∈ S), such that

E(Φg) = min
M∈[−1,1]

E(ΦM
g ) = min

M∈[−1,1]
min
Φ∈SM

E(Φ), (3.37) {minimizer8}

which decomposes (2.1) into two minimization problems. The inner minimization problem
is similar to that defined in (3.1) but with different energy functional, while the outer
minimization only involves one variable M ∈ [−1, 1]. In the form of (3.37), one can see
the effect of the magnetization M on the ground states when B 6= 0.

On the other hand, the minimization problem in (3.1) is over three wave functions φj
(for j = 1, 0,−1) subject to two constraints. These constraints specify the normalization
and total magnetization of the ground states. However, to better understand each com-
ponent in the ground state, we want to know the norm of individual component. To this
end, we define Φα

0,g(x) as the minimizer of the following nonconvex minimization problem:

Find (Φα
0,g ∈ Sα

0 ), such that

Eα
0,g := E0(Φ

α
0,g) = min

Φ∈Sα
0

E0(Φ), (3.38) {minimizer2}

where α ∈ [0, 1] is a given constant and Sα
0 is a nonconvex set defined as

Sα
0 :=

{
Φ = (φ1, φ0, φ−1)

T | ‖φ0(·)‖2 = α, ‖φ±1(·)‖2 =
1− α±M

2
, E0(Φ) <∞

}
.

The minimization problem (3.38) has three unknowns φαj (j = 1, 0,−1) and the same
number of constraints, which is much easier than the problem in (3.1). In fact, the
minimizer Φα

0,g can be viewed as a ground state which satisfies the conservation of the
total normalization and magnetization as described in (3.3) and also the conservation of
the norm for each component.

It is easy to see that to find the ground states Φ0,g in (3.1), one can first fix α and ob-
tain Φα

0,g by minimizing (3.38), and then minimize Eα
0,g over α ∈ [0, 1]. Thus, the problem

in (3.1) can be decomposed into two minimizing processes, i.e.,

Find (Φ0,g ∈ S0), such that

E0(Φ0,g) = min
α∈[0,1]

E0(Φ
α
0,g) = min

α∈[0,1]
min
Φ∈Sα

0

E0(Φ). (3.39) {minimizer3}

By minimizing Eα
0,g over 0 ≤ α ≤ 1, one can easily obtain the relation between three

components in the ground states.

4 Numerical results
{section4}

In this section, we apply our numerical methods to compute the ground states of spin-1
condensates. First, the ground states in the cases of B(x) 6= 0 are studied and some
conjectures are made from our numerical observations. In the case of B(x) ≡ 0, we first
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compare the performance of our methods with those proposed in the literature [5, 6, 17].
Then we apply our efficient methods to study the ground states of the ferromagnetic and
antiferromagnetic spin-1 BECs. In all simulations, the ground states are obtained by
setting the tolerance ε = 10−6.

4.1 Numerical results for B 6= 0
{section4-1}

In this subsection, we study the ground states of spin-1 BECs with B(x) 6= 0. We first
start with 1D condensates and both the ferromagnetic and antiferromagnetic systems are
considered. Then the ground states of 2D spin-1 BECs are studied with respect to differ-
ent Ioffe-Pritchard magnetic field B.

Example 1 We study the ground states of 1D spin-1 condensates confined in a harmonic
potential V1(x) = x2/2. The computational domain is [−32, 32]; the mesh size and time
step are chosen as ∆x = 0.03125 and ∆t = 0.001, respectively. We choose βn = 400, and
βs = −250 and βs = 250 for the ferromagnetic and antiferromagnetic cases, respectively.
The following two cases are considered:
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Figure 1: Ground states of spin-1 BECs in Example 1 for ferromagnetic (left) and antifer-
romagnetic (right) cases with B(x) = (1 + i) cosx (top) and B(x) = eix (bottom). Dash
line: |φ1,g|; solid line: |φ0,g|; dash-dot line: |φ−1,g|. Notice that the graphs of |φ1,g| and
|φ−1,g| are identical. {F1}
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Case I. B(x) ∈ C is a periodic function of x ∈ R. Figure 1 shows the ground states
for B(x) = (1 + i) cosx and B(x) = eix. For both ferromagnetic and antiferromagnetic
cases, the density function is symmetric with respect to x = 0 which is the center of
external trap V1(x). Furthermore, the mF = ±1 components of the ground states have
the same density, which implies that when B(x) is nonzero, the stationary states with
total magnetization M = 0 have the lowest energy.

Case II. B(x) ≡ B ∈ C is a constant. Figure 2 shows the ground states for the
constant B = 3 + 4i. From it and our extensive simulations not shown here for brevity,
we find that when B(x) is a constant, the ground states satisfy exactly the single-mode
approximation defined in (3.6), which is independent of ferromagnetic or antiferromagnetic
characterizations. Furthermore, our numerical results suggests that the constants in the

SMA (3.6) are given by γ1 = γ−1 = 1
2 and γ0 =

√
2
2 . In addition, we find that the SMA

density function depends only on the interaction parameters βn and βs, but not on the
constant B. The SMA ground state energy depends on the modules of B, i.e., |B|, instead
of B.

To further investigate their energy, we study the ground states with respect to different
constants βn, βs and |B|. Figures 3-4 present the ground state energy for ferromagnetic
and antiferromagnetic cases, respectively, where in Fig. 4 the real-valued constants B
are chosen to illustrate the relation between energy and constant B. From Fig. 3 for
ferromagnetic condensates, we see that if the constant |B| is fixed, the larger the constant
βn+βs, the higher the ground state energy. Furthermore, when βn+βs is large, the energy
becomes almost linearly dependent on it. In addition, the energy linearly decreases for
a larger |B|, if the summation βn + βs is fixed. On the other hand, in antiferromagnetic
cases, the energy decreases when a larger |B| is imposed. However, the same constants
βn + βs and |B| may result in different ground state energy (see Fig. 4 (right)), which is
different from the ferromagnetic cases.
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Figure 2: Ground states of spin-1 BECs in Example 1 for ferromagnetic (left) and anti-
ferromagnetic (right) cases with B(x) ≡ 3 + 4i, where dash line: |φ1,g|, solid line: |φ0,g|,
and dash-dot line: |φ−1,g|. Notice that the graphs of |φ1,g| and |φ−1,g| are identical. {F2}

Example 2 We study the ground states of 2D spin-1 BECs in an isotropic harmonic
potential V2(x) = (x2+y2)/2. Figures 5-7 show the density functions of the ground states
for B(x, y) = sin(x) + sin(y), sin(x) + i sin(y) and 1 + 2i, respectively. Similar to the
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Figure 3: Energy versus the interaction parameter βn with |B| = 5 fixed (left) and versus
the constant B (right) in ferromagnetic cases. {F3}
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Figure 4: Energy versus the interaction parameter βn with |B| = 5 fixed (left) and versus
the constant B (right) in antiferromagnetic cases. {F4}

1D case, the densities of mF = ±1 components in the ground states are identical, which
is true for both ferromagnetic and antiferromagnetic condensates. Furthermore, if the
complex-valued B(x, y) is space-dependent, then vortices appear in the ground states; see
Fig. 6. However, if B(x, y) ≡ B is a constant, no vortex is observed. In addition, the
ground states in this case satisfy the SMA, and the constants γj are always γ±1 = 1

2 and

γ0 =
√
2
2 for any constant B.

4.2 Numerical results for B = 0

In this subsection, we first compare our methods in Section 3 to that in the literature [6].
Then we apply them to study the ground states in the case of B(x) = 0.
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Figure 5: Ground states of ferromagnetic (top) and antiferromagnetic (bottom) spin-1
BECs with B(x, y) = sin(x) + sin(y). From left to right: |φ1,g|, |φ0,g| and |φ−1,g|. {F5-1}
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Figure 6: Ground states of ferromagnetic (top) and antiferromagnetic (bottom) spin-1
BECs with B(x, y) = sin(x) + i sin(y). From left to right: |φ1,g|, |φ0,g| and |φ−1,g|. {F5-2}

4.2.1 Comparison of different methods
{section4-2-1}

The numerical methods for computing ground states of spin-1 BECs in [5, 6, 17, 9] are com-
putationally intensive, since they solve a coupled three-component system. In contrast,
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Figure 7: Ground states of ferromagnetic (top) and antiferromagnetic (bottom) spin-1
BECs with B(x, y) = 1 + 2i. From left to right: |φ1,g|, |φ0,g| and |φ−1,g|. {F5-3}

our schemes introduced in Section 3 take into account the ferromagnetic or antiferro-
magnetic characterizations of the corresponding ground states and provide more efficient
approaches for simulating the ground states in the case of B(x) ≡ 0. To show their effec-
tiveness, we compare our methods with that introduced in [6], which we will refer to as
Bao-Lim’s method for simplicity. Different methods are compared in terms of the ground
state energy and the computing time.

In the following, we consider 1D cases, i.e. d = 1, and the external potential is chosen
as V1(x) = x2/2. The problem is solved in a domain [−32, 32] with J = 2048, i.e. the
mesh size ∆x = 0.03125. The time step is ∆t = 0.001 in our simulations. We denote
N as the total number of atoms and choose N = 10000 in the following examples. Since
in ground states we have M ↔ −M ⇐⇒ φ1 ↔ φ−1, here we only present the results for
0 ≤M ≤ 1.

Example 3 We consider a ferromagnetic condensate with βn = 0.08716N and βs =
−0.001748N . The values of the interaction strengths βn and βs correspond to the exper-
imental setup of 87Rb confined in a cigar-shaped trapping potential with parameters as
follows [21, 22, 25]: m = 1.443 × 10−25 kg, ωx = 2π Hz, ωy = ωz = 2π × 20π

√
2 Hz,

a0 = 5.5 nm = 5.5× 10−9 m, and a2 = 5.182 nm = 5.182× 10−9 m. Correspondingly, the
constant κ in the SMA formulation (3.10) is κ = 0.085412N .

For different magnetization 0 ≤M ≤ 1, we compare the ground state computed by our
method based on the SMA in (3.6) and (3.9) and by Bao-Lim’s method [6]. Figure 9 shows
the density of each component in the ground states. Table 1 demonstrates the ground state
energy and computing time spent by different methods. Note that here our motivation
is to compare the speed of two methods in computing the ground states, and thus the

18



programs by different methods are run on the same computer. We understand that the
time can be shortened if one uses an advanced computer or does parallel computations,
which however is not our consideration here.
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Figure 8: Ground states of the ferromagnetic spin-1 BECs in Example 3 computed by Bao-
Lim’s method (‘+’: |φ1,g|, ‘o’: |φ0,g|; ‘*’: |φ−1,g|) and our method based on SMA (solid
line: ug(x); dash line: |φ1,g| = γ1ug; dot line: |φ0,g| = γ0ug; dash-dot line: |φ−1,g| = γ−1ug
with γj given in (3.9)). From a) to f): M =0, 0.1, 0.2, 0.5, 0.8, 1. {F7}
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M Bao-Lim’s method Our method

0 132.9006 6.6544
0.1 145.1758 6.6544
0.2 223.4998 6.6544
0.3 271.1486 6.6544
0.4 288.8190 6.6544
0.5 282.1649 6.6544
0.6 259.8170 6.6544
0.7 239.0292 6.6544
0.8 166.8878 6.6544
0.9 119.0467 6.6544

Energy E0(Φg) = 35.4007 Esma(ug) = 35.4007

Table 1: Ground state energy and computing time by Bao-Lim’s method [6] and our
method in §3.1 for ferromagnetic condensates with different magnetizations 0 ≤M ≤ 1. {T1}

It shows in Fig. 9 that the ground states computed by our method agree with those
by Bao-Lim’s method for different magnetization M , where lines represent the results by
our method and symbols represent those from Bao-Lim’s method [6]. In addition, the
ground state energies obtained from both methods are the same, which is independent of
magnetization; see Table 1. However, the time spent by our method is much shorter (less
than 6%) than that of Bao-Lim’s method; see Table 1. Furthermore, the computing time
by Bao-Lim’s method [6] depends variously on the magnetization M .

Example 4 We consider an antiferromagnetic condensate with βn = 0.0241N and βs =
0.00075N in (1.1), which corresponds to χ = 0.02485N and ν = 0.02335N in the two-
component reduction when M 6= 0. These values are based on the experimental setup of
23Na confined in a cigar-shaped trapping potential with parameters as follows [21, 22, 25]:
m = 3.816 × 10−26 kg, ωx = 2π × 20 Hz, ωy = ωz = 2π × 400 Hz, a0 = 2.646 nm =
2.646× 10−9 m, and a2 = 2.911 nm = 2.911× 10−9 m.

Similarly, we compare the ground states computed by these two methods in Figure 10
and the ground state energy and computing time for different magnetization 0 ≤ M ≤ 1
are shown in Table 2. We see that for a fixed magnetization M 6= 0, the two methods
obtain the identical ground states from both methods with φ0,g(x) ≡ 0. In addition, the
ground state energy is also the same. However, Table 2 suggests that our method based
on the two-component reduction is much faster than Bao-Lim’s method [6] which solves a
three-component system. Furthermore, even though our method solves a two-component
GFDN, its computing time is less than a half of that used by Bao-Lim’s method. Again,
here our motivation is to compare the speed of these two methods. For this purpose, we
run the programs of the two methods on the same computer and their computing time
might be reduced if an advanced computer is used.
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Figure 9: Ground states of the antiferromagnetic spin-1 BECs in Example 4 computed by
Bao-Lim’s method (‘+’: |φ1,g|, ‘o’: |φ0,g|; ‘*’: |φ−1,g|) and our method based on the two-
component reduction (solid line: |φ1,g| = |u1,g|; dot line: |φ0,g|; dash-dot line: |φ−1,g| =
|u2,g|;). From a) to f): M =0, 0.1, 0.2, 0.5, 0.8, 1. {F8}

4.2.2 Applications of our methods
{section4-2-2}

In Section 4.2.1, we showed that our methods, based on the ferromagnetic or antifer-
romagnetic characterization of spin-1 BECs, obtain the same ground states as those by
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Bao-Lim’s method Our method

M Energy E0(Φg) Computing time Energy Etca(ug) Computing time

0 15.2485 177.1892 15.2485 15.1419
0.1 15.2513 177.0494 15.2513 42.0558
0.2 15.2599 176.9190 15.2599 47.3362
0.3 15.2743 176.8998 15.2743 51.9579
0.4 15.2945 176.2563 15.2945 56.6422
0.5 15.3209 174.9268 15.3209 61.6046
0.6 15.3537 172.9923 15.3537 66.4197
0.7 15.3933 168.8066 15.3933 70.8586
0.8 15.4405 163.0863 15.4405 74.9606
0.9 15.4962 158.1879 15.4962 79.2583

Table 2: Ground state energy and computing time by Bao-Lim’s method [6] and our
method in §3.2 for antiferromagnetic condensates with different magnetization 0 ≤M ≤ 1. {T2}

Bao-Lim’s method [6]. However, the computing time consumed by our methods is much
less, which makes them more efficient in computing the ground states of spin-1 conden-
sates when B(x) = 0. In the following, we will apply our methods to study the ground
states in different cases.

Example 5 We test the dependence of the ground state energy on the interaction
constants βn and βs as well as on the magnetization M . To do this, 1D spin-1 BECs with
a harmonic external potential V1(x) = x2/2 are considered. The computational domain
is [−32, 32] which is sufficiently large so that the truncation errors can be neglected. We
choose the mesh size and time step as ∆x = 0.03125 and ∆t = 0.001, respectively. The
following two cases are considered:

Case I. Ferromagnetic system with βs < 0. Figure 10 (top) shows the ground state
energy with respect to different interaction constants βn and βs and different magnetization
M . It suggests that the energy monotonically increases with βn + βs increasing, but it is
independent of the magnetizationM . Furthermore when βn+βs is large, the ground state
energy of a ferromagnetic spin-1 condensate can be approximated by the Thomas-Fermi
energy of its SMA counterpart, i.e.,

E0,g ≈ ETF
sma,g =

3

10

(
3κωx

2

) 2

3

, (4.1) {}

where ωx is the trapping frequency in x-direction and in this example, we use ωx = 1.
Case II. Antiferromagnetic system with βs > 0. Figure 10 (bottom) shows the

ground state energy for different parameters βn, βs and M . Different from that in ferro-
magnetic cases, the ground state energy in an antiferromagnetic system depends on the
constants βn + βs, βn − βs and the magnetization M . For fixed βn ± βs, the ground state
energy increases when the magnitude of M , i.e., |M |, increases, and the energy reaches its
minimizer at M = 0; see Fig. 10 (bottom, right).

Example 6 We apply our methods to study the ground states of 2D spin-1 condensates.
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Figure 10: Energy versus the interaction constants βn and βs (left) and the magnetization
M (right) in ferromagnetic (top) and antiferromagnetic (bottom) spin-1 condensates. {F9}

The following two types of external potentials are considered: (i) harmonic potential
V2(x) = (ω2

xx
2 + ω2

yy
2)/2; (ii) isotropic harmonic potential plus an optical lattice, i.e.,

V2(x) =
1

2
(x2 + y2) + 10

[
sin (κxx)

2 + sin (κyy)
2
]
, (4.2) {optical}

where κx, κy > 0 are two constants. Then we study the ground states of

Case I. Ferromagnetic system with βn = 560 and βs = −100 and M = 0.5.

Case II. Antiferromagnetic system with βn = 300, βs = 100 and M = 0.5.

Figure 11 presents the density of ground state calculated from the single-mode reduc-
tion for ferromagnetic cases, and the ground states of the corresponding spin-1 BECs can
be obtained by using (3.6) and (3.9) with M = 0.5. Figure 12 shows the ground states
of antiferromagnetic spin-1 condensates, where only |φ1,g| = |u1,g| and |φ−1,g| = |u2,g| are
presented since |φ0,g| ≡ 0 in this case. Numerical simulations show that our methods
based on the single-mode and two-component reduction are dramatically faster than the
Bao-Lim method [6] in higher dimensional cases.
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Figure 11: Ground states of 2D ferromagnetic spin-1 BECs in Example 6 with a harmonic
trap (top: γx = γy = 1 (left); γx = 1 and γy = 1.5 (right)) and a harmonic plus optical
lattice potential (bottom: κx = κy = π

2 (left); κx = π
2 and κy = π

3 (right)). {F10}

5 Conclusions
{section5}

We proposed efficient and simpler numerical methods for computing the ground states
of spin-1 BEC with/without the Ioffe-Pritchard magnetic field B(x). Noticing that there
have been no numerical studies on the ground state of spin-1 BECs with B(x) 6= 0, we first
introduced a numerical method for it. Then our methods were applied to study the ground
states in both 1D and 2D cases. Our numerical results suggested that when B(x) 6= 0,
the mF = ±1 components in the ground states always have the same density functions,
which implies that the stationary states with the magnetization M = 0 have the lowest
energy. In particular, if B(x) ≡ B is a constant, the ground states satisfy the single-mode

reduction given in (3.6) with the constants γ±1 = 1
2 and γ0 =

√
2
2 exactly. We will leave

its rigorous mathematical justifications for future work.
On the other hand, when B(x) = 0, we took into account the ferromagnetic or anti-

ferromagnetic characterizations of the ground states, which results in efficient numerical
methods for computing the ground state. In the ferromagnetic cases, the ground state
can be always described exactly by the single-mode approximation. While in the antifer-
romagnetic systems, the situations can be classified into two types: (i) when M 6= 0, the
mF = 0 component becomes zero in the ground states so that the spin-1 BECs can be
characterized by a two-component reduction; (ii) if M = 0, the ground states satisfy the
SMA as in the ferromagnetic systems, but the constants are not unique. Considering these
properties of the ground states, we proposed numerical methods to compute the ground
state of the reduced single-mode or two-component systems. Then the ground states of
the original spin-1 condensates can be obtained from those of the reduced systems. Nu-
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Figure 12: Ground states of 2D antiferromagnetic spin-1 BECs in Example 6 with a
harmonic trap (top: γx = γy = 1 (a); γx = 1 and γy = 1.5 (b)) and a harmonic plus
optical lattice potential (bottom: κx = κy = π

2 (c); κx = π
2 and κy = π

3 (d)). {F11}

merical results suggested that our methods give the same results as those by Bao-Lim’s
method in [6]. However, the computing time used by our methods is much shorter. In
addition, we apply our methods to study the relation between the ground state energy
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and the interaction parameters βn, βs as well as the magnetization M .
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