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Abstract—A computation-aware motion estimation algorithm is
proposed in this paper. Its goal is to find the best block-matching
results in a computation-limited and computation-variant environ-
ment. Our algorithm is characterized by a one-pass flow with adap-
tive search strategy. In the prior scheme, Tsai et al. propose that
all macroblocks are processed simultaneously, and more compu-
tation is allocated to the macroblock with the largest distortion
among the entire frame in a step-by-step fashion. This implies that
random access of macroblocks is required, and the related infor-
mation of neighboring macroblocks cannot be used to be predic-
tion. The random access flow requires a huge memory size for all
macroblocks to store the up-to-date minimum distortions, best mo-
tion vectors, and searching steps. On the contrary, our one-pass
flow processes the macroblocks one by one, which can not only sig-
nificantly reduce the memory size but also effectively utilize the
context information of neighboring macroblocks to achieve faster
speed and better quality. Moreover, in order to improve the video
quality when the computation resource is still sufficient, the search
pattern is allowed to adaptively change from diamond search to
three step search, and then to full search. Last but not least, tra-
ditional block matching speed-up methods are also combined to
provide much better computation-distortion curves.

Index Terms—Adaptive search strategy, block matching, com-
putation-aware, motion estimation, one-pass.

I. INTRODUCTION

MOTION ESTIMATION (ME) is the heart of video
encoders to remove temporal redundancy within video

sequences. The block-matching algorithm (BMA) is adopted
by all existing video-coding standards including the H-series
[1]–[3] and the MPEG-series [4]–[6]. Among all BMAs,
full-search block-matching algorithm (FSBMA) produces the
best quality but demands the most computation. Many fast
BMAs, such as three-step search (TSS) [7], one-dimensional
full search (1DFS) [8], and diamond search (DS) [9], [10], have
been proposed to speed up the FSBMA with acceptable loss of
video quality or with sacrifice of simplicity and regularity.

Usually, ME is implemented with a hardware accelerator.
The rapid improvements in processors and fast BMAs make
the software encoder a feasible solution, too. However, when
the encoder has to support a wide range of applications (e.g.,
QCIF (176 144) and CIF (352 288), 15 frames/s (fps) and
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30 fps), traditional BMAs will face two problems. First, a tra-
ditional BMA stops only when subsequent search points are all
examined, and the searching process of a frame cannot be in-
terrupted when the allowed time interval is passed, so real-time
constraints may be violated. Second, once the BMA is finished,
it cannot be extended when extra computation is still available,
so better video quality cannot be achieved.

Recently, the computation-aware (CA) concept is becoming
more and more important. In software implementations, pro-
cessors may have to support video coding of different frame
rates, frame sizes, and search ranges. In hardware implemen-
tations, even if the frame rate, frame size, and search range have
been clearly determined, the computation resource (e.g., oper-
ating frequency) may still be adjusted according to the battery
power for portable devices. The goal of CA BMAs is to find
the best block matching results in a computation-limited and
computation-variant environment.

Tsai et al. [11] are pioneers of CA BMAs. They contributed
a novel scheme, which allocates more computation to the mac-
roblocks (MBs) with the highest distortion in the entire frame
step by step. The main concept is that the larger the initial dis-
tortion, the more likely the distortion can be significantly re-
duced, and thus the more computation should be allocated. It
is very simple and effective. Nevertheless, there are three prob-
lems in their scheme. First, all the MBs are processed at the
same time. Thus, random access of MBs is unavoidable, re-
quiring a huge size of extra memory for all MBs to store the
up-to-date minimum distortions, best motion vectors (MVs),
and searching steps. Second, the related information of neigh-
boring MBs cannot be available to be prediction, and then the
search pattern must be determined in advance. The advantage
of MV predictors cannot be applied. For example, the predic-
tive diamond search (PDS) [12] outperforms DS in both speed
and quality. Moreover, the advantage of adaptive search strategy
cannot be applied, either. For instance, PDS is better in small
motion cases, but TSS is better in large motion cases. The third
problem is the poor hardware feasibility since it was intended
for software. The distortion-sorting operations can be easily im-
plemented as hash tables or lists in software, but they are too
expensive in hardware. The random access flow and enormous
memory size are also harmful for hardware. Even in the software
environment, the random access flow will result in a bottleneck
of processing speed.

In this paper, a one-pass CA BMA with adaptive search
strategy is presented. The ME procedure is done MB by MB to
solve the mentioned problems. The rest of this paper is orga-
nized as follows. In Section II, the CA concept is first reviewed
and discussed. In Section III, our motion analysis is reported.
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Fig. 1. Examples of the CA concept: (a) original TSS and (b) optimal CA TSS.

Fig. 2. Computation-distortion optimized truncation by analogy with EBCOT
tier two in JPEG 2000.

In Section IV, the proposed algorithm is described according to
the analysis. Simulation results are shown in Section V. Finally,
Section VI gives a conclusion.

II. CONCEPTS OF COMPUTATION AWARENESS

The CA concept, which was originally proposed in [11], is
illustrated in Fig. 1. Assume that there are four MBs in a frame,
the number of available search points is 36, and TSS is the
search strategy. Fig. 1(a) and (b) shows the original TSS and
the optimal CA TSS, respectively. The CA TSS first computes
the distortion of the origin for each MB. Afterwards,
the MB with the largest distortion is refined by further one step
search (eight search points) until the computation resource is
exhausted. The distortion of the entire frame for CA TSS is the
same as that for the original TSS with much less computation.
Different search strategies, such as FSBMA, 1DFS, TSS, and
DS have different CA performances. A computation-distortion
(C-D) plot can be used to evaluate CA BMAs. On the C-D plot,
conventional BMAs are represented as single points, while CA
BMAs are expressed as curves, as shown in Fig. 1 of [11].

In fact, the CA scheme considering all MBs of the entire
frame with the step-by-step refinement is a little similar to the
second tier of embedded block coding with optimized trunca-
tion (EBCOT) in JPEG 2000 [13]. Given a search strategy, each
MB has an individual C-D curve, as shown in Fig. 2. Assuming
the curves are continuous, decreasing, and concave, the optimal
decision is obtained when the slopes of tangents at the trunca-
tion points for all MBs are the same. Given a target computation,
the minimum distortion can be simply found by decreasing the
slope until the target computation is reached. On the other hand,

Fig. 3. Comparison of two computation allocation methods: (a) CA FSBMA
and (b) CA TSS.

given a target distortion, the minimum computation can be al-
located in the same way. This implies that spending more com-
putation on the MB with the highest distortion may not always
be the best allocation.

Fig. 3(a) shows the comparison between two computation al-
location methods applied on CA FSBMA. One is to select the
highest distortion, and the other is to select the highest slope.
The slope is defined as the amount of reduction in distortion
divided by the number of search points in one step. For the ini-
tial step, the numerator is changed to the variance of current
MB minus the initial distortion. The initial distortion is the sum
of absolute differences (SAD) between current MB pixels and
candidate MB pixels with . The variance is the SAD
between the average intensity of current MB and each pixel in-
tensity of current MB. It is shown that the method using slopes
performs better. However, as shown in Fig. 3(b), when the two
methods are applied on CA TSS, the method using slopes be-
comes worse. This reflects that the assumption of concave is
violated under the search pattern of TSS. Therefore, improve-
ment of the search pattern seems to be a more important factor
for better C-D performance.

III. MOTION ANALYSIS

In this section, motion analysis is done in four aspects, as de-
scribed in the following subsections. Four QCIF 30 fps stan-
dard video sequences, Foreman, Silent, Stefan, and Weather,
will be used in the statistics with search range as .
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Fig. 4. Statistics of motion for Stefan: (a) MVs and (b) MV prediction errors.

Foreman and Stefan are videos with large motion, while Silent
and Weather are videos with small motion.

A. Motion Vector Predictor

MV predictors utilize the spatial correlation of neighboring
MBs. Fig. 4(a) and (b) show the distribution of MVs and that
of MV prediction errors, respectively. FSBMA and the medium
prediction from the left, top, and top right MBs are considered in
the statistics. The distribution of MV prediction errors is much
more concentrated around the origin than that of MVs, and the
peak value at the origin increases from 24% to 59%. Starting
from MV predictors makes PDS significantly better than DS in
convergence speed and video quality.

Supplementary advantage of MV predictors is to support
the rate-distortion optimized mode decision [14], known as
Lagrangian method. Not only the distortion but also the MV
costs are jointly considered in the mode decision. It is reported
that 1-dB PSNR gain can be achieved. However, in our ex-
periments, we only use SAD as the matching criterion for
generality because MV costs are dependent on entropy coding
and quantization parameters.

B. Different Search Patterns

Different search patterns have different merits and thus
should be combined into one CA BMA. Fig. 5 compares
FSBMA, TSS, and PDS. For all frames, FSBMA gives the
best quality (motion compensated PSNR). On average, PDS is
better than TSS. However, when the camera pans very fast, TSS
is better than PDS. The results are quite reasonable. When the
motion field is small and regular, MV predictor works well, and
the diamond pattern can quickly find a good match. As for TSS,
the first step search points are dispersed, making final results
tend to be trapped in local minima. On the contrary, when the
motion field is large and complex, MV predictors do not work
well, and the diamond pattern moves slowly toward the best
MVs with a high probability of being trapped in local minima.
In this case, TSS first glances the entire search area and has
better chances to focus on the vicinity of global minimum.

C. PDS Versus FSBMA

When the allocated computation for an MB has not been
used up, a CA BMA will continue. However, if the global min-
imum distortion has been reached, searching more candidates is
a waste. Therefore, there should be some detection to check if
the optimal MV is reached for early termination of an MB. Thus,

Fig. 5. Comparison of different search patterns.

TABLE I
PERCENTAGES OF IDENTICAL MVS BETWEEN PDS AND FSBMA

TABLE II
PERCENTAGES OF IDENTICAL MVS BETWEEN TSS AND FSBMA

the saved computation can be utilized for later MBs. Table I
lists the conditional probabilities of identical MVs between PDS
and FSBMA. The smaller the distance from the MV predictor
to the final MV, the more likely the global distortion minimum
is reached. Therefore, the MV differences (MVDs) defined in
Table I can be used to skip BMA operations after PDS.

D. TSS Versus FSBMA

Table II lists the conditional probabilities of identical MVs
between TSS and FSBMA. After the first step search, if the best
MV is the origin, it is very possible that the optimal MV will be
found. Hence, the best MV right after the first step search can
be used to stop the BMA operations after TSS.

E. Summary

The motion analysis is summarized as follows.
• MV predictors can be used to achieve faster speed and

better quality.
• PDS is suitable for small and regular motion fields.
• TSS is suitable for large and complex motion fields.
• PDS tends to reach the global minimum distortion when

the MV predictor is close to the final MV.
• TSS tends to reach the global minimum distortion when

the best MV of the first step is the origin.
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Fig. 6. Macroblock procedure.

Fig. 7. Proposed computation allocation.

IV. PROPOSED ALGORITHM

In this section, our one-pass CA BMA will be introduced
from top to bottom viewpoints as the following subsections.

A. Macroblock Procedure

Fig. 6 shows the macroblock procedure of our proposed one-
pass CA BMA. The one-pass flow denotes that BMA is processed
one MB by one MB in the raster scan. Before entering the loop of
MBs, frame-level computation allocation and the initialization of
variables are required. Inside the loop, the first step is to compute
the SAD at the MV predictor, which is the medium of the mo-
tion vectors of neighboring MBs and become available because
of one-pass scheme with the raster scan, to find for
MB-layer computation allocation. Then, the proposed adaptive
search strategy determines the next search points. As long as the
number of actual searched points reaches ,
or the quasi-optimal MV is found, which is judged by the
detection of the global minimum distortion, the CA BMA is
terminated, and some variables are updated for the next MB.

B. Computation Allocation

For real-time bidirectional communication applications in
which low latency is required, ME must be finished in time for
every frame, and the frame computation pool must not exceed
the reciprocal of frame rate (e.g. 1/15 s for 15 fps videos).
Therefore, we focus on the MB-level computation allocation.
The frame computation pool is taken as a given parameter.

Fig. 7 is the pseudo code of our computation allocation pro-
gram. The new concept is to divide the computation resource into
a base layer and an enhancement layer. The base layer guarantees
the least computation for each MB. The enhancement layer
allows each MB to receive additional computation according
to the MB-level adjustment and early stop criteria. As shown in
Fig. 7, the target search points per MB and
that in the base layer are user-defined.
Afterwards, the frame target search points

and that in the base layer can be obtained
from multiplying and ,
respectively, with the total number of MBs in one frame

. The frame target search points in the enhance-
ment layer is the result of subtracting

from .
At the MB-level in Fig. 7, the concept of allocating

more resources to MBs with larger distortions is still
adopted. The average minimum SAD of previous MBs

in the current frame is obtained as the ac-
cumulated minimum SAD divided by the
number of processed MBs . The allocated search
points for an MB is the base-layer part

plus the enhancement-layer part which
is a product of two items. The first item denotes the future
average search points per MB in the enhancement layer, and is
the left available computation pool of the enhancement layer

divided by the number of MBs
that have not been processed . The second item
denotes the ratio of initial distortion of current MB
to .

In short, the base-layer computation is user defined to guar-
antee the least computation for each MB, and the enhancement-
layer computation is in proportional to the ratio of initial SAD
to the average SAD of previous MBs to dynamically allocate
the computation resources. The SAD slope cannot be applied in
one-pass CA BMA since the computation resources of an MB
must be allocated before block matching. However, other com-
putation allocation methods still can be tried.

C. Adaptive Search Strategy

Fig. 8(a) illustrates one of our adaptive search strategies. First,
PDS is selected as the initial search pattern for an MB. Second,
when the PDS ends with available computation left for current
MB, the search pattern is switched to TSS. Finally, FSBMA will
be adopted if TSS is finished with extra computation resource
left. In general, PDS is better than TSS in speed and quality, ex-
cept for scenes with large and complex motion. In addition, CA
DS and CA TSS performs better than CA FSBMA in the C-D
plots, as stated in [11]. When the system is relatively abundant
in computation resource, FSBMA still can improve the results.
Based on the above reasons, we combine the three search strate-
gies in this way.

Fig. 8(b) is the other search strategy, which is modified from
the previous one. For large motion sequences, the “arm” of the
diamond pattern is not long enough to quickly move toward the
global minimum distortion. Hence the initial search pattern may
be changed from PDS to TSS, and the PDS is skipped. We use
variance of neighboring MVs as the criterion of selecting initial
search strategy. The variance of neighboring MVs is defined as
the sum of MV distances between each neighboring MV and the
medium MV predictor. The neighboring MVs are from left, top,
and top right MBs. The computation of medium MV predictor is
not an overhead because the initial search point of our algorithm
is the MV predictor regardless of the initial search strategy.

Note that because the numbers of search candidates in one
step of PDS and TSS are too large for the computation alloca-
tion of an MB, we define the processing order of the candidates
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Fig. 8. Proposed adaptive search strategies: (a) strategy 1 and (b) strategy 2.

in one step to provide a fine-grain computation allocation. The
left part of Fig. 9(a) shows the flow of PDS which moves the
large diamond until the center position of the large diamond has
the smallest distortion among nine candidates and further uses
the small diamond to refine the result. Therefore, we defined
the processing orders in the large and small diamonds of PDS,
as shown in the right part of Fig. 9(a). Similarly, we also in-
troduce the procedure and the processing order in each step of
TSS in Fig. 9(b) where the left part is an example of TSS and the
right part is the corresponding processing order in each step of
TSS. The number of steps in TSS with searching range,

, is , the pixel interval of the -th step is
, and in each step, TSS calculates the distortions of

nine candidates and moves the center to the position with the
smallest distortion for the next step. As for the FSBMA, we
also define a processing order which is like the spiral scan, as
shown in Fig. 9(c). Therefore, even if the allocated computation
resource is not enough for one step of PDS or TSS or the whole
FSBMA, we still can process the candidates based on these de-
fined processing orders until the given computation resource for
an MB is consumed.

As the analysis of Section III summarizes, the detection of
global minimum is employed. If the final MV of PDS is close to
the MV predictor, the final MV of PDS is taken as the quasi-op-
timal MV, and TSS will not be continued. Similarly, if the best
MV of the first step in TSS is the origin, the MV is taken as the
quasi-optimal MV, and FSBMA will not be processed. To sum
up, PDS, TSS, and FSBMA are selected as search patterns in
our CA BMA. For stationary videos, the switching order is PDS
followed by TSS and then by FSBMA. For high motion videos,
PDS may be skipped. As a matter of fact, other search strategies
still can be used to replace the PDS and TSS with corresponding
motion analysis to achieve better C-D performances. The main

Fig. 9. The search pattern and processing order of three stages. (a) Predictive
diamond search. (b) Three-step search. (c) Full search.

purpose of this subsection is to address the advantage of adap-
tive search strategy, which will be clarified in the Section V.

D. Combination With Traditional Speed-Up Methods

Simplification of matching criterion is often used to speed up
the BMA. According to our experiences, 1/2-, 1/4-, and 1/8-sub-
sampling cause unnoticed ( 0.05 dB), slight ( 0.2 dB), and un-
acceptable ( 0.8 dB) video quality losses, respectively. In our
experiments, 1/2-subsampling is adopted, and the SAD compu-
tation only considers half of the MB pixels. Furthermore, par-
tial distortion elimination (PDE) [15], [16] is applied to elim-
inate redundant SAD calculations. As long as the partial SAD
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Fig. 10. Comparison of computation-distortion curves between the proposed CA BMAs and the prior CA BMAs: (a) coastguard; (b) Foreman; (c) mobile calendar;
(d) silent; (e) Stefan; and (f) table tennis.

of a candidate MB is larger than the up-to-date minimum SAD,
the remaining accumulation of pixel differences can be skipped.
For the sake of simplicity, we compare the partial SAD with the
minimum SAD after every row of pixel differences is generated.
Therefore, one search point in the computation resource of our
proposed one-pass CA BMA means that 16 2 rows of pixel
differences with 1/2-subsampling can be computed.

V. SIMULATION RESULTS

Fig. 10 shows the C-D curves of the proposed algorithms
and the CA DS, CA TSS, CA 1DFS, and CA FSBMA stated

in [11]. The “proposed 1” and “proposed 2” denote the search
strategies shown in Fig. 8(a) and (b), respectively. Many se-
quences were tested with the same settings of variables, in-
cluding the allocated search points for an MB in the base-layer
part and the criteria of quasi-optimal
MV, but only Coastguard, Foreman, Mobile Calendar, Silent,
Stefan, and Table Tennis are shown due to the limited space and
similar trends of C-D curves. The C-D performances of the pro-
posed algorithms are significantly better than those of others.
Roughly speaking, the ranking from the best to the worst is
“proposed 2”, “proposed 1”, CA DS, CA TSS, CA 1DFS, and
CA FSBMA. Most of the time, the two proposed algorithms are
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TABLE III
THE ACHIEVED QUALITIES AND REQUIRED COMPUTATIONS OF

CA BMAS AT CONVERGENCE FOR FOREMAN

TABLE IV
THE ACHIEVED QUALITIES AND REQUIRED COMPUTATIONS OF

CA BMAS AT CONVERGENCE FOR STEFAN

Fig. 11. Capability of the proposed computation control. (a) Foreman.
(b) Stefan.

competitively the same in C-D performance, but for high mo-
tion video sequences, such as Stefan, “proposed 2” is better due
to the proper bypass of the PDS.

The average actually used computation of our algorithms
cannot exceed a certain value for each sequence because our

Fig. 12. Comparison of computation-distortion curves between the pro-
posed CA BMAs and the prior CA BMAs with 1/2-subsampling and PDE.
(a) Foreman. (b) Stefan.

CA BMAs early terminate the operations when detecting that
all MBs have reached the optimal MVs. Therefore, further
increasing will not increase the actual search
points. Furthermore, the best video qualities of our CA BMAs
are only 0.1-0.2dB lower than that of CA FSBMA, and is
much better than those of remaining CA BMAs. However,
this cannot be represented by Fig. 10 because CA FSBMA
reaches the best quality with many more search points. Ta-
bles III and IV show the best video qualities for Foreman and
Stefan, respectively, when the CA BMAs achieve convergence

. The advantage of adaptive search
strategy, which can further improve video quality when the
computation resource is very abundant, is thus clarified.

Fig. 11 shows the capability of the proposed computation
control. The number of actual search points is never larger than
that of target search points, which meets the real-time con-
straints. When the computation resource is little, the available
computation will be exhausted. When the computation resource
is rich, the resource may not run out due to the detection of
global minimum distortion.

In fact, if PDE and 1/2-subsampling are applied to [11], our
algorithm cannot win so much, and even a small part of the CA
DS C-D curve may move to the upper left side of the proposed
curves, as shown in Fig. 12. The information of the entire
frame is indeed good for computation allocation. However,
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Fig. 13. Use processing time as the unit of computation to compare the com-
putation-distortion curves between the proposed CA BMAs and the prior CA
BMAs with 1/2-subsampling and PDE on a PC platform with a 2.5 GHz CPU.
(a) Foreman. (b) Stefan.

only our one-pass method can be benefited from Lagrangian
mode decision, which enhances a lot of quality. Our strength
also includes high hardware feasibility and much less memory
requirement.

In the above of this paper, we use “search points per MB”
as the unit of computation to make the results independent of
different platforms. Now we change the unit of computation
to “processing time” in order to be more practical. The simu-
lation platform is a PC with Intel Pentium IV 2.5-GHz CPU
and 333-MHz 1-GB DDR DRAM running Microsoft Windows
2000. The program is written in C language. The more realistic
C-D curves are drawn in Fig. 13, which uses “processing time”
as the horizontal axis. Please note that the prior CA BMAs are
all improved with 1/2-subsampling and PDE for fairness. It is
shown that the C-D performance of our one-pass flow becomes
significantly better than those of prior CA BMAs, in contrast to
the C-D curves shown in Fig. 12 where “search points per MB”
is the unit of the horizontal axis. The main reason is that prior
CA BMAs requires a huge size of memory in proportional to
the frame size while our CA BMAs need much less memory to
store information of one MB. The cache miss rate of the prior
random access flow is very high, degrading the system perfor-
mance considerably.

VI. CONCLUSION

In this paper, we presented a computation-aware motion esti-
mation which has four features. The first one, the main idea, is to
convert the processing flow from random access to one-pass for
hardware feasibility. The second feature is to divide the compu-
tation allocation into two part, the base layer and the enhance-
ment layer. The former is to guarantee the least computation for
each MB, and the latter is to dynamically allocate the computa-
tion resources for some MBs with the larger distortions. Thirdly,
because of our one-pass scheme, adaptive search strategy and
motion vector predictors can be utilized for the faster speed and
better quality. Finally, the detection of global minimum dis-
tortion is proposed, and traditional speed-up methods are also
applied to early stop the unnecessary computation. Simulation
results show that the provided computation-distortion perfor-
mance is relatively better.
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