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Efficient and accurate solvation energy calculation from polarizable
continuum models
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A new approach is proposed to enhance the efficiency and accuracy for calculation of the long-range
electrostatic interaction from implicit solvation models, i.e., the polarizable continuum model
�PCM� and its variants, conductorlike PCM/conductorlike screening model and integral equation
formalism PCM. In these methods the solvent electrostatics effects are represented by a set of
discrete apparent charges distributed on tesserae of the molecular cavity surface embedding the
solute. In principle, the accuracy of these methods is improved if the cavity surface is tessellated to
finer tesserae; however, the computational time is increased rapidly. We show that such undesired
dependency between accuracy and efficiency is a result of the inaccurate treatment of the apparent
charge self-contribution to the potential and/or electric field. By taking into account the full effects
due to the size and curvature of the segment occupied by each apparent charge, the error in
calculated electrostatic solvation free energy is essentially zero for ions �point charge at the center
of a sphere� regardless of the degree of tessellation used. For molecules where gradient of apparent
charge density is nonzero at the cavity surface, we propose a multiple-sampling technique which
significantly lowers the calculated error compared to the original PCM methods, especially when
very few numbers of tesserae are used. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2354489�
I. INTRODUCTION

The solvation �free� energy of a solute in solvent is an
important quantity that can be used for determining various
thermophysical properties of the solution,1–8 phase,9–15 and
chemical16,17 equilibrium of complex mixtures. Except for
nonpolar systems, the long-range electrostatic interaction be-
tween the solute and solvent is, in general, the dominant
component. It is found that the electrostatic response of sol-
vent due to the presence of solute can be well estimated by
treating the solvent surrounding the solute as a continuum
with a macroscopic dielectric constant. As a consequence,
such implicit solvation has been the focus of many theoreti-
cal developments on solvation calculations, also known as
reaction field theory.18–21

In classical electrostatic theory, the solute �distributed
charges�-solvent �dielectric continuum� interaction is de-
scribed by the Poisson equation.21 Tomasi and Persico22 and
more recently Tomasi et al.23 provided an excellent review
and summary on this various approaches of solving this par-
tial differential equation. Among them, the boundary element
approach, or the apparent surface charge �ASC� method,22

gains great popularity in many applications, perhaps, due to
its efficiency and simplicity when incorporated with molecu-
lar simulations.24–26 The foundation of the ASC method lies
on the fact that all aspects of electrostatic response of the
dielectric solvent due to the presence of a solute can be rep-
resented in terms of hypothetical charges distributed on the
boundary between the solute and solvent, that is, the surface
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of the molecular cavity embedding the solute. In the case of
infinite solvent dielectric constant, they are called screening
charges. In practice, the cavity surface is tessellated into seg-
ments, called tesserae, each containing one point surface
charge. With these approximations, the problem reduces to a
set of linear equations whose solution gives the value of
apparent charge on each tessera.

Both the calculation time and precision in calculated sol-
vation energy depend on the number of tesserae �n� used to
describe the cavity surface. The precision can be improved
by using more tesserae but at the cost of a significant in-
crease in computational time �roughly proportional to n3 for
matrix inverse27�. This undesired behavior in the ASC
method is a result of discretization of the apparent charges to
tessera, where the knowledge of self-contribution to electro-
static potential and electric field at a tessera from the charge
located on it is required. Due to the approximate treatment of
size, curvature, and charge gradient effects on such self-
contributions, the solvation energy converges slowly with n
in commonly used ASC methods, such as polarizable con-
tinuum model �PCM�,24 conductorlike screening model
�COSMO�,26 and integral equation formalism PCM
�IEF-PCM�.28 Miertus et al. have addressed this issue and
provided a first order correction to the self-contribution.24

Here we investigate the importance of the tessera self-
contribution in more detail and show that the calculated error
can be minimized, and in some cases eliminated, and the
efficiency can be enhanced with a careful treatment of the
apparent charge self-contribution. We also show that the
three methods are, in fact, identical for cases where the exact

value of self-contribution can be determined.
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II. ELECTROSTATIC SOLVATION ENERGY
FROM APPARENT SURFACE CHARGE „ASC…

METHODS

In the ASC method, the potential �D�r� due to the di-
electric solvent is completely represented by hypothetical
charges distributed on the surface of molecular cavity,

�D�r� =� ��rs�
�r − rs�

drs
2, �1�

where ��rs� is the apparent charge density located at the
cavity surface rs and the integration is over the closed cavity
surface. The electrostatic component of the solvation energy
�G*el is easily evaluated from the following surface integra-
tion:

�G*el = 1
2 � ��rs��S�rs�drs

2, �2�

where �S�r�=���S�r�� / �r−r���dr�3 is the electrostatic poten-
tial due to the solute. In practice the solute cavity surface is
represented by segments, called tesserae, and Eq. �2� is more
conveniently written in a matrix form

�G*el = 1
2VS

t q , �3�

where VS and q are column vectors �superscript t denotes
matrix transpose� whose elements are the solute potential
and apparent charge at each tessera k, i.e.,

VS,k = �S�rk� and qk = ��rk�sk, k = 1,2, . . . ,n , �4�

with sk being the surface area of tessera k and n being the
total number of tessera on the solute cavity. In the following,
we briefly review three most commonly used methods for
evaluating q: PCM, conductorlike PCM �C-PCM�/COSMO,
and IEF-PCM. All three methods can be cast into a general
form gq= P, i.e., a set of n linear equations that gives a
unique solution of q on each tessera for a given P and g.
Matrix P contains the property �potential or electric field� at
the molecular cavity due to the solute, and the product gq
gives the corresponding property due to the apparent charges
q. In the following we use lower case matrices for properties
of the molecular cavity tesserae and upper case matrices for
properties due to the solute.

A. The polarizable continuum model „PCM…

The PCM method by Tomasi and co-workers22,24,29,30 is
one of the most robust ways of calculating the apparent
charges at any molecular cavity. This method is based on the
fact that � is proportional to the normal component of the
electric field at the cavity surface,22

�k =
qk

sk
=

� − 1

4��
�̄�k

in · n̄k = −
� − 1

4��
Ek, �5�

where nk the is unit outward normal vector of tessera k and

Ek=−�̄�k
in ·nk is the total electric field in the direction of nk
at the inner cavity surface which is the sum of contributions
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from the solute ES,k and the apparent charges ED,k �Ek=ES,k

+ED,k�. Writing Eq. �5� in a matrix form,

s−1q = −
� − 1

4��
I�Es + eq� or � 4��

� − 1
I + se	q = − sES, �6�

where I is the identity matrix and the tessera matrix s is of
dimension n�n with its elements defined as

skj = 
0, j � k

sk, j = k .
� �7�

The n�n matrix e �when multiplied by q� produces the ap-
parent charge contribution to the electric field normal to the
cavity surface for each tessera,

ekj = � �rk − r j� · nk

�rk − r j�3
, j � k

ekk, j = k ,

 �8�

where rk and ekkqk are the position vector and the self-
contribution to the electric field at tessera k, respectively. The
calculation of ekk will be discussed in detail in the next sec-
tion. For a given solute �thus ES and VS are known� and
solvent dielectric constant, Eq. �6� can be used to calculate q
and thus �G*el from Eq. �3�.

B. The conductorlike screening model „COSMO…

In PCM, the apparent charges are determined with the
fact that q at any point on the molecular cavity surface is
proportional to the net electric field at the same location �Eq.
�7�� with the proportionality constant defined by the dielec-
tric constant of the solvent. In the limit of infinite dielectric,
Klamt and Schuurmann26 propose to use the fact that the net
potential at the cavity surface should be zero in the calcula-
tion of q. This leads to a simpler formulation, called
COSMO,

VS + vq = 0. �9�

The n�n matrix v �when multiplied by q� produces the po-
tential due to the screening charges for each tessera,

vkj = � 1

�rk − r j�
, j � k

vkk, j = k ,

 �10�

where rk and vkkqk are the position vector and the self-
contribution to the electrostatic potential at tessera k, respec-
tively. In COSMO, the screening charges q can be obtained
from solving Eq. �9� once the solute is specified �VS is
known�.

C. The integral equation formalism polarizable
continuum model „IEF-PCM…

Recently, Tomasi and co-workers28,31 proposed an inte-
gral equation formalism of the PCM which allows the con-
sideration of dielectric anisotropy of the solvent. For the spe-
cial case of having an isotropic dielectric solvent, IEF-PCM
can be easily derived by, first, considering the solute dis-

solved in a solvent of infinite dielectric constant,
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VS + vq* = 0 or q* = − v−1VS

and

�4�I + se�q* = − sES or q* = − �4�I + se�−1sES.

Thus the potential and electric field �normal to the tessera�
from the solute on the solute cavity surface are related,

�4�I + se�−1sES = v−1VS or ES = s−1�4�I + se�v−1VS.

�11�

Replacing ES in Eq. �6� with that in Eq. �11�, we obtain the
IEF-PCM equation for q for a solvent of finite dielectric
constant �,23,32,33

� 4��

� − 1
I + se	q = − �4�I + se�v−1VS or

v�4�I + se�−1� 4��

� − 1
I + se	q = − VS. �12�

Thus instead of the use of ES in PCM, IEF-PCM needs the
input of VS and reduces to the COSMO form when � ap-
proaches infinity.

To completely determine the matrix g, we still need the
tessera self-contribution �vkk ,ekk� to the potential �COSMO,
IEF-PCM� or the electric field �PCM, IEF-PCM�.

III. TESSERA SELF-CONTRIBUTION TO POTENTIAL
AND ELECTRIC FIELDS

Here we wish to determine the contribution to the poten-
tial �vkkqk� and electric field �ekkqk� at tessera k from the
apparent charge qk located on the same tessera. In principle,
vkk and ekk should be functions of the area �sk�, the curvature
��k�, and the spatial gradient of the apparent charge ��qk�. If
the exact functional dependence of vkk and ekk on these pa-
rameters was known and used, exactly the same apparent
charges q for any given solute would be obtained from PCM,
IEF-PCM, and �as the solvent dielectric constant approaches
infinity� COSMO models. �Note that this is strictly true only
for classical solutes. For quantum mechanical solutes, there
is a finite amount of solute electron leaking outside the solute
cavity whose effects are not considered here.� Unfortunately
this is not yet known for general cases and different approxi-
mations are currently employed in the three models. Never-
theless, vkk and ekk must satisfy the boundary condition as the
segment size approaches zero,

�ekksk = − 2�

vkksk = 0

qk/sk = �k

 as sk → 0. �13�

A. Tessera area and curvature corrections

Klamt and Schuurmann26 evaluated vkk by considering
the solvation of a point charge located at the center of a

spherical cavity,
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vkk = ak�4�

sk
, �14�

with the coefficient ak being set to a constant of 1.07. Wang
and Ford34 showed that ekk can be expressed as the following
based on Gauss’s theorem:

ekk = −
2�

sk
�1 − �kak� sk

4�
	 , �15�

with the coefficient ak being set to a constant of 1.0. �Note
that the curvature � is positive for convex tesserae and nega-
tive for concave ones.� Interestingly, both constants are set to
1.07 in the IEF-PCM method. Both Eqs. �14� and �15� satisfy
the limiting condition in Eq. �13�. However, the use of a
constant value of a in Eqs. �14� and �15� leads to different
values of G*el from the three methods, all of which deviate
from the theoretical value for the simplest case of a point
charge located at the center of a spherical cavity �solvation of
ions� except for the limit when n→	. Such discrepancy can
be resolved when the exact values for a are used.

In the Appendix, we show that coefficient ak in Eqs. �14�
and �15� should be the same when considering the solvation
of a point charge located at the center of a spherical cavity,

ak = �� 4�

�k
2sk

−� 1

4�sk
�

i=1,i�k

n
si

�ri − rk�
	 , �16�

and the limiting value of a as s approaches zero is unity,

lim
sk→0

ak = 1. �17�

If the tesserae are evenly distributed on the unit sphere, Eq.
�16� can be well approximated with a simpler equation �Ap-
pendix�

ak
ED = 1 +


x + �x2

1 + �x + 
x2 + �x3 , �18�

with x=ln�1+�k
2sk /e� and the coefficients 
=2430, �=500,

�=23 700, 
=3000, and �=16 000. Note that Eq. �18� leads
to the following limiting values:

ak
ED��k

2sk = 0� = ak
ED��k

2sk = 	� = 1.

Although Eq. �16� is valid only for spherical cavities,
Eq. �18� provides a “mean-field-like” value for coefficient a
and thus is applicable to cavities of arbitrary shapes. The
effect from size differences of nearby segments can be ap-
proximated with the following equation:

ak = ak
ED�sk�

sk
−� 1

4�sk
�
i=1

m�nr�
si

�ri − rk�
, �19�

where the summation is over the m neighboring segments
nearby segment k, sk�=�i=1

m si, and ak��m ,sk� ,�k�= �ak
ED�sk� ,�k�

−1� /e�m−1�b+1. It is noteworthy that Eq. �19� reduces to Eq.
�16� in the limit m→	 and to Eq. �18� for m=0. The value
of m depends on how many nearest neighboring segments
are included. �In the computer program, we create a list of
the first nearest neighbors �nr=1� for each segment. The sec-
ond, third, and so forth nearest neighbors can be determined

from this list. The value of nr is set to zero �thus m=0� for
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spherical shape cavities and to 1 for others.� To denote the
usage of Eq. �19� for ak in Eqs. �14� and �15�, we will refer
to the methods as PCM-acc, COSMO-acc, and IEF-PCM-acc
�acc stands for area and curvature corrected�.

B. Charge gradient correction

In the above case of ion solvation, the distribution of q
on the cavity surface is uniform. However, this is generally
not true for solvation of molecules. Thus, representing the
charges within a tessera using one single point charge intro-
duces error. One may possibly find the functional depen-
dence of tessera self-contribution on the gradient of q �spatial
nonuniformity�; however, he/she would end up with the need
of solving a set of much more complicated nonlinear equa-
tions �g��q�q= P�.

As an alternative, we propose an indirect approach in
which q and G*el are evaluated using several slightly differ-
ent tessellations while keeping the total number of tesserae
�n� constant. In this technique, we first find �arbitrarily� the
center of three segments that are in contact with one another
on the surface of a sphere �for example, points p, q, and r in
Fig. 1�a��. We then rotate point p to the midpoints of arcs pq
�p1 in Fig. 1�b��, pr �p2 in Fig. 1�b��, and qr �p3 in Fig. 1�b��
while keeping the relative positions of all the tesserae un-
changed �solid body rotation�. In this way, we generate four
correlated tessellation samples for the sphere. This method
can be extended to generate more samples by using the 1/3
and 2/3 points of the lateral arcs of the triangle pqr �Fig.
1�c��. The average value of �G*el from four correlated tes-
sellation samples �Fig. 1�b�� provides a better �unbiased�
measure for G*el for a certain value of n when there is gra-
dient of apparent charges on the cavity surface. We refer to

FIG. 1. Illustration of the generation of correlated samples for charge gra-
dient corrections. �a� Three arbitrarily chosen segment centers p, q, and r on
a sphere. �b� The generation of three additional samples by moving point p
to p1, p2, and p3. �c� The extension of the method to generate more samples
�seven additional samples in this case�.
the use of correlated sampling technique as cs4.

Downloaded 21 Nov 2008 to 140.112.113.225. Redistribution subject to
IV. RESULTS AND DISCUSSION

To demonstrate the importance of the tessera area, cur-
vature, and charge gradient corrections, we consider three
types of systems: �1� a point charge located at the center of a
spherical cavity, �2� a point charge located at a point away
from the center of a spherical cavity, and �3� realistic mol-
ecules having point charges on the nuclei. There are two
reasons for the choice of the first two systems. First, analyti-
cal solutions to the Poisson equation are available.21 Second,
the combination of these two represents the major ingredi-
ents in most modern implicit solvation calculation for real
molecules, where a molecular cavity is represented as over-
lapping van der Waals spheres centered at the atoms of the
molecule.35,36 It is noteworthy that although a point source
charge is used in this study, there is no fundamental difficulty
to implement the proposed method to any quantum mechani-
cal packages.

A. A point charge at the center of a spherical cavity

Figure 2 illustrates the sensitivity of the error in calcu-
lated �G*el ����Gcalc

*el −�Gtheory
*el � /�Gtheory

*el ��100% � on the

FIG. 2. Effect of the variation of the tessera self-contribution coefficient a
on �G*el from COSMO �a� and PCM �b� for a point charge at the center of
a sphere in a solvent of infinite dielectric constant.
variation of coefficient a for �=infinity �note that in this
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limit IEF-PCM is equivalent to COSMO�. It is seen that the
error varies from 35% to −20% for COSMO as the value of
a changes from 0 to 2. The error is smaller �15% to −10%� in
the case of PCM. The error also varies with the number of
tesserae used to represent the cavity. The error is reduced as
the spherical cavity is partitioned into more tesserae. It is
interesting to note that the error approaches minimum for all
cases around a=1.10, similar to that found by others.37,38

The effectiveness of inclusion of tessera curvature and
area corrections �Eq. �19� for ak in Eqs. �14� and �15�� is
shown in Fig. 3�a�. In these calculations, the neighboring
parameter m is set to zero �thus Eq. �19� reduces to Eq. �18��.
It can be seen that the error in calculated �G*el from the
original methods �PCM and COSMO� converges slowly with
n. In contrast, with the inclusion of correction �PCM-acc and
COSMO-acc�, the calculated error is essentially zero, regard-
less of the number of tessellations n used.

Figure 3�b� compares the accuracy of PCM and IEF-
PCM at various values of solvent dielectric constant ���
when the number of tesserae �n� is set to 18. It is found that
the error in both methods increases with the value of �. How-

FIG. 3. Comparison of error in calculated �G*el with �acc� and without
tessera area and curvature corrections for a point charge at the center of
a spherical cavity. �a� Variation of error with the number of tessellation
��=	�. �b� Variation of error with the solvent dielectric constant �n=18�.
ever, applying area and curvature corrections to the segment
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self-contributions, the error reduces to essentially zero for all
values of �. In addition, it can be seen �Fig. 3�b�� that the
error for PCM and IEF-PCM is largest in the limit of infinite
dielectric constant. Thus we put the focus on this limit in
subsequent analysis.

There are two important observations here. First, when
the exact value of coefficient a is used, all three ASC models
are equally accurate. Second, when the same but approxi-
mate values are used, the three models produces values of
�G*el that are different.

It is also important to note that although the percentage
errors shown in Fig. 3 are quite small �in the range of 0.2%–
2%�, they could have a significant impact on the phase equi-
librium predictions. The value of solvation free energy of
ions in aqueous solution is on the order of 100 kcal/mol
�e.g., �G*sol of Na+ in water is −90 kcal/mol at room tem-
perature�. An error of 0.2 kcal/mol in �G*sol would result in
an error of about 40% in the calculated activity coefficient.4

B. A point charge located away from the center
of a spherical cavity

When the point charge is moved away from the center of
the spherical cavity, there is a nonuniform distribution of
apparent charges on the cavity surface. For such cases, the
computed value of �G*el depends strongly on the relative
position of the centers of tessera and the source charge.
Slightly rotating the positions of the surface segments would
lead to a very different value of �G*el. Figure 4 shows the
maximum and minimum errors �solid curves� in the calcu-
lated value of �G*el for several different degrees of tessella-
tion �n� for a unit point charge located at a distance of 0.8R
away from the center of a spherical cavity �R is the radius�.
In all cases the n tesserae are uniformly distributed on the
cavity surface. The only difference is their relative positions
to the point charge. Since we do not know the exact depen-
dence of vkk and ekk on �q, i.e., we do not have the exact
value of coefficient a, we do not expect to get the same
results from the various ASC methods.

The absolute errors from the original COSMO �Fig.
4�a�� and PCM �Fig. 4�b�� may give significant errors unless
a large amount of segments is used in tessellation �e.g., more
than 100% for COSMO and 300% for PCM when n�20 and
�=infinity�. However, the maximum possible errors quickly
reduce to less than 50% �COSMO� and 100% �PCM� when
the �G*el is determined from the average of four correlated
samples �described above� for n=20. Thus the use of corre-
lated sampling is very important for obtaining reliable solva-
tion energies when there is a gradient of apparent charges on
the cavity surface.

There are two additional observations to make from Fig.
4. First, the uncertainty �maximum-error–minimum-error� in
PCM is greater than that from COSMO. Although we do not
know the exact functional dependence of ekk and vkk on �q,
these results indicate that ekk is much more sensitive to �q
than vkk is. Thus the ignorance of �q in ekk leads to a greater
error. The second observation is that the maximum and mini-
mum errors are not symmetric around zero. Both PCM and

*el
COSMO tend to overestimate the value of �G �too nega-
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tive�. The largest �most negative� value of �G*el is found
when one of the tessera is located right on the line of the
center of the sphere and the point charge. In such a case, the
apparent charge on that particular tessera is especially large,
resulting in the large value of �G*el. Such asymmetric be-
havior of error in �G*el is less prominent when the charge
correction is applied using four correlated tessellation
samples. This is another indication that such correction pro-
vides a nonbiased �thus more reliable� value of �G*el.

It is useful to address on the efficiency of the proposed
method. Although the charge gradient correction requires the
calculation of four tessellation samples, the total amount of
time used is still less than that from the original method
because of a significant reduction in the need of the amount
of tesserae �n� to achieve a certain level of accuracy. To
illustrate, the relative time used is tc / to= �4nc

3� /no
3, where nc

and no are the number of surface segments �n� needed from
the original and the method proposed here �cs4� �the power
of 3 is a result of the fact that the computational time in ACS
calculation is dominated by the matrix inverse�. To achieve a

FIG. 4. Error in the calculated �G*el for a unit point charge located 0.8R
away from the center of a spherical cavity from the COSMO �a� and PCM
�b� models. The dashed lines are the maximum and minimum errors from
one arbitrary tessellation. The solid curves are those from averages over four
tessellation samples �acc-cs4�.
maximum possible error of 50% from PCM �Fig. 4�b��,
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about 70 �no� points are need using the original method and
the required segments reduces to 40 �nc� when correlated
samplings are applied. Thus, there is a reduction of about
25% of the computational time �tc / to=0.75� using the new
method. In addition, the calculation of the four correlated
tessellation samples can be done simultaneously on different
CPUs and thus is quite suitable for parallel computation.

C. Solvation of ionic and neutral molecules

Figures 5–8 compare the calculated �G*el for two neu-
tral �hydrogen cyanide �HCN� and water �H2O�� and two
ionic �acetic acid �CH3COO−� and octadecanoic acid
�C17H35COO−�� molecular species with and without the area,
curvature, and charge gradient corrections. The solvent di-
electric constant is set to infinity. The solute molecules are
represented as having point charges located at the nuclei
�atomic charges�. The atomic charges are calculated using

39 40

FIG. 5. Comparison of the calculated �G*el for water in a solvent of infinite
dielectric constant with and without tessera self-contribution corrections us-
ing �a� COSMO and �b� PCM models. Closed circles and solid lines show
the maximum and minimum values of �G*el from original ASC models
using 100–5000 tessellation samples for a certain value of n. The triangle
and solid curves show the maximum and minimum errors from the average
of four correlated tessellation samples �acc-cs4�.
the charge equilibration method implemented in CERIUS2.
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The geometry of the molecules is optimized in vacuum using
the Dreiding force field41 and the Connolly surface35 is used
as the solvation cavity.7 For these calculations the number of
neighboring segments m is set to include the first nearest
neighbors �nr=1�. The maximum and minimum values of
calculated �G*el in Figs. 5–8 are determined from 100 to
5000 tessellation samples �applying the method described in
Sec. III B for each van der Waals sphere on the atoms� for a
certain value of n.

Because the Connolly surface of molecules is roughly
the exposed surface of spheres of atomic van der Waals radii
centered on each atom, the general features we found here
are quite similar to the those of the previous two model
systems using a single sphere. The original methods
�COSMO or PCM� are quite sensitive to the tessellation of
the cavity surface especially for small values of n. This effect
is more prominent for charged �Figs. 8 and 9� and large �Fig.
9� species. This is an indication that the accuracy in the
calculated �G*el strongly depends on the quality of tessella-
tion of the surface of molecular species. The proposed cor-

FIG. 6. Comparison of calculated �G*el for HCN in a solvent of infinite
dielectric constant with and without tessera self-contribution corrections us-
ing �a� COSMO and �b� PCM models. The legends are the same as in Fig. 5.
rection method �COSMO-acc-cs4 and PCM-acc-cs4� takes

Downloaded 21 Nov 2008 to 140.112.113.225. Redistribution subject to
into account the effects of tesserae area, curvature, and
charge gradient and thus produces more accurate values for
�G*el at much lower values of n.

V. CONCLUSIONS

In this work, we investigated the source of error in com-
mon solvation calculations and developed a new method that
leads to highly accurate and reliable solvation free energy
with much less computational time. We show that the tessera
self-contribution to the potential and electric field plays a
critical role in the calculation of the electrostatic contribution
to the solvation free energy ��G*el�. Once this is correctly
handled, all the ASC methods produce identical values of
�G*el. The segment and area corrections are important for
solvation of ions, whose apparent charge distribution is uni-
form on the cavity surface. The charge gradient correction
becomes more important for neutral and ionic molecules,
where the apparent charge distributions are nonuniform. The
use of the average value from four correlated tessellation
samples may greatly enhance the accuracy of the calculated

*el

FIG. 7. Comparison of calculated �G*el for CH3COO− in a solvent of infi-
nite dielectric constant with and without tessera self-contribution corrections
using �a� COSMO and �b� PCM models. The legends are the same as in
Fig. 5.
�G . The proposed method allows for the use of a lower
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degree of tessellation for the molecular surface. This would
be critical for solvation calculations for large molecules �pro-
tein, DNA, polyelectrolyte, etc.� where a large number of
tesserae are generally needed.
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APPENDIX: TESSERA SELF-CONTRIBUTION
TO POTENTIAL AND ELECTRIC FIELDS

Consider a point charge Q located at the center of a
spherical cavity of radius R surrounded by a continuum of
dielectric constant �. The distribution of potential and elec-
tric field normal to the cavity surface due to the point charge
��Q ,EQ� and apparent charge ��q ,Eq� can be obtained ex-

21

FIG. 8. Comparison of calculated �G*el for C17H35COO− in a solvent of
infinite dielectric constant with and without tessera self-contribution correc-
tions using �a� COSMO and �b� PCM models. The legends are the same as
in Fig. 5.
actly by solving the Poisson equation,
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�Q =
Q

r
,

EQ = −
��Q

�r
�r =

Q

r2�r,

�A1�

�q = �−
� − 1

�

Q

R
for r � R

−
� − 1

�

Q

r
for r � R ,


Eq = �0 for r � R

−
� − 1

�

Q

r2 for r � R . 

Furthermore, the apparent charge density is

� = −
1

4�

� − 1

�
��EQ + Eq��r=R = −

1

4�

� − 1

�

Q

R2 . �A2�

Assuming that the cavity surface is composed of n tesserae,
each of area sk ��k=1

n sk=4�R2� and apparent charge qk=sk��,
the potential at any tessera k can be written as

Q

R
+ �

i=1

n

vikqi = �Q�rk� + �q�rk� =
Q

R
−

� − 1

�

Q

R
.

Thus

�
i=1

n

viksi = 4�R = 4�/�

⇒ vkk =
4�

�sk
− �

i=1,i�k

n
si

sk

1

�ri − rk�
= ak�4�

sk
,

�A3�

FIG. 9. The variation of coefficient a as a function of the size and curvature
of evenly distributed tesserae on a sphere. The open circles are the exact
values of a calculated from Eq. �A4� �or �16�� and the solid line is the best
fit via Eq. �A11� �or �18��.
with
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ak = �� 4�

�k
2sk

−� 1

4�sk
�

i=1,i�k

n
si

�ri − rk�
	 . �A4�

Note that Eq. �A3� is valid for all values of �, although the
original derivation given by Klamt and Schuurmann26 only
considered the case of �=infinity.

Similarly, the electric field normal to the tessera at the
inner surface of any tessera k is

Q

R2 + �
i=1

n

eikqi =
Q

R2 + 0.

Therefore,

ekk = − �
i=1,i�k

n

eik = − �
i=1,i�k

n
�ri − rk� · rk

�ri − rk�3�rk�

= − �
i=1,i�k

n
1

�ri − rk�
1

2R
= −

2�

sk
�1 −

ak

R
� sk

4�
	 ,

�A5�

ekk = −
2�

sk
+

vkk

2R
,

where the coefficient a is the same as in Eq. �A4�. To obtain
Eq. �A5� we have also used the identities �ri−rk� ·rk= �ri

−rk��rk�cos 
 with the cosine of the included angle 
, cos 

= �ri−rk� /2R. Now consider the electric field normal to the
tessera at the outer surface of any tessera k,

Q

R2 + �
i=1

n

eikqi =
Q

R2 −
� − 1

�

Q

R2

and

ekk = 4� − �
i=1,i�k

n

eik =
2�

sk
�1 +

a

R
� sk

4�
	 . �A6�

Combining Eqs. �A5� and �A6� we have the final result for
ekk,

ekk = −
2�

sk
�1 − �ka� sk

4�
	 , �A7�

with curvature ��=1/R� being positive for convex tesserae
and negative for concave ones. Thus we proove that both
PCM, COSMO, and IEF-PCM should share the same value
of a �Eq. �A4�� for uniformly distributed apparent charges on
a spherical cavity.

The limiting value of a as n approaches infinity can be
determined as follows. Consider one of the n segments lo-
cated at the z axis. The surface area is related to half of the
solid angle �k as

sk = 2�R2�1 − cos �k� ⇒ cos �k = 1 −
sk

2�R2 . �A8�

In the limit of infinitely small segment sizes, the summation

in Eq. �A4� can be replaced with integration,
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lim
si→0

�
i=1,i�k

n
si

�ri − rk�
= �

s

ds

�ri − rk�
= �

�k

� 2�R2 sin �d�

�2R��1 − cos ��

= 4�R − 2��sk. �A9�

Therefore,

lim
s→0

ak = lim
s→0

� 1

4�sk
�4�R − �

i=1,i�k

n
si

�ri − rk�
	

=� 1

4�sk
�4�R − 4�R + �4�sk� = 1. �A10�

Figure 9 �open circles� shows the exact values of coef-
ficient a calculated from Eq. �A4� for a sphere tessellated to
equal-sized segments. �Note that distributing points evenly
on a sphere is not trivial and the variation of a with n de-
pends on how the tessellation is done. In this work, the cen-
ter point of each tessera is taken as the vertex of a corre-
sponding polyhedron for n=4, 6, 8, 12, and 20. For n�20,
the vertices are obtained from triangulation of the faces of an
icosahedron.� It can be seen that the coefficient a has a maxi-
mum value of 1.102 at �ksk=0.0777 �n=162 for a unit
sphere� and tends to the theoretical value of 1 as �ksk de-
creases. To describe the dependence of a as a function of �s
for evenly distributed points, we use the following equation
�solid line in Fig. 9�:

ak
ED = 1 +


x + �x2

1 + �x + 
x2 + �x3 , �A11�

with x=ln�1+�k
2sk /e� and the coefficients 
=2430, �=500,

�=23 700, 
=3000, and �=16 000. Equation �A11� guaran-
tees that a takes the value of unity for any infinitely small
�s=0� and/or flat ��=0� tessera.
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