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Abstract

A �-expectation tolerance interval procedure is derived from the concept of generalized pivotal
quantity, which has been frequently used to obtain confidence intervals in situations where standard
procedures do not lead to useful solutions. The proposed procedure can be applied to general balanced
mixed linear models. Some practical examples are given to illustrate the proposed procedure. In
addition, detailed simulation studies are conducted to evaluate its performance, showing that it can
be recommended for use in practical applications.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Statistical tolerance intervals are useful in life-testing, process reliability studies, phar-
maceutical engineering, and many other areas. Two basic types of tolerance intervals have
received considerable attention: (i)�-content tolerance intervals and (ii)�-expectation tol-
erance intervals. Most papers concerning construction of these two types of tolerance inter-
vals are restricted to the case of a simple random sample (SRS) fromN

(
�,�2

)
or balanced
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one-way random effects models. Recently,Liao and Iyer (2004)have developed a�-content
tolerance interval procedure applicable to all balanced mixed linear models. Earlier work
related to the construction of�-content tolerance intervals refers toLemon (1977),Beckman
and Tietjen (1989), Mee and Owen (1983), Mee (1984), Vangel (1992), Wang and Iyer
(1994), Liao and Iyer (2001), andFernholz and Gillespie (2001)among others.

In this study, our main interest lies in�-expectation tolerance intervals which are also
calledprediction intervalsfor a single future observation ormean-coveragetolerance in-
tervals. A�-expectation tolerance interval for a SRS fromN

(
�,�2

)
is first presented in

Wilks (1941). Paulson (1943)proves that the problem of finding such a tolerance interval is
exactly equivalent to finding a confidence interval for one single future observation.Fraser
and Guttman (1956)establish the relationship between�-expectation tolerance intervals
and hypothesis tests.Guttman (1970)deals with the problem from a Bayesian viewpoint.
Mee (1984)considers the�-expectation tolerance intervals for balanced one-way random
effects models and proposes an approximate method based on the result ofWilks (1941).
Wang (1988)also provides an iterative algorithm to obtain an approximate�-expectation
tolerance interval for balanced one-way random effects models. To the best of our knowl-
edge, no�-expectation tolerance interval for more complex models has been considered in
the literature.

We develop a�-expectation tolerance interval procedure for all mixed linear models
provided balanced data is available. Our method is based on the concept ofgeneralized
pivotal quantity, presented inWeerahandi (1993), which has been proven successful in
constructing�-content tolerance intervals byLiao and Iyer (2004). In the next section,
we review the definition of�-expectation tolerance interval and the concept of generalized
pivotal quantity. The derivation of the proposed�-expectation tolerance interval is presented
in Section 3. Two practical examples are given in Section 4 to illustrate the proposed
procedure. Section 5 contains a simulation study to evaluate the performance of the proposed
method. A comparison between the proposed method andMee’s (1984)method is provided
in Section 6.

2. Preliminaries

We first review the definition of�-expectation tolerance interval for a random variable
and the concept of generalized pivotal quantity.

2.1. �-expectation tolerance interval

LetF denote the cumulative distribution for a random variable. An interval[L(Y), U(Y)]
based on the data vectorY is said to be a two-sided�-expectation tolerance interval forF
if E{F [U(Y)] − F [L(Y)]} = �. Thus, one can state that a proportion� of the population
modeled byF is contained in the interval[L(Y), U(Y)] on average. Additionally, one can
also state with confidence coefficient� that a future sample of size one from the underlying
distribution is contained in the interval[L(Y), U(Y)]. Similarly, one-sided�-expectation
tolerance limits forF can be defined.
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2.2. Generalized pivotal quantity

Let y be the realized value of the data vectorY and� be the vector of model parameters.
Moreover, let� be a function of� for which a confidence interval is sought. According to
Weerahandi (1993), a functionR = r(Y; y, �) of Y, y and� is called a generalized pivotal
quantity for� if it satisfies the following two conditions:

(i) Rhas a probability distribution that is free of unknown parameters.
(ii) The observed value ofR, namelyr(y; y, �), depends on� only through�.

The percentiles ofR can be analytically evaluated in simple problems but more conve-
niently estimated using Monte-Carlo algorithms in complex problems.

3. Derivation of �-expectation tolerance intervals

The problem of interest can be formulated as follows. It is desired to construct�-
expectation tolerance intervals for distributionN

(
�, �2

)
, where�2=∑q

i=1 hi�2
i . Here each

�2
i denotes a linear combination of the variance components in the model of interest andhi

are known constants. It is assumed that mutually independent statisticsT, S2
1, S

2
2, . . . , S

2
q

are available such that

(i) T ∼ N
(
�,�2

)
with �2 = ∑q

i=1 ci�
2
i andci being known constants.

(ii) Ui = niS
2
i /�

2
i ∼ �2

ni
, for i = 1,2, . . . , q.

Since the construction for one-sided�-expectation tolerance limit is similar to the two-
sided case, we now consider the two-sided case in detail. The following lemma due to
Paulson (1943)describes the relationship between�-expectation tolerance intervals and
confidence intervals for some function of the observations in a future independent sample.

Lemma 3.1(Paulson, 1943). If confidence limitsV1(Y)andV2(Y)of level�aredetermined
for V, a function of a future sample of new independent observations from the population,
and if

P =
∫ V2

V1

dG(v),

where G is the distribution function of V, thenE[P ] = �.

We thus directly apply Lemma 3.1 to construct the tolerance interval of interest. Let

V1(Y) = T + DL

(
S2

1, S
2
2, . . . , S

2
q

)
and V2(Y) = T + DU

(
S2

1, S
2
2, . . . , S

2
q

)
. Also let

W ∼ N
(
�, �2

)
denote a new random observation independent of the data vectorY. We now

need to seek a 100� percent confidence interval[V1(Y), V2(Y)] forW. Namely, we need to
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determine the margin errorsDL

(
S2

1, S
2
2, . . . , S

2
q

)
andDU

(
S2

1, S
2
2, . . . , S

2
q

)
such that

� = Pr(T + DL <W <T + DU)

= Pr

(
DL√

�2 + �2
<

W − T√
�2 + �2

<
DU√

�2 + �2

)

= Pr

(
DL√

�2 + �2
<Z<

DU√
�2 + �2

)

= Pr
(
DL < �<DU

)
,

where� = Z
√

�2 + �2. We thus use[
T + ��1

, T + ��2

]
(3.1)

as the required�-expectation tolerance interval, where��1
and��2

denote the
(
100�1

)
th

and
(
100�2

)
th percentiles of� with �2 − �1 = �.

Obviously,� involves standardized normal variateZ and parameters�2
1,�

2
2, . . . ,�

2
q and

its percentiles are generally unavailable.We thus substitute the following generalized pivotal
quantities for�2 and�2 in � so as to obtain the required percentiles

R�2 =
q∑

i=1

hinis
2
i

Ui

=
q∑

i=1

hi�2
i s

2
i

S2
i

(3.2)

and

R�2 =
q∑

i=1

cinis
2
i

Ui

=
q∑

i=1

ci�2
i s

2
i

S2
i

, (3.3)

wheres2
1, s

2
2, . . . , s

2
q denote the observed values ofS2

1, S
2
2, . . . , S

2
q . From the first expres-

sions of (3.2) and (3.3),R�2 andR�2 have distributions that are free of model parameters.
Whens2

1, s
2
2, . . . , s

2
q are substituted for the observable random variablesS2

1, S
2
2, . . . , S

2
q in

the second expressions of (3.2) and (3.3),R�2 andR�2 become�2 and�2, respectively.
Therefore,R�2 andR�2 satisfy the requirements for being generalized pivotal quantities for
�2 and�2, respectively. We now define

R� = Z
√

max{0, R�2 + R�2}. (3.4)

Hence,��1
and��2

in (3.1) can be estimated by the corresponding percentiles ofR�, denoted
byR�,�1

andR�,�2
, respectively. For practical convenience, we may simply set�1=(1−�)/2

and�2 = (1 + �)/2, resulting in an equal tailed interval. The required percentiles may be
estimated with the following Monte-Carlo algorithm.
Step1: Choose a large simulation sample size, sayM = 10,000. Fori equal to 1–M,

carry out the following two steps.
Step2: Generate a standardized normal deviateZi and chi-squared random deviates

U1,i , U2,i , . . . , Uq,i with n1, n2, . . . , nq degrees of freedom (df), respectively. These vari-
ates must be independent.
Step3: ComputeR�,i using Eq. (3.4) forR�.
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Table 1
Breaking strength (pounds tension) of nine batches of cement briquettes

1 2 3 4 5 6 7 8 9

553 553 510 520 543 492 542 581 578
550 599 580 559 500 530 550 550 531
568 579 529 539 562 528 580 529 562
541 545 535 510 540 510 545 570 525
537 540 537 540 535 571 520 524 549

R�,�1
andR�,�2

are just the
(
100�1

)
th and

(
100�2

)
th sample percentiles of the collection

of valuesR�,1, R�,2, . . . , R�,M .

4. Illustrative examples

The following practical examples are given to illustrate the proposed procedure.

Example 4.1.Mee (1984), who citedBowker and Lieberman (1972, p. 439)as the original
source, uses a cement briquettes experiment to illustrate his method. Five specimens from
each of nine batches of cement briquettes are analyzed for breaking strength. The data is
given inTable 1.

The experimental data can be fitted by the one-way random effects model

Yij = � + Bi + eij ,

for i = 1,2, . . . , a, j = 1,2, . . . , b, where� denotes the constant term,Bi the batch effects
andeij the measurement errors.Bi andeij are random effects normally distributed with 0
mean and variances equal to�2

B and�2
e , respectively.

Let �2
1 = �2

e and�2
2 = b�2

B + �2
e . We are interested in finding a two-sided�-expectation

tolerance interval for the distribution of measured values, namelyN
(
�, �2

)
with � = �

and�2 = �2
B + �2

e = (1 − 1/b)�2
1 + (1/b)�2

2. Moreover, we have sufficient statisticsT =
Y ∼ N

(
�,�2

)
, where�2 = (1/a)�2

B + (1/ab)�2
e = (1/ab)�2

2; S2
1 = MSE (error mean

square) witha(b−1)S2
1/�

2
1 ∼ �2

a(b−1) andS2
2 =MSB (mean square between batches) with

(a − 1)S2
2/�

2
2 ∼ �2

(a−1).

FromTable 1, a = 9, b = 5, ȳ = 543.8, s2
1 = 526,s2

2 = 630. The proposed method yields
a two-sided (� = 0.90)-expectation tolerance interval[503,585].

Example 4.2. Liao and Iyer (2001)describe a gauge study for comparing the quality be-
tween a newly developed glucose monitoring meter for in-home use by patients with diabetes
(called test meter) and a marked one (called reference meter). LetX denote a measurement
using a test meter andY denote a measurement using a reference meter. ThenX andY are
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modeled as follows:

Xijkl = �T + Mi + Bj + Lk + eijkl,

for i =1,2, . . . , m, j =1,2, . . . , B, k=1,2, . . . , L andl =1,2, . . . , E, where�T denotes
the expected reading when using a test meter,Mi the effect of test meteri, Bj the effect
of the j th blood sample,Lk the effect of thekth strip-lot andeijkl measurement error.
Likewise,

Yijkl = �R + M ′
i + Bj + Lk + e′

ijkl

for i = 1,2, . . . , n, j = 1,2, . . . , B, k = 1,2, . . . , L andl = 1,2, . . . , E, where�R denotes
the expected reading when using a reference meter,M ′

i the effect of reference meteri, Bj

the effect of thej th blood sample,Lk the effect of thekth strip-lot ande′
ijkl measurement

error. The effectsMi,M
′
i , Bj , Lk, eijkl, e

′
ijkl are random effects, normally distributed with

zero mean and standard deviations equal to�T, �R, �B , �L, �e and�e, respectively (the
variances ofeijkl ande′

ijkl are assumed to be equal).

The theoretical mean for theith test meter when using blood samplej and strip-lotkequals
�T +Mi +Bj +Lk. The theoretical mean reading, averaging overall reference meters, for
the same blood sample and strip-lot equals�R +Bj +Lk. This theoretical mean reading is
used as the reference value against which the readings from individual test meters will be
compared to assess their accuracy. The deviation of the reading obtained using a single test
meter from the mean over all reference meters is thus equal toDi =�T −�R +Mi . It is the
distribution ofDi that is of interest. Instead of�-content tolerance intervals applied inLiao
and Iyer (2001, 2004), we use�-expectation tolerance intervals to measure the quality of a
batch of test meters.A batch of test meters is deemed to have met the quality requirements if
its two-sided(�=0.95)-expectation tolerance interval for the distribution ofDi completely
falls into the threshold interval[−5,5].

We now apply the�-expectation tolerance interval given in Section 3 to this problem.
Let

X =
∑m

i=1
∑B

j=1
∑L

k=1
∑E

l=1 Xijkl

mBLE
,

MST = BLE
∑m

i=1

(
Xi... − X

)2

m − 1
,

MSET =
∑m

i=1
∑B

j=1
∑L

k=1
∑E

l=1

(
Xijkl − Xi... − X.j.. − X..k. + 2X

)2

mBLE − m − B − L + 2
.

Similarly, letY , MSR andMSER denote the corresponding sample mean, mean square for
the reference meter effect and error mean square for the model fitted to the reference meters
data.Then the statisticsX,Y ,MST,MSET,MSR andMSER are mutually independent. Let
�2

1=�2
T+�2

e/k0,n1=m−1,S2
1 =MST/k0; and�2

2=�2
R+�2

e/k0,n2=n−1,S2
2 =MSR/k0,

wherek0=BLE. It follows thatn1S
2
1/�

2
1 ∼ �2

n1
, n2S

2
2/�

2
2 ∼ �2

n2
. Alsov1MSET/�2

e ∼ �2
v1

andv2MSER/�2
e ∼ �2

v2
,wherev1 =mk0 −m−B −L+ 2 andv2 = nk0 − n−B −L+ 2.
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MSET andMSER are pooled to getMSE = (v1MSET + v2MSER) / (v1 + v2), so we
haven3S

2
3/�

2
3 ∼ �2

n3
, where�2

3=�2
e/k0, n3=v1+v2 andS2

3 =MSE/k0. We are interested
in a two-sided�-expectation tolerance interval forN

(
�, �2

)
, where� = �T − �R and

�2 = �2
T = �2

1 − �2
3. Also observe thatT = X − Y ∼ N

(
�,�2

)
, where�2 = �2

1/m + �2
2/n.

For the data provided inLiao and Iyer (2001), m = 44, n = 10,B = L = E = 3, x̄ −
ȳ = −1.13654,s2

1 = 0.61928,s2
2 = 0.63132 ands2

3 = 0.19052. A two-sided(� = 0.95)-
expectation tolerance interval for the distribution ofDi is obtained as[−2.5900,0.3278]
which is completely contained in the threshold interval[−5,5]. Therefore, one concludes
that the batch of test meters has satisfied the quality requirement.

5. Simulation study

To evaluate the performance of the proposed procedure, the following simulation study is
carried out based on the glucose monitoring meter experiment of Example 4.2. We specify
the values of�=0.025,0.05,0.1,0.9,0.95 and 0.975. Moreover, without loss of generality,
we may assume that� = 0 and�R = 1. For fixedB = L = E = 3 and specified values
of m = 10,30,60; n = 5,20,50; �T = 0.5,1.0,2.0,4.0 and�e = 0.5,1.0,2.0,4.0, we
generate a normal random deviateT fromN

(
0,�2

)
and three chi-squared random deviates

U1, U2 andU3 with n1, n2, n3 df, using functionsrnorm andrchisq, respectively, in the
statistical packageS-plus.The corresponding sample statisticsS2

1=U1�2
1/n1,S2

2=U2�2
2/n2,

S2
3 = U3�2

3/n3 are then generated.
Furthermore, we compute the quantities ofR�,� using the Monte-Carlo algorithm de-

scribed in Section 3. Also letp = F
(
T + R�,�

)
, whereF is the cumulative distribution

function ofN
(
0, �2

)
. The procedure is repeated 10,000 times for each parameter combi-

nation and the average ofp is computed. The results are displayed inFigs. 1–6. Each panel
in figures plots the simulated confidence coefficient for a specific combination ofmandn.
The plotting symbols “1”, “2”, “3” and “4” are designated for cases with�e = 0.5, 1, 2
and 4, respectively. For most parameter combinations, the constructed tolerance limits are
successful in maintaining the confidence level close to the nominal values of�, particularly
when�T is larger than�R. Nonetheless, the results indicate that when�T is smaller than
�R andn is small(n = 5), the simulated value of� is slightly smaller or larger than the
nominal one according as��0.1 or ��0.9. Fortunately, in most practical situations,�T
is usually larger than�R because the reference meters tend to have much higher precision
than the test meters.

6. A comparison with Mee’s method

Mee (1984)appliesSatterthwaite (1946)approximation to determine the df of Student
t-distribution inWilks’ (1941) method for the balanced one-way random effects model. It
may be of interest to compare the performance of this approximate method with ours. Based
on the balanced one-way random effects model described in Example 4.1, some simulation
results, using the simulation procedure of Section 5, are reported inTable 2.
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Fig. 1. Simulated confidence coefficients for one-sided(� = 0.025)-expectation tolerance limits, based on the
glucose monitoring meter experiment forB = L = E = 3 and�R = 1.
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Fig. 2. Simulated confidence coefficients for one-sided(� = 0.05)-expectation tolerance limits, based on the
glucose monitoring meter experiment forB = L = E = 3 and�R = 1.
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Fig. 3. Simulated confidence coefficients for one-sided(� = 0.10)-expectation tolerance limits, based on the
glucose monitoring meter experiment forB = L = E = 3 and�R = 1.
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Fig. 4. Simulated confidence coefficients for one-sided(� = 0.90)-expectation tolerance limits, based on the
glucose monitoring meter experiment forB = L = E = 3 and�R = 1.
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Fig. 5. Simulated confidence coefficients for one-sided(� = 0.95)-expectation tolerance limits, based on the
glucose monitoring meter experiment forB = L = E = 3 and�R = 1.
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Fig. 6. Simulated confidence coefficients for one-sided(� = 0.975)-expectation tolerance limits, based on the
glucose monitoring meter experiment forB = L = E = 3 and�R = 1.

For all the cases considered in the simulation study, our method yields not only the
simulated confidence coefficients closer to the nominal values, but also shorter expected
lengths. Our method obviously outperforms Mee’s.
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Table 2
Simulated confidence coefficients for two-sided�-expectation tolerance intervals using Mee’s method and the
proposed method. The simulated expected lengths are given in parentheses

a b �2
B
/�2

e � = 0.90 � = 0.95 � = 0.99

5 2 0.1 0.9440 (14.9970)a 0.9811 (19.4384) 0.9989 (32.1741)
0.9342 (14.3661)b 0.9738 (18.2212) 0.9970 (28.2176)

0.5 0.9392 (7.8600) 0.9780 (10.1612) 0.9985 (16.8696)
0.9302 (7.5847) 0.9702 (9.6506) 0.9965 (15.1550)

1.0 0.9337 (6.3448) 0.9753 (8.3069) 0.9980 (13.6968)
0.9258 (6.2299) 0.9681 (7.9492) 0.9956 (12.5011)

2.0 0.9255 (5.4818) 0.9713 (7.0941) 0.9975 (11.7616)
0.9207 (5.3727) 0.9642 (6.9550) 0.9944 (11.1111)

10.0 0.9100 (4.6446) 0.9586 (6.0114) 0.9939 (10.0628)
0.9082 (4.5953) 0.9541 (5.9321) 0.9915 (9.8143)

5 5 0.1 0.9463 (13.7587) 0.9815 (17.0871) 0.9992 (24.8831)
0.9236 (12.6582) 0.9668 (15.4683) 0.9952 (22.2444)

0.5 0.9502 (7.6478) 0.9830 (9.6085) 0.9995 (15.4989)
0.9246 (6.9646) 0.9672 (8.5815) 0.9952 (12.9347)

1.0 0.9446 (6.1633) 0.9826 (7.9453) 0.9995 (12.6896)
0.9220 (5.8472) 0.9653 (7.2858) 0.9945 (11.3365)

2.0 0.9370 (5.4486) 0.9771 (7.0458) 0.9989 (11.4945)
0.9186 (5.1638) 0.9618 (6.5868) 0.9932 (10.4172)

10.0 0.9132 (4.6366) 0.9624 (6.0594) 0.9956 (9.9538)
0.9057 (4.5705) 0.9534 (5.8872) 0.9910 (9.7340)

5 9 0.1 0.9361 (12.6565) 0.9811 (16.2675) 0.9989 (23.4475)
0.9186 (12.1046) 0.9632 (14.7047) 0.9947 (20.5924)

0.5 0.9552 (7.3393) 0.9880 (9.4094) 0.9995 (13.7992)
0.9239 (6.7732) 0.9660 (8.3869) 0.9949 (12.3833)

1.0 0.9547 (6.1623) 0.9866 (7.8584) 0.9997 (12.6949)
0.9217 (5.7231) 0.9642 (7.1666) 0.9943 (10.9801)

2.0 0.9498 (5.4196) 0.9834 (6.9372) 0.9994 (11.1791)
0.9178 (5.1436) 0.9602 (6.4531) 0.9934 (10.2497)

10.0 0.9298 (4.6396) 0.9707 (5.9900) 0.9970 (9.9202)
0.9072 (4.5573) 0.9537 (5.8881) 0.9913 (9.6690)

9 5 0.1 0.9180 (11.8076) 0.9658 (14.4961) 0.9957 (20.0072)
0.9113 (11.6894) 0.9578 (14.0728) 0.9925 (18.9589)

0.5 0.9279 (6.4346) 0.9710 (7.9070) 0.9967 (10.9858)
0.9119 (6.2508) 0.9593 (7.5993) 0.9928 (10.4076)

1.0 0.9292 (5.3374) 0.9704 (6.5353) 0.9970 (9.2977)
0.9112 (5.1885) 0.9573 (6.2985) 0.9923 (8.7610)

2.0 0.9258 (4.6435) 0.9692 (5.7397) 0.9965 (8.2330)
0.9087 (4.5534) 0.9562 (5.5782) 0.9919 (7.8503)

10.0 0.9175 (3.9828) 0.9622 (4.9502) 0.9940 (7.1434)
0.9026 (3.9649) 0.9521 (4.8944) 0.9905 (7.0440)

aTolerance intervals constructed by using Mee’s method.
bTolerance intervals constructed by using the proposed method.
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7. Concluding remarks

In the present paper, we have obtained a�-expectation tolerance interval for the normal
distribution whose mean and variance are functions of parameters, which are estimated using
the data from a balanced mixed linear model. The proposed method is mainly based on the
concept of generalized pivotal quantity. And it can easily be verified that our method turns
out to be that ofWilks (1941)when a SRS fromN

(
�,�2

)
is considered. Most importantly,

the simulation studies conducted in the study strongly support the proposed method and can
be recommended for use in practical applications. The extension to the unbalanced mixed
linear models is currently under investigation.
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