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Abstract

A f-expectation tolerance interval procedure is derived from the concept of generalized pivotal
guantity, which has been frequently used to obtain confidence intervals in situations where standard
procedures do not lead to useful solutions. The proposed procedure can be applied to general balanced
mixed linear models. Some practical examples are given to illustrate the proposed procedure. In
addition, detailed simulation studies are conducted to evaluate its performance, showing that it can
be recommended for use in practical applications.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Statistical tolerance intervals are useful in life-testing, process reliability studies, phar-
maceutical engineering, and many other areas. Two basic types of tolerance intervals have
received considerable attention: ficontent tolerance intervals and (fjexpectation tol-
erance intervals. Most papers concerning construction of these two types of tolerance inter-
vals are restricted to the case of a simple random sample (SRSNl@maz) or balanced
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one-way random effects models. Recerltlgo and lyer (2004have developed f-content
tolerance interval procedure applicable to all balanced mixed linear models. Earlier work
related to the construction gfcontent tolerance intervals referdtemon (1977)Beckman

and Tietjen (1989)Mee and Owen (1983Mee (1984) Vangel (1992) Wang and lyer
(1994) Liao and lyer (2001)andFernholz and Gillespie (2008mong others.

In this study, our main interest lies jfrexpectation tolerance intervals which are also
calledprediction intervalsfor a single future observation onean-coveragélerance in-
tervals. A f-expectation tolerance interval for a SRS fr(M‘(,u, 0-2) is first presented in
Wilks (1941) Paulson (1943)roves that the problem of finding such a tolerance interval is
exactly equivalent to finding a confidence interval for one single future observataser
and Guttman (1956¢stablish the relationship betwegrexpectation tolerance intervals
and hypothesis test&uttman (1970)leals with the problem from a Bayesian viewpoint.
Mee (1984)considers the8-expectation tolerance intervals for balanced one-way random
effects models and proposes an approximate method based on the régiliksofl941)

Wang (1988)also provides an iterative algorithm to obtain an approxinfagxpectation
tolerance interval for balanced one-way random effects models. To the best of our knowl-
edge, ngs-expectation tolerance interval for more complex models has been considered in
the literature.

We develop gS-expectation tolerance interval procedure for all mixed linear models
provided balanced data is available. Our method is based on the conagggmertilized
pivotal quantity presented iWWeerahandi (1993)which has been proven successful in
constructingf-content tolerance intervals dyiao and lyer (2004)In the next section,
we review the definition ofi-expectation tolerance interval and the concept of generalized
pivotal quantity. The derivation of the proposgexpectation tolerance interval is presented
in Section 3. Two practical examples are given in Section 4 to illustrate the proposed
procedure. Section 5 contains a simulation study to evaluate the performance of the proposed
method. A comparison between the proposed method/esks (1984 method is provided
in Section 6.

2. Preliminaries

We first review the definition of-expectation tolerance interval for a random variable
and the concept of generalized pivotal quantity.

2.1. p-expectation tolerance interval

Let F denote the cumulative distribution for a random variable. An intdival’), U (Y)]
based on the data vectdiis said to be a two-sidefi-expectation tolerance interval fér
if E{F[U(Y)] — F[L(Y)]} = p. Thus, one can state that a proportjpof the population
modeled byF is contained in the intervdlL (Y), U (Y)] on averageAdditionally, one can
also state with confidence coefficighthat a future sample of size one from the underlying
distribution is contained in the interval (Y), U(Y)]. Similarly, one-sideg3-expectation
tolerance limits fof can be defined.
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2.2. Generalized pivotal quantity

Lety be the realized value of the data vectaandé be the vector of model parameters.
Moreover, let) be a function o for which a confidence interval is sought. According to
Weerahandi (1993 functionR = r(Y; y, &) of Y, y andé is called a generalized pivotal
quantity fory if it satisfies the following two conditions:

(i) Rhas a probability distribution that is free of unknown parameters.
(i) The observed value d®, namelyr(y; y, &), depends o only throughy.

The percentiles oR can be analytically evaluated in simple problems but more conve-
niently estimated using Monte-Carlo algorithms in complex problems.

3. Derivation of f-expectation tolerance intervals

The problem of interest can be formulated as follows. It is desired to congiruct
expectation tolerance intervals for distributitin(0, 12), wherer? = S hi aiz_ Here each
O_iz denotes a linear combination of the variance components in the model of interéist and
are known constants. It is assumed that mutually independent stafis§¢ss5, .. ., S,f
are available such that

(i) T ~ N (0, 6%) with ® = 3"7_, ;a2 andc; being known constants.
(i) Ui=n;iS?/o? ~y2 fori=1,2....q.

Since the construction for one-sidfeexpectation tolerance limit is similar to the two-
sided case, we now consider the two-sided case in detail. The following lemma due to

Paulson (1943Yescribes the relationship betwegrexpectation tolerance intervals and
confidence intervals for some function of the observations in a future independent sample.

Lemma 3.1 (Paulson, 1948 If confidence limit$/1(Y) andV»(Y) of levelf are determined
for V, a function of a future sample of new independent observations from the population
and if

V2
P =f dG(v),
V-

1
where G is the distribution function of YthenE[P] = f.

We thus directly apply Lemma 3.1 to construct the tolerance interval of interest. Let
viY) = T + Dy (Sf, $2..... sg) and VoY) = T + Dy (Sf, Sg,...,sg). Also let

W ~N (0, 12) denote a new random observation independent of the data Yedternow
need to seek a 1@percent confidence intervi¥1(Y), V2(Y)] for W. Namely, we need to
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determine the margin erroi3; (Sf 52, S,?) andDy <Sf s2,..., Sg) such that

B=Pr(T +D;<W <T + Dy)

< Dy W-T Dy )
= Pr < <
Vi2+6?2 Ji?P+0?2 VP42

<Z<

B Pr< Dy, Dy )
[Z 1 o2 [Z 1 2

= PT(DL <5<DU) ,
whered = Z+/72 + ¢2. We thus use
[T+ 0p,. T + g, ] (3.1)

as the requireg-expectation tolerance interval, whe¥g andog, denote the(lOOﬁl)th
and(100B,)th percentiles of with , — f; = .

Obviously,d involves standardized normal variatend parameters?, 63, . .., o2 and
its percentiles are generally unavailable. We thus substitute the following generalized pivotal
quantities forr? anda? in & so as to obtain the required percentiles

q 2 4 2.2
hin;s; hiots;
R2= Z o Z < (3.2)
i=1 i=1 l
and
q 2 4 .22
Cin;s: Ci0>S:
Re=) =2~ 3.3)
, Ui , S
i=1 i=1 l
wheres?, 53, ..., s2 denote the observed valuessff, 52, .. ., S2. From the first expres-
sions of (3.2) and (3.3)k,2 and R 2 have distributions that are free of model parameters.
WhensZ, 53, ..., sZ are substituted for the observable random variabfesss. . ... 52 in

the second expressions of (3.2) and (3B), and R,2 becomer? and ¢?, respectively.
Therefore R.2 andR ;2 satisfy the requirements for being generalized pivotal quantities for
72 anda?, respectively. We now define

Rs=Z,/max0, R.2 + R,z}. (3.4)

Hencegy, anddg, in (3.1) can be estimated by the corresponding percentilgs,afenoted

by Rs g, andRs 3, , respectively. For practical convenience, we may simplgset(1—p)/2
andp, = (1+ p)/2, resulting in an equal tailed interval. The required percentiles may be
estimated with the following Monte-Carlo algorithm.

Stepl: Choose a large simulation sample size, 8ay= 10, 000. Fori equal to 1M,
carry out the following two steps.

Step2: Generate a standardized normal devidteand chi-squared random deviates
Ui, Ui, ..., Uy, Withny, na, ..., n, degrees of freedom (df), respectively. These vari-
ates must be independent.

Step3: ComputeR; ; using Eq. (3.4) foR;.
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Table 1

Breaking strength (pounds tension) of nine batches of cement briquettes

1 2 3 4 5 6 7 8 9

553 553 510 520 543 492 542 581 578
550 599 580 559 500 530 550 550 531
568 579 529 539 562 528 580 529 562
541 545 535 510 540 510 545 570 525
537 540 537 540 535 571 520 524 549

Rs p, andR; g, are just thg 1008, )th and(1008,)th sample percentiles of the collection
of valuesRs 1, Rs2, ..., Rs -

4. lllustrative examples
The following practical examples are given to illustrate the proposed procedure.

Example 4.1. Mee (1984)who citedBowker and Lieberman (1972, p. 438 the original
source, uses a cement briquettes experiment to illustrate his method. Five specimens from
each of nine batches of cement briquettes are analyzed for breaking strength. The data is
given inTable 1

The experimental data can be fitted by the one-way random effects model
Yij =p+ Bi + eij,

fori=1,2,...,a,j=1,2,...,b, whereu denotes the constant ter#, the batch effects
ande;; the measurement errorB; ande;; are random effects normally distributed with O
mean and variances equald@ ands?, respectively.

Let o2 = 62 anda3 = bo3 + ¢2. We are interested in finding a two-sidfebxpectation
tolerance interval for the distribution of measured values, namlew, 12) with 0 = u
andt? = 2 + 02 = (1 - 1/b)0? + (1/b)a3. Moreover, we have sufficient statistits=
Y ~ N (0, 0%), wheres? = (1/a)a% + (1/ab)a? = (1/ab)c3; S? = MSE (error mean
square) withu (b — 1)S7 /0% ~ 72 ,_,, andS5 = M SB (mean square between batches) with
(a—1)S83/05 ~ 12,_y)-

FromTable 1a =9,b =5, = 5438, s? = 526,55 = 630. The proposed method yields
a two-sided § = 0.90)-expectation tolerance interj&03 585].

Example 4.2. Liao and lyer (2001yescribe a gauge study for comparing the quality be-
tween anewly developed glucose monitoring meter forin-home use by patients with diabetes
(called test meter) and a marked one (called reference metei.destote a measurement
using a test meter anddenote a measurement using a reference meter. XtzeY are
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modeled as follows:
Xijki = pbr + Mi + Bj + Lk + eiji,

fori=12,...,m,j=12,...,B,k=1,2,...,Landl=1,2,..., E, whereu; denotes

the expected reading when using a test melgrthe effect of test meter B; the effect

of the jth blood sampleL; the effect of thekth strip-lot ande;;;; measurement error.
Likewise,

Yijki = U + M} + Bj + Ly +e§jk1

fori=1,2,...,n,j=212,...,B,k=1,2,...,Landl=1,2,..., E, whereug denotes
the expected reading when using a reference méfgethe effect of reference meterB;
the effect of thejth blood sampleL the effect of thekth strip-lot ande;;,, measurement
error. The effectd/;, Ml./, Bj, L, eij, ez/'jkl are random effects, normally distributed with
zero mean and standard deviations equatitpor, o, o, 0. anda,, respectively (the
variances oé; i ande,’.ikl are assumed to be equal).

The theoretical mean for thith test meter when using blood samjdad strip-lok equals
ur + M; + B; + L. The theoretical mean reading, averaging @lereference meters, for
the same blood sample and strip-lot equgist B; + L. This theoretical mean reading is
used as the reference value against which the readings from individual test meters will be
compared to assess their accuracy. The deviation of the reading obtained using a single test
meter from the mean over all reference meters is thus equaltout — ug + M;. Itis the
distribution of D; that is of interest. Instead @gfcontent tolerance intervals appliedlimo
and lyer (2001, 2004)e usefs-expectation tolerance intervals to measure the quality of a
batch of test meters. A batch of test meters is deemed to have met the quality requirements if
its two-sided f = 0.95)-expectation tolerance interval for the distribution@fcompletely
falls into the threshold interval-5, 5].

We now apply theB-expectation tolerance interval given in Section 3 to this problem.
Let

B L E
ity Zj:l Dok=1 2= Xijki

X =
mBLE
2
m—1 ’
B L <E - v v —\2
MSE7— Yoita X o1 Y iea (Xiju — X — X — Xk + 2X)

mBLE —m — B —L+2

Similarly, letY, M Sg andM S Er denote the corresponding sample mean, mean square for
the reference meter effect and error mean square for the model fitted to the reference meters
data. Thenthe statistics, Y, M St, M S ET, M Sg andM S ER are mutually independent. Let
03=0%+02/ko,n1=m—1,S;=MSt/ko; ande5 =03 +02/ko,np=n—1,55=MSr/ ko,
whereko= BLE. Itfollows thatn152/0% ~ 42 ,n25%/0% ~ 13,. AlsOviM SET/02 ~ 72,

andvoM SER/a? ~ 72, wherevy =mko —m — B — L + 2 andvy =nko—n — B — L + 2.
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MSET andM SER are pooled to geM SE = (viMSET + vouMSER) / (v1 + v2), SO we
havensS3/a3 ~ 72, wheresg =62/ ko, n3=v1+ vz andS3=MSE/ko. We are interested
in a two-sidedf-expectation tolerance interval fay (0, 7:2), wheref = ur — ug and
12 = g2 = g2 — 3. Also observe thal =X — Y ~ N (0, a2), wheres? = a2/m + a3 /n.
For the data provided ihiao and lyer (200)m =44,n =10,B=L=E =3,% —
y = —1.13654,52 = 0.61928,s2 = 0.63132 and? = 0.19052. A two-sided § = 0.95)-
expectation tolerance interval for the distribution/®f is obtained a$—2.590Q 0.3278
which is completely contained in the threshold interfvab, 5]. Therefore, one concludes
that the batch of test meters has satisfied the quality requirement.

5. Simulation study

To evaluate the performance of the proposed procedure, the following simulation study is
carried out based on the glucose monitoring meter experiment of Example 4.2. We specify
the values 0=0.025, 0.05, 0.1, 0.9, 0.95 and 0975. Moreover, without loss of generality,
we may assume th@t= 0 andor = 1. For fixedB = L = E = 3 and specified values
of m = 10, 30,60; n = 5, 20, 50; o1 = 0.5, 1.0, 2.0, 4.0 ando, = 0.5, 1.0, 2.0, 4.0, we
generate a normal random devidttrom N (0, 02) and three chi-squared random deviates
Ui, U2 and U3 with n1, np, n3 df, using functiongnorm andrchisg, respectively, in the
statistical packag®plus. The corresponding sample statissfs:-U163/n1, S3=U205/n2,

S§2 = U3’ /n3 are then generated.

Furthermore, we compute the quantitiesRyf; using the Monte-Carlo algorithm de-
scribed in Section 3. Also let = F (T + Ra"ﬁ), whereF is the cumulative distribution
function of N (0, rz). The procedure is repeated 10,000 times for each parameter combi-
nation and the average pfs computed. The results are displayedFigs. 1-6 Each panel
in figures plots the simulated confidence coefficient for a specific combinatioraafin.

The plotting symbols “1”, “2”, “3” and “4” are designated for cases with= 0.5, 1, 2

and 4, respectively. For most parameter combinations, the constructed tolerance limits are
successful in maintaining the confidence level close to the nominal valegaiticularly
whenav is larger tharor. Nonetheless, the results indicate that wheris smaller than

or andn is small (n = 5), the simulated value of is slightly smaller or larger than the
nominal one according g5<0.1 or $>0.9. Fortunately, in most practical situations;

is usually larger thar because the reference meters tend to have much higher precision
than the test meters.

6. A comparison with Mee’s method

Mee (1984)appliesSatterthwaite (1946 pproximation to determine the df of Student
t-distribution inWilks’ (1941) method for the balanced one-way random effects model. It
may be of interest to compare the performance of this approximate method with ours. Based
on the balanced one-way random effects model described in Example 4.1, some simulation
results, using the simulation procedure of Section 5, are repor{Eabie 2
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Fig. 1. Simulated confidence coefficients for one-sid@@= 0.025-expectation tolerance limits, based on the
glucose monitoring meter experiment f8r= L = E = 3 andor = 1.
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Fig. 2. Simulated confidence coefficients for one-sidéd= 0.05)-expectation tolerance limits, based on the
glucose monitoring meter experiment 8r= L = E = 3 andor = 1.
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Fig. 3. Simulated confidence coefficients for one-sidéd= 0.10)-expectation tolerance limits, based on the
glucose monitoring meter experiment f8r= L = E = 3 andor = 1.
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Fig. 4. Simulated confidence coefficients for one-sidfd= 0.90)-expectation tolerance limits, based on the
glucose monitoring meter experiment fBr= L = E = 3 andor = 1.
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Fig. 5. Simulated confidence coefficients for one-sidéd= 0.95)-expectation tolerance limits, based on the
glucose monitoring meter experiment f8r= L = E = 3 andor = 1.



T.-Y. Lin, C.-T. Liao / Computational Statistics & Data Analysis 50 (2006) 911-925 923

1 2 3 4
] ] ] ] ] ] ] ] ] 1 ] ]
m=60 n=5 m=60 n=20 m=60 n=50
0.985 - 3
0.980 1 é r
0.975 18 3 3 32 2 3 ar
4 3
0.970 1 4 3
4
0.965 - 3
m=30 n=5 m=30 n=20 m=30 n=50
k I 0.985
2 2
3 - 3 I 0.980
g $
2
: i | 3 2 2 2 é 3 g ar 0.975
g 4 :
% 4
= 4 F0.970
S
o
i 4 I 0.965
m=10 n=5 m=10 n=20 m=10 n=50
0.985 - é 3
0.980 - 3 3
El
0.975 1 1 2 3 EE 3
3 3 4
0.970 - 4 -
3 4
0.965 - 4 3
4
T T T T T T T T T T T T
1 2 3 4 1 2 3 4
oT

Fig. 6. Simulated confidence coefficients for one-sigga= 0.975-expectation tolerance limits, based on the
glucose monitoring meter experiment fBr= L = E = 3 andor = 1.

For all the cases considered in the simulation study, our method yields not only the
simulated confidence coefficients closer to the nominal values, but also shorter expected
lengths. Our method obviously outperforms Mee’s.
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Table 2

Simulated confidence coefficients for two-sidéexpectation tolerance intervals using Mee’s method and the
proposed method. The simulated expected lengths are given in parentheses

a b 02 /02 B =0.90 f=0.95 f=0.99
5 2 0.1 0.9440 (14.9978)  0.9811 (19.4384) 0.9989 (32.1741)
0.9342 (14.366P  0.9738 (18.2212) 0.9970 (28.2176)
0.5 0.9392 (7.8600) 0.9780 (10.1612) 0.9985 (16.8696)
0.9302 (7.5847) 0.9702 (9.6506) 0.9965 (15.1550)
1.0 0.9337 (6.3448) 0.9753 (8.3069) 0.9980 (13.6968)
0.9258 (6.2299) 0.9681 (7.9492) 0.9956 (12.5011)
2.0 0.9255 (5.4818) 0.9713 (7.0941) 0.9975 (11.7616)
0.9207 (5.3727) 0.9642 (6.9550) 0.9944 (11.1111)
10.0 0.9100 (4.6446) 0.9586 (6.0114) 0.9939 (10.0628)
0.9082 (4.5953) 0.9541 (5.9321) 0.9915 (9.8143)
5 5 0.1 0.9463 (13.7587) 0.9815 (17.0871) 0.9992 (24.8831)
0.9236 (12.6582) 0.9668 (15.4683) 0.9952 (22.2444)
0.5 0.9502 (7.6478) 0.9830 (9.6085) 0.9995 (15.4989)
0.9246 (6.9646) 0.9672 (8.5815) 0.9952 (12.9347)
1.0 0.9446 (6.1633) 0.9826 (7.9453) 0.9995 (12.6896)
0.9220 (5.8472) 0.9653 (7.2858) 0.9945 (11.3365)
2.0 0.9370 (5.4486) 0.9771 (7.0458) 0.9989 (11.4945)
0.9186 (5.1638) 0.9618 (6.5868) 0.9932 (10.4172)
10.0 0.9132 (4.6366) 0.9624 (6.0594) 0.9956 (9.9538)
0.9057 (4.5705) 0.9534 (5.8872) 0.9910 (9.7340)
5 9 0.1 0.9361 (12.6565) 0.9811 (16.2675) 0.9989 (23.4475)
0.9186 (12.1046) 0.9632 (14.7047) 0.9947 (20.5924)
0.5 0.9552 (7.3393) 0.9880 (9.4094) 0.9995 (13.7992)
0.9239 (6.7732) 0.9660 (8.3869) 0.9949 (12.3833)
1.0 0.9547 (6.1623) 0.9866 (7.8584) 0.9997 (12.6949)
0.9217 (5.7231) 0.9642 (7.1666) 0.9943 (10.9801)
2.0 0.9498 (5.4196) 0.9834 (6.9372) 0.9994 (11.1791)
0.9178 (5.1436) 0.9602 (6.4531) 0.9934 (10.2497)
10.0 0.9298 (4.6396) 0.9707 (5.9900) 0.9970 (9.9202)
0.9072 (4.5573) 0.9537 (5.8881) 0.9913 (9.6690)
9 5 0.1 0.9180 (11.8076) 0.9658 (14.4961) 0.9957 (20.0072)
0.9113 (11.6894) 0.9578 (14.0728) 0.9925 (18.9589)
0.5 0.9279 (6.4346) 0.9710 (7.9070) 0.9967 (10.9858)
0.9119 (6.2508) 0.9593 (7.5993) 0.9928 (10.4076)
1.0 0.9292 (5.3374) 0.9704 (6.5353) 0.9970 (9.2977)
0.9112 (5.1885) 0.9573 (6.2985) 0.9923 (8.7610)
2.0 0.9258 (4.6435) 0.9692 (5.7397) 0.9965 (8.2330)
0.9087 (4.5534) 0.9562 (5.5782) 0.9919 (7.8503)
10.0 0.9175 (3.9828) 0.9622 (4.9502) 0.9940 (7.1434)
0.9026 (3.9649) 0.9521 (4.8944) 0.9905 (7.0440)

8Tolerance intervals constructed by using Mee’s method.

PTolerance intervals constructed by using the proposed method.
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7. Concluding remarks

In the present paper, we have obtainglexpectation tolerance interval for the normal
distribution whose mean and variance are functions of parameters, which are estimated using
the data from a balanced mixed linear model. The proposed method is mainly based on the
concept of generalized pivotal quantity. And it can easily be verified that our method turns
out to be that oWilks (1941)when a SRS fronvV (,u, 02) is considered. Most importantly,
the simulation studies conducted in the study strongly support the proposed method and can
be recommended for use in practical applications. The extension to the unbalanced mixed
linear models is currently under investigation.
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