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Conformational entropy of a pseudoknot polymer
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The thermodynamics and kinetics of ABAB pseudoknot formation owing to reversible intrachain
reactions are investigated for a flexible polymer based on the off-lattice Monte Carlo simulations.
The polymer is made of N hard spheres tethered by inextensible bonds and consists of two reactive
pairs AA and BB with binding energies −�1 and −�2, respectively, and three loop lengths ��1, �2, and
�3�. Although two intermediate states, loops A and B, may be formed, the folding path goes mainly
through the intermediate loop whose free energy reduction associated with coil-to-loop crossover is
greater. The conformational entropy loss is found to follow �S=� ln N+G, where ��2.48 for
coil-loop crossover and ��2.43 for loop-pseudoknot crossover. The constant G depends on the
three loop lengths and the two end-to-reactive site lengths �L1 and L2�. For a given total loop length,
G is maximum when the three loop lengths are equal ��1=�2=�3�. When �1=�3, the entropy loss is
minimum if �2=0. However, the condition �1��3 makes G even smaller. This consequence
indicates that asymmetry in loop lengths is thermodynamically favorable and this fact is consistent
with observations of pseudoknotted RNA structures. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2172600�
I. INTRODUCTION

Biopolymers such as RNA can fold into a topological
structure called a pseudoknot. As shown in Fig. 1, a
pseudoknot is a loop in which one end of the chain returns
and forms additional contact with the loop. Thus, a
pseudoknot polymer contains two intrachain contacts �stems�
and two loops. Unlike true knots, pseudoknots are the ter-
tiary structures of the folded RNA’s and are shown to exist in
almost all RNA classes including transfer, messenger, ribo-
somal, viral, catalytic, and self-splicing RNA’s.1 In addition
to stabilizing the native fold, pseudoknot is believed to be
essential for various functions, such as mediating the binding
of the proteins they encode2 and labeling functionally impor-
tant positions on the coding region of the mRNA sequence.3

Pseudoknots are not true knots in the conventional
sense.4–6 It is simply generated by a linear polymer’s self-
contacts and thereby is encountered more frequently. From a
computational viewpoint, a pseudoknot is interesting owing
to the fact that it can be regarded as the simplest tertiary
structure.7 For a sequence of length N, the dynamic program-
ing algorithm for predicting optimal RNA secondary struc-
ture requires O�N4� in time for simple loop conformations.
Including pseudoknots increases the conformational com-
plexity to O�N6�.8 The folded molecule such as proteins is
even more complicated, involving an exponential scaling,
aN.

Predicting the secondary structure of a RNA or single-
stranded DNA molecules with minimum free energy has
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been extensively investigated for the past two decades.9–13 In
the widely used nearest-neighbor thermodynamic model, the
free energies are assigned to loops rather than to base
pairs.9,10 The base-pairing graph for a molecule is decom-
posed into distinct loops that are associated with empirically
measured enthalpic and entropic terms. Canonical loops in-
clude stacked based pairs, hairpin loop, bugle loop, internal
loop, etc. Thus, the total free energy is the sum of free ener-
gies of all loops in the secondary structure. The free energy
parameters depend on loop sequence, length, and type.

For classical RNA secondary structure, relatively few
experiments are available for loop structures and thereby ex-
trapolations based on the polymer theory for loop thermody-
namics are adopted to give the free energy parameters. For
example, the length dependence of the free energy increment
is �G=�kBT ln N, where N is the number of unpaired nucle-
otides in the loop and ��1.75 according to estimation based
on self-avoiding lattice chains.14 While thermodynamic pa-
rameters for nonpseudoknotted secondary structure are
evaluated with satisfactory accuracy,11 systematic studies on
pseudoknot thermodynamics are not available. Recently, at-
tempts to estimate the free energy parameters for the sim-
plest H-pseudoknots, also based on the general theory of
polymer loop thermodynamics, are presented.11,12

The approaches based on a search for a state of global
free energy minimum are equilibrium methods and do not
consider the folding pathways. However, some RNA’s, par-
ticularly long molecules, do not adopt the structure with the
lowest free energy. The differences between real structures
and the minimum energy states may be caused by the exis-

tence of specific folding pathways capturing the molecules in
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local minima.10 Consequently, simulating RNA-folding dy-
namics can provide an alternative avenue to predict
pseudoknot in the long time limit, in addition to bring some
unique insights into the kinetic aspects of RNA folding.15

However, a recent determination of the simple two-state ki-
netics associated with loop-to-coil crossover of a ssDNA mo-
lecular beacon indicates the formidable challenges of mea-
suring these rates in real systems.16 One cannot anticipate
rapid progress in modeling folding kinetics when it remains
so difficult to determine the underlying parameters.10 Study-
ing kinetics and thermodynamics of pseudoknot formation
within the homopolymer context may provide valuable in-
sights into understanding of physics of RNA pseudoknot.
The pioneering work in the prediction of the folding thermo-
dynamics of RNA with pseudoknot formation was primarily
based on the homopolymer transversing a random walk on
the lattice.5,7,17,18 The thermal transition of pseudoknot poly-
mers to their denatured states was reported through a first-
order transition,17 a second-order transition,18 or continuous
transition.7

The free energy of a pseudoknot structure is primarily
the sum of the free energies of stacking in the stem �stabiliz-
ing negative value� and thermal fluctuation in the loop �de-
stabilizing positive value�.11 The stacking energy can be
evaluated using the known nearest-neighbor model param-
eter of helix propagation. For the loop energies, however,
crude models based on the polymer theory were
employed.11,12 Assuming that loops have pure entropic na-

FIG. 1. The schematic of a pseudoknot polymer. The two pairs of reactive
groups located at beads �A1 ,A2� and �B1 ,B2�.
ture, the free energy of formation of a loop of N nucleotides

Downloaded 24 Nov 2008 to 140.112.113.225. Redistribution subject to
is modeled by Gaussian chains. The main limitation of this
structural model is the absence of excluded volume effect
between nearby single strands and stems.12 In the present
study, we investigate the folding kinetics and thermodynam-
ics of a pseudoknotted polymer by off-lattice Monte Carlo
simulations. In order to avoid complications caused by at-
tractions among monomers and solvents, we aim to study a
homopolymer with only hard-core excluded volume effects.
Since we will focus mainly on the conformational entropy
associated with pseudoknot, the stem i is simply modeled as
a pair of reactive beads with binding energy −�i. The confor-
mational entropy loss associated with pseudoknot formation
is quantified for a flexible polymer with four reactive sites
ABAB. The variation of the entropy loss with the distribution
of loop lengths can then be compared with the observation of
pseudoknotted RNA structures by the Pseudoknot database.19

II. THEORY

A. Thermodynamic approach

Consider a flexible chain of N hard spheres with total
length L. The reactive groups are located at beads A1, B1, A2,
and B2. The four reactive sites divide the chain into five
blocks with lengths �L1 ,�1 ,�2 ,�3 ,L2�, as illustrated in Fig. 1.
The reactive sites A1 and B2 are positioned at distance L1 and
L2, respectively, from the chain ends. The contour distances
between the active groups are �1�A1−B1�, �2�B1−A2�, and
�3�A2−B2�. When the two reactive sites A1 and A2 �B1 and
B2� are in close proximity �contact�, the reversible reaction
occurs and the binding energy is −�1�−�2�. The partition
function associated with such a pseudoknot polymer depends
on the location of the reactive sites and is given by

Z�L1

L
,
�1

L
,
�2

L
,
�3

L
;N	 = �igi exp���i� , �1�

where gi denotes the degeneracy associated with the state i
of internal energy −�i and � is the inverse temperature,
�= �kBT�−1.

When only one binding pair AA �BB� is formed, the
conformation is identified as the loop state lA�lB�. Formation
of two binding pairs corresponds to the pseudoknot state �p�.
Otherwise, the polymer conformations are regarded as the
coil state �c�. As a result, the partition function can be di-
vided into four parts,

Z = Zc + Zl,A + Zl,B + Zp, �2�

where Zc=gc, Zl,k=gl,k exp���k�, and Zp=gp exp����1

+�2��. Evidently, the degeneracy gi varies with N and the
distribution of block lengths. In terms of the partition func-
tion, the probability of the state i is simply

Pi�T� =
Zi

Z
=

Kie
��i

1 + �iKie
��i

, �3�

where Ki=gi /gc and i=c, A�loop�, B�loop�, and p. The prob-
ability curve Pj�T� represents the variation of the state j with
temperature. Since the conformational entropy at the state j
is given by Sj =kB ln gj, Kj is related to the conformational

entropy loss �Sc,j from coil to j state by
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�Sc,j = Sj − Sc = kB ln Kj . �4�

Equation �4� presents an important consequence that one is
able to evaluate the entropy change of a polymer chain from
coil-to-loop or pseudoknot state from the equilibrium con-
stant. If the probability curves, Pi�T�, are obtained from
Monte Carlo simulations, the constant Ki may be extracted
by curve fitting.20

B. Kinetic approach

Since the binding energy �i is comparable to the thermal
energy kBT in the present study, the formation of loop or
pseudoknot is reversible. As a consequence, the coil-to-
pseudoknot crossover can be regarded as chemical equilib-
rium associated with four reversible reactions. The reactant,
intermediates, and product are, respectively, the coil, loops A
and B, and pseudoknot states. There are four species in two
possible pathways:

path I: coil �c� ↔ loop AA�lA� ↔ pseudoknot �p� ,

path II: coil �c� ↔ loop BB�lB� ↔ pseudoknot �p� .

Note that the reaction can be regarded as an irreversible one
if ��i�1. At chemical equilibrium, the principle of detailed
balance must be satisfied. The characteristics of the kinetics
can then be studied by examining the rate constants evalu-
ated from Monte Carlo simulations.20–22

Following the Arrhenius kinetics, the rate coefficients
ki,j =�i,j

−1 from the i to j species is given by

ki,j = ki,j
0 exp�− �Fi,j� , �5�

where Fi,j denotes the free energy barrier associated with
changing from the i to j species. The preexponential factor
ki,j

0 is temperature independent. When the conformation of a
hard-sphere chain varies from the coil-to-loop state or from
the loop-to-pseudoknot state, it is anticipated that the free
energy barrier originates from the entropy loss. That is,

�Fc,l = − �Sc,l/kB and �Fl,p = − �Sl,p/kB. �6�

On the other hand, as the polymer conformation fluctuates
from the loop-to-coil state or from the pseudoknot-to-loop
state, the free energy barrier, which has to be overcome,
is simply the binding energy, �Fl,c=��1 or �Fp,l=��2.
When chemical equilibrium is reached, the detailed balance,
ki,jPi=kj,iPj, also yields Eq. �4� with the equilibrium constant
Ki defined as

K1 =
kc,lA

0

klA,c
0 exp��Sc,lA

kB
	, K2 =

kc,lB
0

klB,c
0 exp��Sc,lB

kB
	 ,

�7�

K3 =
klB,p

0

kp,lB
0 exp��SlB,p

kB
	, K4 =

klA,p
0

kp,lA
0 exp��SlA,p

kB
	 .

The principle of detailed balance requires K1K4=K2K3 and
ki,j

0 =kj,i
0 . If one calculates the inverse of the rate constant

from Monte Carlo simulations, then the equilibrium con-

stants Ki or entropy loss can be obtained directly.
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III. MONTE CARLO SIMULATION

In this paper, off-lattice Monte Carlo �MC� simulations
were performed to study both thermodynamics and kinetics
associated with coil-to-pseudoknot crossover. In order to cal-
culate the conformational entropy change associated with the
formation of pseudoknot polymers by the aforementioned
theory, we study polymers with only hard-core excluded vol-
ume effects but without other extra interaction energy such
as attractions among monomers and solvent. The model
chain is made of N hard spheres of diameter � with two pairs
of attractive beads A1A2 and B1B2. This polymer is a freely
jointed chain in continuous space. The interactions between
the bonded beads are through the infinite deep square-well
potentials,20–22

Ui,i+1 = 
	 , r 
 �

0, � � r 
 ��

	 , r 
 �� ,
�

where �=1.2. Bond crossing �phantom chain� can be pre-
vented by such a choice. For this model associating chain,
the interaction between attractive beads A1 and A2 is repre-
sented by a standard square-well potential,

UA,A = 
	 , r 
 �

− �1, � � r 
 ��

0, r 
 �� ,
�

where �=1.2. Similarly, we adopt −�2 for UB,B, which de-
picts attraction between B1 and B2. Without the loss of gen-
erality, we assume the binding energy �1=10� and �2=25�.

Monte Carlo simulation is generally not the method of
choice for investigating kinetics. When the move of the par-
ticle is purely local, however, the dynamical interpretation of
MC is reasonable.22,23 Moreover, since the actual dynamics
has reached thermodynamic equilibrium for those reversible
reactions, it is justified to estimate the reaction constants of
the kinetics by MC method. The chain is identified as in the
“coil” state when the attractive beads of the chain are not
within square-well interaction regimes. That is, �ri−r j����.
The “loop” state is defined as the formation of only one
attractive pair such as A1A2 or B1B2. That is, �rA1

−rA2
�


��. When both attractive pairs are formed, the polymer is
regarded as being in “pseudoknot” state. The rate constant
ki,j is evaluated from the inverse of the mean time �i,j. It is
defined as the mean period of staying at the state i, which
jumps to the state j later. The probability of the state i is
calculated by the total Monte Carlo steps �MCSs� staying at
the state i to the total MCSs of simulation. The detailed
balance, ki,kPi=kk,iPk, is fulfilled in our simulations.

The systems simulated contain an isolated polymer chain
with chain length N ranging from 19 to 59. The simulations
are performed under the conditions of constant temperature
and total number of beads. The reduced temperature
T*=T /� is varied to obtain the probability curves for coil,
loop, and pseudoknot states. The trial moves employed for
chains of the equilibration and production process are bead
displacement motions. They involve randomly picking a

bead and displacing it to a new position in the vicinity of the
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old position. The distance away from the original position is
chosen with a probability, which satisfies the condition of
equal sampling of all points in the spherical shell surround-
ing the initial position. The new configurations resulting
from this move are accepted according to the standard
Metropolis acceptance criterion. Runs for the same chain
length at different temperatures are performed starting with
the final configuration from a previous temperature and are
equilibrated for 2�108 steps. Measurements for static prop-
erties such as the probabilities of coil or pseudoknot states
are taken over a period of �5–10��106 MCSs per bead.
Note that the chain relaxation time defined by end-to-end
autocorrelation function ��i=0� is about 105 MCSs per bead
for N=20.

IV. RESULTS AND DISCUSSION

The folding process from a random coil to a pseudoknot
is investigated. On the basis of the four-state model �coil,
loop A, loop B, and pseudoknot�, both the thermodynamic
and kinetic approaches are employed to yield consistent re-
sults. By Monte Carlo simulations, the entropy loss associ-
ated with the coil-to-pseudoknot crossover �Sc,p is calcu-
lated through the equilibrium constant Ki in the probability
curves, Eq. �3�. Because of four reactive sites, there are five
blocks characterized by lengths �Li ,�i�. Evidently, the num-
ber of coil conformations varies only with the chain length,
gc�N�, while the numbers of loop and pseudoknot conforma-
tions also depend on the locations of reactive sites Li /L,
�i /L, i.e., gp�Li /L ,�i /L ,N�. Although there are many combi-
nations of the block lengths, we focus on two cases in this
study. In the first case the effect of chain length on the

FIG. 2. Typical probability curves for chain length N=19. The MC results
and theoretical curves, Eq. �3�, are denoted by data points and solid curves,
respectively.
pseudoknot entropy is studied for equal block length, i.e.,
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Li=�i. In the second case, how the distribution of the loop
lengths ��i� influences the pseudoknot entropy is examined
by fixing the chain length N and end block lengths L1=L2.

A. Crossover temperatures and folding path

The probability curves for various states were evaluated
by performing off-lattice Monte Carlo simulations. The
simulation results can be well described by the coil-loop-
pseudoknot model, Eq. �3�. Figure 2 depicts a typical ex-
ample of Pi for a given chain length N=19 with Li=�i=3.
All probability curves are excellently represented by Eq. �3�
with the equilibrium constants Ki estimated from the rate
constants ki,j, which are directly obtained from MC simula-
tions. As anticipated, the coil state prevails at higher tem-
perature �T*�Tc

*� while the pseudoknot state dominates
at lower temperature �T*
Tp

*�. Here Tc
* is defined as the tem-

perature at which Pc=1/2 and similarly, Tp
* is for

TABLE I. The variation of the characteristic temperatures T* with the chain
length N based on �a� probability curves Pi�T� and �b� heat capacity curves
C�T�.

�a� tp
* tl

* Tc
*

N=19 1.45 2.42 3.72
N=29 1.27 2.11 3.20
N=39 1.16 1.92 2.94
N=49 1.09 1.83 2.77
N=59 1.05 1.75 2.65

�b� Tp Tl Tc

N=19 1.34 2.16 3.42
N=29 1.20 1.92 3.02
N=39 1.10 1.78 2.78
N=49 1.04 1.70 2.64
N=59 1.00 1.62 2.50

FIG. 3. The heat capacity curves for different chain lengths are plotted with
C /NkB as a function of T* and compared to Eq. �9�.
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Pp=1/2. In the intermediate temperature �Tp
*
T*
Tc

*�, how-
ever, one observes that the loop B state is dominant. In other
words, the folding process goes primarily through path II
instead of path I.

The coil-to-pseudoknot crossover involves the formation
of the intermediate state, loop A or B state. The probability
ratio of path II to path I can be obtained from Eq. �3�,

path II

path I
=

PB

PA
=

K2e��2

K1e��1
. �8�

According to Eq. �4�, the equilibrium constant Ki is related to
the entropy change �Sc,li

. Therefore, the probability ratio is
determined by the overall free energy change associated with

the coil-to-loop crossover �G,

suddenly quenched in an environment favoring pseudoknot

Downloaded 24 Nov 2008 to 140.112.113.225. Redistribution subject to
path II

path I
= exp�− ���GB − �GA�� , �9�

where �Gi= �−�i�−T�Sc,li
. The dominant pathway is the one

with more total free energy reduction. When �Sc,lA

�Sc,lB

and exp����2−�1���1, one has PB� PA and path II domi-
nates.

The characteristics of coil-to-pseudoknot crossover can
also be illustrated by the heat capacity curve, which depicts
the variation of the heat capacity with temperature, C�T�.
Since the heat capacity is related to the internal energy U by

C =
�U2� − �U�2

kBT2 ,

the heat capacity curve can be evaluated either from MC

simulations or directly from Eq. �3�,
C

NkB
=

�PA�1
2 + PB�2

2 + Pp��1 + �2�2� − �PA�1 + PB�2 + Pp��1 + �2��2

N�kBT�2 . �10�
Figure 3 shows the heat capacity curves for various chain
lengths. There are three extremes, �C /�T=0, corresponding
to three characteristic temperatures �Tc ,Tl ,Tp�. As shown in
Table I, they can be approximately represented by
�Tc

* ,Tl
* ,Tp

*� from probability curves, where Pc�Tc
*�= Pp�Tp

*�
=1/2 and Tl

* corresponding to the maximum probability of
the loop B state, ��Pl /�T�Tl

* =0. Evidently, ��2C /�T2�Tc

0

and ��2C /�T2�Tp

0 denote the coil-to-loop and loop-to-

pseudoknot crossovers, respectively. On the other hand,
��2C /�T2�Tl

�0 indicates the stability of the intermediate
loop state. As shown in Table I, Tc, Tp, and Tl decline with
increasing the chain length N. The characteristic temperature
associated with the i to j crossover can be estimated by let-
ting �Gi,j =0, where the internal energy gain is balanced by
the entropy loss,

Ti,j
* �

�Ui,j

�Si,j
.

For the same internal energy gain −�i, the conformation en-
tropy loss rises with increasing the chain length. As a result,
the crossover temperature decreases with N. If the heat ca-
pacity curve is approximately symmetry in the range
Tp
T
Tc, the characteristic temperature Tl can be esti-
mated by the arithmetic mean of the crossover temperatures,
Tl
�Tc+Tp� /2.

B. Rate constants and conformational entropy

In the present study, the loop or pseudoknot formation is
reversible and the rate constants are different from those as-
sociated with irreversible loop24 or pseudoknot formation.
The latter case corresponds to that a random coil �T�Tc� is
formation �T�Tp�. The free energy barrier of the first pas-
sage time is simply the entropy loss, which is much less than
the binding energy gain, i.e., ��i→	.

The unfolding kinetics is dominated by the binding en-
ergy. That is, the thermal fluctuations provide a probability of
exp�−��i� to unbind the pseudoknot or loop conformation
regardless of the chain length. When ln kp,l

−1 or ln kl,c
−1 is plot-

ted against the inverse temperature �, all the rate coefficients
evaluated from different chain lengths for loop B-to-coil and
pseudoknot-to-loop A crossovers collapse into a single line
with a slope of the binding energy ��2. Similarly, another
line with the slope ��1 is obtained for pseudoknot-to-loop B
and loop A-to-coil crossovers. Figure 4�a� confirms that the
rate constants associated with unfolding kinetics are indepen-
dent of chain length N. The scattering data of kp,lA

is due to
the small probability associated with path I.

On the other hand, the folding kinetics is controlled by
the conformational entropy. Since �Fi,j =−�Si,j /kB, the rate
constants are independent of temperature but vary with chain
lengths. As illustrated in Fig. 4�b� for coil-to-loop B and Fig.
4�c� for loop B-to-pseudoknot folding kinetics, horizontal
lines are obtained in the plot of ln kc,l

−1 and ln kl,p
−1 against the

inverse temperature � for various chain lengths. Although
loop B formation is preferred than loop A formation, the
entropy loss from coil to either loop A or loop B should be
equivalent owing to the same loop conformation for a poly-
mer with equal block lengths. Therefore, the significantly
different probabilities between them �PlA

and PlB
� are caused

by the open �loop→coil� kinetics. The larger binding energy
renders the loop B state thermodynamically favorable.

Equation �5� indicates that ln ki,j
−1 for folding kinetics is

proportional to the change of conformational entropy, −�Si,j.

Accordingly, the result that the intercept is increased with
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increasing N, as shown in Fig. 4�b� and 4�c�, shows that the
folding entropy loss rises with N. For loop formation, the
scaling behavior of conformational entropy can be realized
from the probability of nearest-neighbor contacts between
two reactive sites, P��rp−rq�
O�����N−��3+��G�L1 /L ,L2

+�3 /L�.25 Here � is the correlation hole exponent which de-
scribes the short-distance spatial decay of the corresponding
probability distribution due to the excluded volume interac-
tion. Since �S /kB=−ln P���3+��ln N, it is reported22 that
the dependence of the conformational entropy change on the

FIG. 4. �a� The variation of the rate constants kl,c and kp,l with the inve
��1=10 for p→ lB and lA→c crossovers and �=25 for p→ lA and lB→c cro
� for different chain lengths. �c� The variation of the rate constant klB,p wit
length of a flexible chain can be expressed by

Downloaded 24 Nov 2008 to 140.112.113.225. Redistribution subject to
�S = � ln N + G , �11�

where the exponent �=��3+�� is 1.98 for end-to-end loop,
2.16 for end-to-interior loop, and 2.48 for interior-to-interior
loop. For a polymer with equal block lengths, the constant
G�L1 /L ,L2+�3 /L�=G�L1+�1 /L ,L2 /L� depends on the rela-
tive location between two reactive sites. As demonstrated in
Fig. 5�a�, all horizontal lines corresponding to different chain
lengths fall into a single horizontal line in the plot of
ln kc,l

−1 /N2.48 against �. This result indicates that the coil-
to-loop folding kinetics is correctly depicted in our MC

mperature � for different chain lengths. The slopes of the solid line are
rs. �b� The variation of the rate constants kc,lA

and kc,lB
with the temperature

temperature � for various chain lengths.
rse te
ssove
h the
simulations.
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The loop-to-pseudoknot folding kinetics involves an-
other loop formation. It is natural to anticipate that the for-
mation of the second loop may be disturbed by the existing
loop. Nevertheless, we expect that the scaling expression,
Eq. �10�, is still valid but the exponent � and constant G
change. In fact, after comparing the difference of ln ki,j

−1 be-
tween Fig. 4�b� for coil-to-loop and Fig. 4�c� for loop to
pseudoknot, it is somewhat surprising to find that ln kl,p

−1 is
only slightly greater than ln kc,l

−1 for various chain lengths.
That is, for a flexible polymer with equal block lengths, the
conformational entropy loss associated with coil-to-loop

FIG. 5. �a� The scaling behavior of conformational entropy loss in the plot
behavior of conformational entropy loss in the plot of ln kl,p

−1 /N� against �
conformational entropy loss is displayed in the plot of ln Ki against ln N. T
crossover is slightly smaller than that of loop-to-pseudoknot
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crossover. Moreover, Fig. 5�b� shows that in the plot of
ln kl,p

−1 /N2.43 against �, all horizontal lines for different chain
lengths in Fig. 4�c� collapse into a single horizontal line. This
consequence reveals that the exponent associated with loop-
to-pseudoknot crossover is ��2.43, which is quite close to
the exponent for coil-to-loop crossover. Nonetheless, as will
be shown in Table II, the entropy loss for coil to loop A is
generally different from that for loop B to pseudoknot.

The conformational entropy change can be extracted
from either kinetic approach, Eq. �6�, or thermodynamic ap-
proach, Eq. �4�, based on results of Monte Carlo simulations.

kc,l
−1 /N� against � gives �=2.48 for coil-to-loop crossover. �b� The scaling

es �=2.43 for loop-to-pseudoknot crossover. �c� The scaling behavior of
pes yield �=2.48 for K2 and �=2.43 for K3.
of ln
giv

he slo
By fitting the probability curve with Eq. �3�, one is able to
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obtain all equilibrium constants, Ki. As shown in Fig. 5�c�,
the chain length dependence of the conformation entropy can
be determined by the plot of ln Ki against ln N. The slope for
ln K1=ln K2 is −2.48, which is consistent with the value of
−�1 for coil to loop evaluated from the kinetic approach in
Fig. 5�a�. The slope for ln K3 is −2.43, which agrees with the
value of −�2 for loop to pseudoknot determined in Fig. 5�b�.
ln K2K3 denotes the entropy loss from coil to pseudoknot
�Sc,p and has a slope −4.91, which is simply the sum of
exponents associated with coil to loop and loop to
pseudoknot. That is, the conformation entropy change for a
flexible polymer can be expressed by

�Sp,c = ��1 + �2�ln N + G�Li

L
,
�i

L
	 , �12�

where the constant G varies with the relative ratios among
end block lengths and loop lengths. When the total chain
length is fixed, a biologically interesting question would be
what the distribution of loop lengths would be to result in a
minimum value of conformational entropy loss, i.e., G.

C. Asymmetric distribution in loop lengths

The pseudoknot formation is a result of the competition
between binding energy gain and conformational entropy
loss according to �Gp=−��1+�2�−T�Sc,p. For a given bind-
ing energy gain ��1+�2�, the smaller the entropy loss �Sc,p,
the larger the probability of pseudoknot formation Pp at a
given temperature. It is therefore anticipated that for a given
chain length N, a smaller value of G in Eq. �12� is preferred
for pseudoknot formation. Recent examination of the
PseudoBase database of pseudoknotted RNA structures re-
veals asymmetries in the loop lengths.19 Loop length �2 is
often very short �172 of the 230 unique ABAB pseudoknots,
or 75% have �2=0; 195 of 230, or 85% have �2�1�. Such a

TABLE II. The influence of the distribution of loop lengths on the confor-
mational entropy change for a polymer with total chain length N=40 and
end block lengths L1=L2=3. �a� The case �1=�2, �b� the case �1=�3, and �c�
the case �2=0.

�a� �1, �2, �3 �Sc,lA
/kB �Sc,lB

/kB �SlB,p /kB �Sc,p /kB

4,4,22 −9.55 −7.32 −9.57 −16.89
6,6,18 −9.45 −8.05 −9.55 −17.60
7,7,16 −8.42 −9.32 −8.62 −17.94
8,8,14 −9.29 −8.68 −9.41 −18.09

10,10,10 −9.03 −9.03 −9.31 −18.33
13,13,4 −8.81 −9.53 −8.42 −17.95
15,15,0 −8.62 −9.66 −8.18 −17.84

�b� �1, �2, �3 �Sc,lA
/kB �Sc,l /kB �SlB,p /kB �Sc,p /kB

15,0,15 −8.52 −8.52 −9.11 −17.63
13,4,13 −8.86 −8.86 −9.03 −17.89
10,10,10 −9.03 −9.03 −9.31 −18.33

�c� �1, �2, �3 �Sc,lA
/kB �Sc,lB

/kB �SlB,p
/kB �Sc,p /kB

15,0,15 −8.52 −8.52 −9.11 −17.63
10,0,20 −9.12 −7.78 −9.77 −17.55
5,0,25 −9.43 −6.70 −9.85 −16.55
structure might result in favorable coaxial helix stacking

Downloaded 24 Nov 2008 to 140.112.113.225. Redistribution subject to
interactions.19 Moreover, the asymmetry in loop lengths may
lead to a decrease in conformational entropy loss. In the
following study, we fix the total chain length and both end
block lengths �L, L1, and L2� and examine the distribution of
loop lengths on the conformational entropy change.

Consider a flexible polymer with total chain length N
=40. In order to observe the influence of the distribution of
loop lengths ��1 ,�2 ,�3� on the conformational entropy
change, we fix the two end block lengths, L1=L2=3.
Since there are four reactive beads, the total loop length is
�1+�2+�3=30. Three cases �a� �1=�2=�, �b� �1=�3, and
�c� �2=0 will be examined. For the case �a� �1=�2, there are
two combinations, �� ,� ,�3� and ��1 ,� ,��. Although loops A
and B are asymmetric in binding energy, the conformation
entropy change for both situations should be the same be-
cause �S depends only on the distribution of block lengths.
This equality is confirmed in our MC simulations. The asym-
metry in loop lengths is therefore reflected by the ratio of �1

to �3. As demonstrated in Table IIa, the entropy change is
increased with increasing the symmetry, �1 /�3→1. The
maximum entropy loss is obtained when �1=�2=�3. That is,
the greater the difference between �1 and �3, the smaller the
entropy loss.

In the second case �b� �1=�3, the asymmetry in loop
lengths corresponds to the ratio of �1 to �2. A similar trend to
the first case is observed in Table IIb. The entropy loss de-
clines with decreasing �2 and reaches the smallest value at
�2=0. The asymmetric characteristics can be further en-
hanced by considering the case �c� �2=0 with �1��3. Now
the asymmetry is manifested by the ratio of �1 to �3. As
displayed in Table IIc, the entropy loss is getting smaller
with increasing the difference between �1 and �3. The above
results indicate that if the binding energy gain is the same,
the probability of forming a pseudoknotted structure rises
with increasing the asymmetric distribution in loop lengths.
This consequence explains the experimental observation that
the asymmetry in loop lengths is thermodynamically favor-
able in RNA pseudoknots.

V. CONCLUSION

Biomacromolecules such as RNA can fold into
pseudoknot, consisting of non-nested double-stranded stems
connected by single-stranded loops. The formation of such a
topological structure involves the crossover from coil to loop
and then loop to pseudoknot. By virtue of an athermal ho-
mopolymer of chain length N with two reactive pairs AA and
BB, the folding kinetics and thermodynamics of ABAB
pseudoknot formation are studied by off-lattice Monte Carlo
simulations. The complication caused by the stem size is
simplified by the binding between two reactive spheres. On
the other hand, the excluded volume effects among nucle-
otides are fully included. Although our exceedingly simple
model for pseudoknot formation is not the perfect represen-
tation of the RNA folding, it is sufficient to capture the es-
sential feature of the physics for the prediction of the folding
thermodynamics.

Since RNA folding kinetics is known to proceed stochas-

tically via a succession of partially folded secondary struc-
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tures in quasiequilibrium, kinetic Monte Carlo scheme is em-
ployed to follow the kinetics of pseudoknot formation. In
our simulation, the binding energies are assumed to be
�1=10kBT and �2=25kBT, which correspond to about 3 and
6–7 base pairs. This is consistent with the frequencies of
natural occurrence of stem lengths. Actually, our simple
theory, which is confirmed by the Monte Carlo simulation
indicates that the choice of �i has no influence on our result.
Despite of the fact that there are two possible intermediate
states for a simple pseudoknot polymer, loops A and B, the
folding path prefers the one with more free energy reduction
of coil-to-loop crossover. When the binding energy domi-
nates the crossover, it is most probable that the polymer coil
forms the loop with higher binding energy gain first. This
consequence indicates that the denaturation of a pseudoknot-
ted polymer starts from breaking the double-stranded stem
with less base pairs.

For the approaches based on free energy minimization,
the conformational entropy change associated with the for-
mation of a pseudoknot plays an essential role in predicting
the native structure of a RNA molecule. �S can be correctly
extracted through equilibrium constants in probability curves
or free energy barrier in kinetic rate constants, both of which
are determined by Monte Carlo simulations. The entropy loss
can be expressed by the scaling relation, �S=� ln N+G,
where the exponent ��2.48 for coil-to-loop crossover and
��4.91 for coil-to-pseudoknot crossover. The constant G
associated with pseudoknot formation varies with the distri-
bution of block lengths �L1 ,�1 ,�2 ,�3 ,L2� for a given N. For
given end block lengths �L1 ,L2�, our simulation results re-
veal that as the three loop lengths are equal, i.e., �1=�2=�3,
the entropy loss �or G� is maximum. In other words, under
such a structural characteristic, the total free energy reduc-
tion is smallest and the probability of pseudoknot formation
is lowest. On the contrary, asymmetry in the distribution of
loop lengths, such as ��1 ,0 ,�3�, leads to smaller values of G
and therefore favors the formation of pseudoknot thermody-
namically. This consequence may elucidate the fact of loop
length asymmetry in RNA pseudoknots reported recently.

For the free energy minimization methods, the well-
known loop dependent energy rules assume additivity of
loop free energy �entropy�. We confirm that both loops in the
pseudoknot have the same constant ��2.48 for the logarith-
mic increase of entropy with loop size. Note that the constant
� is not 1.75 adopted in previous models. Nonetheless, our
results also show that the conformational entropy constant G
varies with the distribution of the three single-stranded loop
Downloaded 24 Nov 2008 to 140.112.113.225. Redistribution subject to
size ��1 ,�2 ,�3�. This consequence reveal that the entropy
constant may play an important role in studying pseudoknot
thermodynamics. Our theoretical predictions, such as prob-
ability curve, rate constant, folding pathway, and pseudoknot
entropy, can be tested by synthesizing a model RNA similar
to our pseudoknotted homopolymer, such as the sequence
C . . .C�AA�C . . .C�AAAAA�C . . .C�UU�C . . .C�UUUUU�C . . .
C.
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