

0031-9422(95)00795-4

TERPENES FROM HEARTWOOD OF JUNIPERUS CHINENSIS

JIM-MIN FANG, YING-CHIH CHEN, BENG-WERN WANG and YU-SHIA CHENG*

Department of Chemistry, National Taiwan University, Taipei, Taiwan 106, Republic of China

(Received 3 August 1995)

Key Word Index-Juniperus chinensis; Cupressaceae; wood; sesquiterpenes; diterpenes; norditerpene.

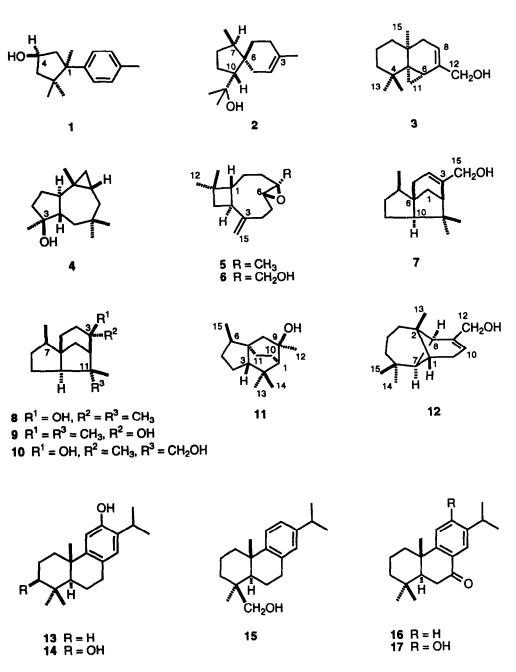
Abstract—A bisnorditerpene, 14 diterpenes and 12 sesquiterpenes were isolated from the heartwood of *Juniperus* chinensis. A new diterpene found (15-hydroxylabda-8(17),11E,13E-trien-19-oic acid), and three new sesquiterpenes (cedr-3-en-15-ol, junipercedrol and α -longipinen-12-ol) were found. Junipercedrol, with a new skeleton, was determined to be 2,2,6,9-tetramethyltricyclo[5.2.2.0^{3,7}]undecan-9-ol by spectral analyses and its stereochemistry was established by an X-ray analysis. This is also the first report in nature of thujopen-12-ol sesquiterpene.

INTRODUCTION

Juniperus chinensis, Cupressaceae, is a common ornamental tree [1]. The compounds hinokiflavone and kayaflavone have been previously reported in this plant [2,3]. We recently isolated 13 lignans, 46 diterpenes, 12 norditerpenes, a bisnorditerpene and a secoditerpene in addition to other components from the bark and leaves [4-8]. The diterpenes include labdane-, abietane-, sempervirane-, totarane- and chinane-types. Labdane-type diterpenes are rich in the bark, whereas abietane-type diterpenes predominate in the leaves. The norditerpenes are norabietanes except for norpimarane. We report here the sesquiterpenoid and diterpenoid constituents found in the heartwood of J. chinensis.

RESULTS AND DISCUSSION

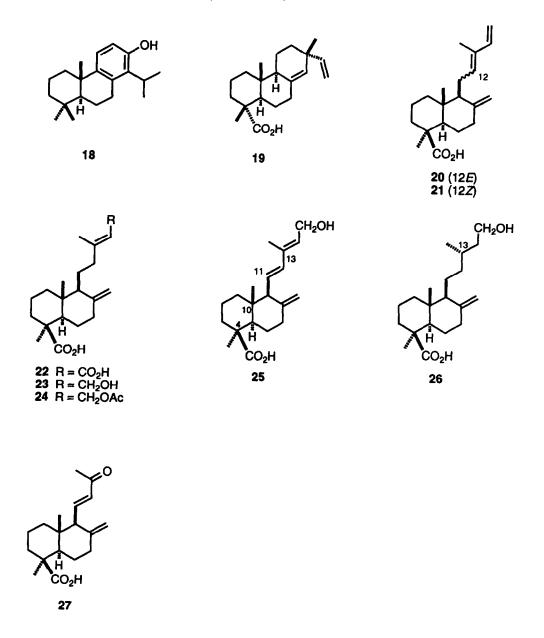
The acetone-soluble part of the air-dried heartwood of J. chinensis was concentrated and subjected to repeated column chromatography to give sesquiterpenes 1–12, diterpenes 13–26 and a bisnorditerpene 27. By analyses of their physical and spectroscopic properties (mp, $[\alpha]$, IR, mass spectrum, ¹H and ¹³C NMR), the structures of known compounds were assigned: β -cuparenol (1) [9], α -acorenol (2) [10], thujopsen-12-ol (3) [11], isoleptographiol (4) [12], caryophyllene oxide (5) [13], 6,7-epoxycaryophyll-3(15)-en-14-ol (6) [14], cedrol (8) [15], cedran-3 α -ol (9) [15], cedrane-3 β ,12-diol (10) [16], ferruginol (13) [6], hinokiol (14) [17], dehydroabietinol (15) [18], abieta-8,11,13-trien-7-one (16) [6], sugiol (17) [6], totarol (18) [6], sandaracopimaric acid (19) [6], transcommunic acid (20) [6], cis-communic acid (21) [6],


agathic acid (22) [6], isocupressic acid (23) [6], acetylisocupressic acid (24) [19], 15-hydroxylabd-8(17)en-19-oic acid (26) [20], and 15,16-bisnor-13-oxolabda-8(17), 11E-dien-19-oic acid (27) [21]. The *cis*-relationship of H-4 and the Me-1 group in 1 was confirmed by the nOe experiment, i.e. irradiation of the methyl group (at δ 1.23) caused an 11% enhancement of H-4 (at δ 4.57). This is the first report of thujopen-12-ol in nature, although it was previously prepared by oxidation of thujopsene [11]. Sandaracopimaric acid is the most abundant constituent.

Compound 7 ($C_{15}H_{24}O$) showed an IR absorption at 3331 cm⁻¹ attributable to a hydroxyl group. By comparison of its ¹H and ¹³C NMR spectral data with those of cedr-3-ene [15] and cedr-3-en-12-ol [15], the structure of 7 was assigned as cedr-3-en-15-ol. Compound 7 contains an allyl alcohol moiety as resonances occurred at relatively lower fields (δ 5.48, 3.99 and 3.93) than the signals of the olefinic and carbinyl protons in cedr-3-en-12-ol (at δ 5.26, 3.56 and 3.47).

The molecular formula of 11, $C_{15}H_{26}O$, was deduced from the exact mass $[M]^+ m/z$ 222.197. The IR absorption of a hydroxyl group appeared at 3452 cm⁻¹. The corresponding tertiary carbinyl carbon appeared at δ 76.2 (s). All the carbon signals had chemical shifts smaller than 80 ppm, indicating 11 to be a tricyclic compound without double bond. Detailed analyses of the ¹H-¹H COSY and HMBC spectra led to the assignment of 11, (junipercedrol) as 2,2,6,9-tetramethyltricyclo [5.2.2.0^{3,7}] undecan-9-ol. It is a sesquiterpene with a new skeleton. The stereochemistry of 11 was established by an X-ray analysis. By analogy to the cedrane compounds such as 8-10, compounds 7 and 11 are considered to have, respectively, the (2*R*,6*R*,7*R*,10*R*)- and (1*R*,3*S*,6*R*,7*R*,9*R*)-configurations.

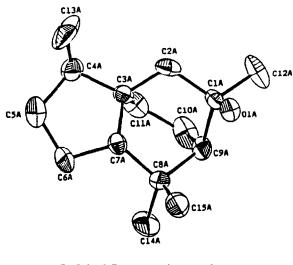
The molecular formula of 12, $C_{15}H_{24}O$, was deduced from the exact mass [M] m/z 220.182. The presence of


^{*}Author to whom correspondence should be addressed.

a CH₂OH group was inferred from the IR absorption at 3376 cm⁻¹ and the carbinyl carbon appearing at δ 65.9 (t). Compound **12** contains a trisubstituted double bond as two olefinic carbons showed at δ 119.0 (d) and 151.0 (s). The proton resonances at δ 5.44 and 3.96 (2 H) confirmed the presence of an allylic alcohol moiety. From the ¹H-¹H COSY and HMBC spectra, compound **12**, named α -longipinen-12-ol, was assigned as 2,6,6-trimethyl-9-(hydroxymethyl)tricyclo [5.4.0.0^{2,8}] undec-9-ene. Except for the signals of the allylic alcohol moiety all the ¹H and ¹³C signals of **12** were similar to those of α -longipinene [22]. By analogy to the structure of α -

longipinene, compound 12 was tentatively assigned to have the (1R,2S,7R,8S)-configuration.

Compound 25 was readily assigned as 15-hydroxylabda-8(17),11*E*,13*E*-trien-19-oic acid by analyses of the IR, MS, ¹H and ¹³C NMR spectra. The IR absorptions at 3372 and 3200–2500 cm⁻¹ were attributable to the hydroxyl and carboxyl groups. The proton and carbon resonances of 25 were assigned by assistance of the ¹H-¹H and ¹H-¹³C correlated spectra. The stereochemistry of 25 was established by NOE studies. Irradiation of methyl-10 (at δ 0.71) caused a 12% NOE of H-11 (at δ 5.70), but no enhancement of methyl-4 (at 1.24). Irradia-



tion of methyl-13 (at 1.91) caused also enhancements of H-11 and H-15 (at δ 4.26), indicating the (11*E*,13*E*)-configuration. Compound **25** was assigned the (4*S*,5*R*, 9*S*,10*R*)-configuration by analogy to labdenoic acids **22–24**.

EXPERIMENTAL

Plant material. The heartwood of Juniperus chinensis Linn. var. kaizuka Hort. were collected from the plants grown in the surroundings of the Department of Chemistry of the National Taiwan University. A voucher specimen is deposited in the Herbarium of our University. The heartwood (1.1 kg) was sliced, air-dried and extracted with Me₂CO (81×3). The combined extracts were treated with activated charcoal and filtered to remove coloured material. The filtrate was concd to give a residue (24 g), which was absorbed by silica gel (30 g) and then chromatographed on a column packed with 250 g of silica gel. By elution with gradients of hexane and EtOAc, compounds 5 (7 mg), 16 (12 mg), 13 (14 mg), 18 (13 mg), 2 (33 mg), 8 (20 mg), 11 (20 mg), 9 (13 mg), 6 (3 mg), 4 (7 mg), 12 (11 mg), 3 (12 mg), 7 (43 mg), 17 (8 mg), 20 (11 mg), 21 (20 mg), 1 (7 mg), 15 (4 mg), 19 (1.2 g), 27 (12 mg), 14 (8 mg), 26 (12 mg), 10 (11 mg), 24 (44 mg), 23 (15 mg), 25 (21 mg) and 22 (10 mg) were obtained in ascending order of polarity. These compounds were further purified by HPLC using a Hibar Lichrospher Si 60 (Merck, 10 μ m) cloumn (25 cm × 1 cm).

β-Cuparenol (1). Oil, $[\alpha]_D^{30}$ + 58.3° (CHCl₃; c 0.7). ref. [9] $[\alpha]_D^{30}$ + 63.8° (CHCl₃). ¹³C NMR (CDCl₃): δ 20.8

ORTEP drawing of 11

Scheme 1.

(q), 24.5 (q), 25.3 (q), 27.0 (q), 43.0 (s), 47.3 (t), 50.1 (t), 50.7 (s), 70.5 (d), 126.7 (d, 2 C), 128.4 (d, 2 C), 135.0 (s), 143.5 (s).

 α -Acorenol (2). Oil, $R_f 0.2$ (EtOAc-hexane, 1:15). $[\alpha]_D^{25} - 36.1^\circ$ (CHCl₃; c 3.3). ref. [10] $[\alpha]_D - 36.1^\circ$. ¹³C NMR (CDCl₃): δ 14.9 (q), 23.2 (q), 26.0 (t), 28.0 (q), 28.0 (t), 29.1 (t), 30.1 (t), 30.6 (t), 31.4 (q), 41.6 (d), 45.0 (s), 54.7 (d), 73.7 (s), 121.2 (d), 135.0 (s).

Thujopsen-12-ol (3). Oil, $R_f 0.18$ (EtOAc-hexane, 1:10). [α]¹⁸_D = 82° (CHCl₃; c 1.2). ¹³C NMR (CDCl₃): δ 11.4 (t), 18.9 (d), 19.4 (t), 26.8 (q), 28.5 (q), 29.0 (q), 31.7 (s), 33.9 (s), 34.6 (s), 36.5 (t), 40.2 (t), 40.6 (t), 67.1 (t), 116.3 (d), 139.4 (s).

Isoleptographiol (4). Oil, $[\alpha]_D^{28} + 13.2^{\circ}$ (CHCl₃; *c* 0.7). ref. $[12] [\alpha]_D^{23} + 14.6^{\circ}$ (CHCl₃; *c* 0.63).

(6R,7R)-6,7-*Epoxycaryophyll*-3(15)-*ene* (5). $[\alpha]_D^{25} - 62^{\circ}$ (CHCl₃; *c* 0.7). ref. [12] $[\alpha]_D^{20} - 79.4^{\circ}$ (CHCl₃; *c* 2.32). ¹³C NMR (CDCl₃): δ 17.0 (*q*), 21.6 (*q*), 27.2 (*t*), 29.8 (*t*), 29.9 (*q*), 30.2 (*t*), 34.0 (*s*), 39.1 (*t*), 40.0 (*t*), 48.7 (*d*), 51.0 (*d*), 59.0 (*s*), 63.7 (*d*), 113.0 (*t*), 152.0 (*s*).

(6R,7R)-6,7-*Epoxycaryophyll*-3(15)-*en*-14-*ol* (6). Oil, $[\alpha]_D^{32} - 38.2^{\circ}$ (CHCl₃; *c* 0.3). ref. [14] $[\alpha]_D^{18} - 34.6^{\circ}$ (CHCl₃; *c* 0.5).

Cedr-3-en-15-ol (7). Oil, $R_f 0.17$ (EtOAc-hexane, 1:10). [α] $_{D}^{25} - 0.93^{\circ}$ (CHCl₃; c 4.3). IR $\upsilon_{max}^{\text{reat}}$ cm⁻¹: 3331 (OH). ¹H NMR (CDCl₃): $\delta 0.82$ (d, J = 7.2 Hz, Me-7), 0.93 (s, Me-11), 0.96 (s, Me-11), 1.25–1.98 (m, 11 H), 2.24 (m, 1 H), 3.93, 3.99 (2 H, AB quartet, J = 7.4 Hz, H-15), 5.48 (m, H-4), ¹³C NMR (CDCl₃): $\delta 15.4$ (q, C-14), 24.5 (t, C-9), 25.4 (q, C-13), 27.6 (q, C-12), 36.0 (t, C-8), 38.6 (t, C-5), 40.6 (t, C-1), 41.4 (d, C-7), 48.3 (s, C-11), 50.3 (d, C-10), 54.2 (s, C-6), 59.0 (d, C-2), 67.1 (t, C-15), 120.3 (d, C-4), 144.0 (s, C-3). EI-MS (70 eV) m/z (rel. int.): 220 [M]⁺ (20), 202 (4), 189 (9), 177 (18), 147 (17), 135 (100). Exact mass [M]⁺ for C₁₅H₂₄O requires 220.1827. Found 220.1836.

Cedrol (8). Mp 80–81°, $[\alpha]_D^{25} + 8.5^{\circ}$ (CHCl₃; c 2). Ref. [15] mp 86–87°, $[\alpha]_D^{28} + 10.5^{\circ}$ (CHCl₃; c 5).

Cedran-3 α -ol (9). Oil $[\alpha]_D^{28}$ + 10.9° (CHCl₃; c 1.3). ¹³C NMR (CDCl₃); δ 15.4 (q), 25.4 (t), 28.1 (q), 29.0 (q), 30.5 (*t*), 30.6 (*q*), 34.3 (*t*), 36.9 (*t*), 39.9 (*t*), 41.8 (*s*), 41.9 (*d*), 53.4 (*s*), 56.2 (*d*), 61.5 (*d*), 73.3 (*s*).

Cedrane-3 β ,12-diol (10). $[\alpha]_D^{20} - 7^{\circ}$ (CHCl₃; c 1.1). Ref. [15] $[\alpha]_D^{25} - 5^{\circ}$ (CHCl₃; c 1.2). ¹³C NMR (CDCl₃): δ 15.4 (q), 22.5 (q), 23.9 (t), 30.4 (q), 31.3 (t), 34.4 (t), 37.5 (t), 41.4 (d), 41.7 (t), 47.1 (s), 53.3 (s), 54.5 (d), 57.2 (d), 70.0 (t), 74.5 (s).

2,2,6,9-Tetramethyltricyclo [5.2.2.0^{3,7}]undecan-9-ol (11). White needles, mp $50-51^{\circ}$, $[\alpha]_D^{25} + 82^{\circ}$ (CHCl₃; c 1.3). IR v_{max}^{neat} cm⁻¹: 3452 (OH). ¹H NMR (CDCl₃): $\delta 0.78 (d, J = 7.2 \text{ Hz}, \text{Me-6}), 0.88 (m, \text{H-4}), 0.91 (s, \text{Me-2}),$ 1.02 (m, H-5), 1.09 (dd, J = 2.4, 1.8 Hz, H-1), 1.25 (s, Me-2), 1.33 (m, H-11), 1.36 (s, Me-9), 1.36 (m, H-10), 1.38 (d, J = 13.2 Hz, H-8), 1.38 (m, H-4), 1.46 (m, H-6), 1.46(d, J = 13.2 Hz, H-8), 1.54 (m, H-11), 1.67 (dd, J = 6.8),1.3 Hz, H-3), 1.68 (m, H-10), 1.95 (m, H-5). ¹³C NMR (CDCl₃): δ 17.8 (q, C-15), 21.4 (t, C-10), 23.6 (t, C-11), 27.2 (q, C-14), 28.5 (t, C-4), 32.6 (q, C-12), 33.7 (q, C-13), 34.1 (s, C-2), 34.6 (t, C-5), 39.7 (d, C-6), 43.4 (s, C-7), 47.1 (t, C-8), 49.1 (d, C-1), 50.6 (d, C-3), 76.2 (s, C-9). EI-MS (70 eV) m/z (rel. int.): 222 [M]⁺ (3), 203 (13), 204 (10), 189 (10), 43 (100). Exact mass $[M]^+$ for $C_{15}H_{26}O$ requires 222.1985. Found 222.1972.

2,6,6-*Trimethyl*-9-(*hydroxymethyl*)*tricyclo*[5.4.0.0.^{2.8}] *undec*-9-*ene* (12). Oil, $[\alpha]_D^{25} + 3.0^{\circ}$ (CHCl₃; *c* 1.1). IR ν_{max}^{eat} cm⁻¹: 3376 (OH), 1670, 810. ¹H NMR (CDCl₃): δ 0.81 (3 H, *s*, H-13), 0.81 (3 H, *s*, H-15), 0.89 (3 H, *s*, H-14), 1.31 (*m*, H-5), 1.33 (*m*, H-5), 1.45 (*br s*, H-7), 1.56 (2 H, *m*, H-4), 1.57 (*m*, H-3), 1.62 (*m*, H-3), 2.10 (*m*, H-1), 2.20 (*br s*, H-8), 2.28 (2 H, *br s*, H-11), 3.96 (2 H, *br s*, H-12), 5.44 (*br s*, H-10). ¹³C NMR (CDCl₃): δ 21.7 (*t*, C-4), 23.9 (*q*, C-13), 27.8 (*q*, C-15), 28.0 (*q*, C-14), 32.8 (*s*, C-6), 34.1 (*t*, C-11), 39.0 (*t*, C-5), 39.8 (*s*, C-2), 40.1 (*d*, C-1), 40.9 (*t*, C-3), 42.6 (*d*, C-8), 59.1 (*d*, C-7), 65.9 (*t*, C-12), 119.0 (*d*, C-10), 151.0 (*s*, C-9). EI-MS (70 eV) *m/z* (rel. int.): 220 [M]⁺ (15), 205 (5), 202 (10), 189 (23), 159 (20), 135 (100), 121 (26), 119 (48), 105 (72). Exact mass [M]⁺ for C₁₅H₂₄O requires 220.1828. Found 220.1818.

Ferruginol (13). $[\alpha]_D^{25} + 43.1^\circ$. (CHCl₃; c 1.4). Ref. [6] $[\alpha]_D + 40.6^\circ$ (EtOH).

Hinokiol (14). Mp 233–235°, $[\alpha]_{1}^{18}$ + 77.5° (CHCl₃; c0.8). Ref. [17] mp 234–235°, $[\alpha]_{1}^{18}$ + 74.4° (CHCl₃; c1.0). Dehydroabietinol (15). Oil, $[\alpha]_{1}^{20}$ + 44° (CHCl₃; c0.4).

Ref. [18] $[\alpha]_{25}^{25} + 43.4^{\circ}$ (CHCl₃; *c* 2.0). *Abieta*-8,11,13-*trien*-7-*one* (16). Mp 87–90°, $[\alpha]_{25}^{25} + 6^{\circ}$

(CHCl₃; c1.2). Ref. [6] mp 88–90°, $[\alpha]_D^{25} + 4^\circ$ (EtOH; c3.4).

Sugiol (17). Mp 290–293°, $[\alpha]_D^{25} + 24^\circ$ (CHCl₃; c 0.8). Ref. [6] mp 291–293°, $[\alpha]_D^{25} + 25^\circ$ (EtOH, c 8).

Totarol (18). Mp 131–132°, $[\alpha]_D^{20} + 41°$ (CHCl₃; c 1.3). Ref. [6] mp 131–132°, $[\alpha]_D^{20} + 40.2°$ EtOH, c 2.2).

Sandaracopimaric acid (19). Mp 173.5–175°, $[\alpha]_{D}^{25}$ - 3.5° (CHCl₃; c1.2). Ref. [6] mp 174–175°, $[\alpha]_{D}^{25}$ - 14.4° (EtOH, c1.1).

trans-Communic acid (20). Mp $130-132^{\circ}$, $[\alpha]_{D}^{30} + 36^{\circ}$ (CHCl₃, c 0.9). Ref. [6] mp $130-132^{\circ}$, $[\alpha]_{D}^{25} + 38^{\circ}$ (EtOH, c 1).

cis-Communic acid (21). ¹³C NMR (CDCl₃): δ 12.8 (q), 19.7 (q), 19.9 (t), 22.2 (t), 25.8 (t), 29.0 (q), 37.8 (t), 38.5 (t), 39.2 (t), 40.4 (s), 44.2 (s), 56.2 (d), 56.6 (d), 107.8 (t), 113.2 (t), 131.5 (d), 131.6 (s), 133.8 (d), 147.9 (s), 184.4 (s). Agathic acid (22). Mp 203–205°, $[\alpha]_D^{18} + 60^\circ$ (CHCl₃, c1.0). Ref. [6] mp 203–204°, $[\alpha]_D + 65^\circ$ (95% EtOH).

Isocupressic acid (23). Oil, $[\alpha]_D^{25} + 41.2^{\circ}$ (CHCl₃; c 1.5). Ref. [6] $[\alpha]_D^{25} + 42^{\circ}$ (CHCl₃; c 2.5).

15-Acetoxylabda-8(17),13E-dien-19-oic acid (24). Mp 75–78°, $[\alpha]_D^{25}$ + 42.0° (CHCl₃; c 4.4). Ref. [19] $[\alpha]_D$ + 49° (c 1.1).

15-Hydroxylabda-8(17),11E,13E-trien-19-oic acid (25). Oil, $[\alpha]_D^{25} - 0.66^{\circ}$ (CHCl₃; c 2.1). IR \cup_{max}^{neat} cm⁻¹: 3372 (OH), 3200–2500 (acid), 1688 (C=O), 1639, 791. ¹H NMR (CDCl₃): $\delta 0.71$ (s, Me-10), 1.24 (s, Me-4), 1.30–2.10 (9 H, m), 1.91 (s, Me-13), 2.12–2.17 (m, H-7), 2.34 (d, J = 9.8 Hz, H-9), 2.41–2.46 (m, H-7), 4.26 (2 H, d, J = 6.9 Hz, H-15), 4.46 (br s, H-17), 4.73 (br s, H-17), 5.56 (t, J = 6.9 Hz, H-14), 5.70 (dd, J = 15.5, 9.8 Hz, H-11), 6.02 (d, J = 15.5 Hz, H-12). ¹³C NMR (CDCl₃): $\delta 12.8$ (q, Me-13), 13.5 (q, Me-10), 19.6 (t), 25.0 (t), 28.9 (q, Me-4), 37.2 (t), 38.1 (t), 39.8 (s), 40.8 (t), 44.1 (s), 55.7 (d, C-5), 59.3 (t, C-15), 60.5 (d, C-9), 108.0 (t, C-17), 127.7 (d, C-11), 128.4 (d, C-14), 136.4 (s, C-13), 136.7 (d, C-12), 149.6 (s, C-8), 183.0 (s, C-19). EI-MS (70 eV) m/z (rel. int.): 318 [M]⁺ (1), 300 (62), 285 (24), 255 (10), 161 (30), 145 (46), 133 (100).

15-Hydroxylabd-8(17)-en-19-oic acid (26). Oil, $[\alpha]_D^{20}$ + 18.7° (CHCl₃; c 1.2). Ref. [20] $[\alpha]_D^{25}$ + 17.9° (CHCl₃). ¹³C NMR (CDCl₃): δ 12.7 (q), 19.8 (q), 19.9 (t), 21.1 (t), 26.0 (t), 29.0 (q), 30.2 (d), 36.4 (t), 38.0 (t), 38.7 (t), 39.1 (t), 39.4 (t), 40.5 (s), 44.1 (s), 56.3 (d), 56.6 (d), 61.1 (t), 106.3 (t), 148.2 (s), 183.3 (s).

15,16-Bisnor-13-oxolabda-8(17),11E-dien-19-oic acid (27). Oil, $[\alpha]_D^{24} + 20.5^{\circ}$ (CHCl₃; c1.2). Ref. [21] $[\alpha]_D^{20} + 24.1^{\circ}$ (MeOH; c1.0).

Acknowledgements—We are grateful to the National Science Council of the Republic of China for financial support and to Mr Gene-Hsian Lee (Advanced Instrumentation Centre) for the X-ray diffraction of compound 11.

REFERENCES

1. Ying, S. S. (1985) Coloured Illustrated Flora of Taiwan Vol. 1, p. 168. National Taiwan University, Taipei.

- Hsu, C. M. (1960) Chemical Constituents of the Medicinal Plants in Taiwan Vol. 1, p. 174. National Research Institute of Chinese Medicines, Taipei.
- 3. Sawada, T. (1958) Yakugaku Zasshi 78, 1020.
- 4. Fang, J.-M., Lee, C.-K. and Cheng, Y.-S. (1992) Phytochemistry 31, 3659.
- 5. Fang, J.-M., Lee, C.-K. and Cheng, Y.-S. (1993) *Phytochemistry* **33**, 1169.
- Fang, J.-M., Sou, Y.-C., Chiu, Y.-H. and Cheng, Y.-S. (1993) *Phytochemistry* 34, 1581.
- Lee, C.-K., Fang, J.-M. and Cheng, Y.-S. (1994) Phytochemistry 35, 983.
- Lee, C.-K., Fang, J.-M. and Cheng, Y.-S. (1995) *Phytochemistry*, **39**, 391.
- 9. Tomita, B. and Nakatsuka, T. (1968) Tetrahedron Letters 843.
- 10. Tomita, B. and Hirose, Y. (1970) Tetrahedron Letters 143.
- 11. Hatsui, T., Suzuki, N. and Takeshita, H. (1985) Chem. Letters 639.
- 12. Abraham, W. R., Ernst, L. and Witte, L. (1986) Tetrahedron 42, 4475.
- 13. Warnhoof, W. and Srinivason, U. (1973) Can. J. Chem. 51, 3955.
- Pokhilo, N. D., Denisenko, V. A., Novikov, V. L. and Uvarova, N. I. (1984) *Khim. Prir. Soedin.* 20, 598.
- Joseph-Nathan, P., Santillan, R. L. and Gutiérrez, A. (1984) J. Nat. Prod. 47, 924.
- Kuo, Y.-H., Yang, I.-C., Chen, C.-S. and Lin, Y.-Y. (1987) J. Chin. Chem. Soc. 34, 125.
- 17. Kuo, Y.-H., Chen, W.-C. and Lin, Y.-T. (1984) J. Chin. Chem. Soc. 31, 159.
- Chamy, M. C., Piovano, M., Gambaro, V., Garbarino, J. A. and Nicoletti, M. (1987) *Phytochemistry* 26, 1763.
- Caputo, R., Mangoni, L., Monaco, P. and Previtera, L. (1974) *Phytochemistry* 13, 471.
- 20. Yu, M.-T. (1992) M. S. Thesis, National Taiwan University, Taipei.
- 21. Inoue, M., Hasegawa, S. and Hirose, Y. (1985) Phytochemistry 24, 1602.
- 22. Faure, R., Vincent, E. J., Gaydou, E. M. and Rakotonirainy, O. (1986) *Magn. Reson. Chem.* 24, 883.