
Visual Comput (2006) 22: 682–692
DOI 10.1007/s00371-006-0064-9 O R I G I N A L A R T I C L E

Wan-Chun Ma
Chun-Tse Hsiao
Ken-Yi Lee
Yung-Yu Chuang
Bing-Yu Chen

Real-time triple product relighting using
spherical local-frame parameterization

Published online: 25 August 2006
© Springer-Verlag 2006

W.-C. Ma (�) · C.-T. Hsiao · K.-Y. Lee ·
Y.-Y. Chuang · B.-Y. Chen
Communication and Multimedia
Laboratory, Department of Computer
Science and Information Engineering,
National Taiwan University
alexma98@gmail.com

Abstract This paper addresses the
problem of real-time rendering for
objects with complex materials under
varying all-frequency illumination
and changing view. Our approach
extends the triple product algorithm
by using local-frame parameteriza-
tion, spherical wavelets, per-pixel
shading and visibility textures.
Storing BRDFs with local-frame
parameterization allows us to handle
complex BRDFs and incorporate
bump mapping more easily. In
addition, it greatly reduces the data
size compared to storing BRDFs with
respect to the global frame. The use
of spherical wavelets avoids uneven
sampling and energy normalization of
cubical parameterization. Finally, we
use per-pixel shading and visibility

textures to remove the need for fine
tessellations of meshes and shift most
computation from vertex shaders
to more powerful pixel shaders.
The resulting system can render
scenes with realistic shadow effects,
complex BRDFs, bump mapping
and spatially-varying BRDFs under
varying complex illumination and
changing view at real-time frame
rates on modern graphics hardware.

Keywords All-frequency relighting ·
Precomputed radiance transfer ·
Local frame · Spherical wavelets ·
Real-time rendering

1 Introduction

Realistic rendering of objects with complex materials,
complex natural lighting and intricate shadowing effects
has many applications. Conventional approaches could
take minutes per frame to render these effects. Recently,
with the advancement of graphics hardware, several
methods based on precomputation have been proposed
to enable interactive rendering for rich lighting effects,
such as precomputed radiance transfer using spherical
harmonics by Sloan et al. [15, 16] and all-frequency re-
lighting using wavelets by Ng et al. [8, 9]. The former
allows changing lighting and viewpoint in real-time, but
limited to low-frequency illumination. The latter captures
all-frequency lighting effects, but requires a few seconds

for manipulation of lighting and viewpoint. This paper
proposes a method for real-time rendering of objects with
complex materials under varying all-frequency illumina-
tion and changing view. Our approach extends the triple
product approach proposed by Ng et al. [9] in the follow-
ing ways:

– The use of local-frame parameterization for shading.
We change the coordinate system for shading from the
global frame used in previous wavelet-based relighting
papers into a local frame. Since both of the visibil-
ity function and BRDF stay in the local frame, it is
not necessary to recompute their wavelet coefficients
when changing viewing or lighting condition. Storing
BRDF in a local frame also enables us to easily han-
dle complex BRDFs and incorporate bump mapping.

Real-time triple product relighting using spherical local-frame parameterization 683

In addition, it greatly reduces the data size compared
to storing BRDF in the global frame. Local-frame pa-
rameterization has been used in spherical harmonics-
based relighting [15]. For spherical harmonics, it is
an obvious choice since spherical harmonics can be
easily rotated and every function should just be pa-
rameterized in its natural domain, global for lighting
and local for BRDFs. However, for wavelet-based re-
lighting, a trade-off has to be made when choosing be-
tween global and local frames since rotation is not easy
for a wavelet basis. Previous wavelet-based work [8,
9, 19–21] uses global-frame parameterization. In this
paper, we propose to use local-frame parameterization
and show its advantages.

– The use of spherical wavelets for avoiding uneven sam-
pling. Since functions involved in the rendering equa-
tion, illumination, visibility and BRDF are all spheri-
cal functions, it makes sense to represent them using
spherical wavelets [12] to avoid uneven sampling and
energy normalization in cubical parameterization.

– The use of per-pixel shading and visibility textures for
efficient GPU implementation. Previous relighting ap-
proaches require a fine tessellation to capture material
and visibility variations over a surface even if the sur-
face is flat. It is because rendering is performed on
a per-vertex basis. Instead, we use per-pixel shading to
shift computation from vertex shaders to more power-
ful pixel shaders for a more efficient GPU implemen-
tation. In addition, we sample the visibility functions
over a surface and store them in a visibility texture.
It allows a fine tessellated mesh to be replaced with
a coarse mesh along with a visibility texture.

Fig. 1. A typical result with the techniques of this paper. Our
method can handle complex materials. Here, both the Lobster
model and the floor are mapped with SBRDFs. Illumination and
viewpoint can be changed in real-time. These images are of 1024×
768 resolution and rendered at 15 fps to 45 fps using an ATI X1900
XTX

With these changes, our system can render scenes with
realistic shadowing effects, complex BRDFs, bump map-
ping and spatially-varying BRDFs (SBRDFs) under vary-
ing complex illumination and changing viewpoint in real-
time on modern graphics hardware. Figure 1 demonstrates
rendering of a scene with SBRDFs under complex illumi-
nation. Note how the rich lighting effects on the ground
depends on the lighting conditions.

We have carefully designed our method so that it
is suitable for GPU implementation. The resulting sys-
tem achieves comparable rendering quality with the triple
product wavelet relighting [9], but it is much faster than
previous methods. In addition, our method is capable
of rendering some effects that have not been demon-
strated before, such as bump mapping and SBRDFs for
all-frequency relighting. Furthermore, our method also al-
lows all-frequency material editing such as changing the
glossiness number in Phong model in a few seconds.

2 Related work

In this section, We briefly review related work in three
categories, precomputed radiance transfer, wavelet-based
relighting and spherical wavelets.

Precomputed radiance transfer (PRT). PRT is an effi-
cient precomputation method for realistic image synthesis.
Most PRT papers use spherical harmonics as the basis
function [5, 6, 11, 15–17]. Using a local frame for shad-
ing is widely adopted in spherical-harmonics-based PRT
techniques [5, 6, 15, 17] because spherical harmonics ba-
sis has a good rotational property. Bump mapping [14]
and anisotropic BRDFs [5] can be integrated into spherical
harmonics PRT framework. However, the biggest problem
of spherical harmonics is that it can only represent low-
frequency lighting effects and requires a very large num-
ber of coefficients when modeling high-frequency light-
ing. Thus, this restricts the use of spherical harmonics PRT
to mostly diffuse-like BRDFs and low-frequency lighting
environments.

Wavelet-based and the other all-frequency relighting tech-
niques. The use of wavelets as a basis enables adaptive
all-frequency relighting of complex scenes [7–9, 19–21].
However, most of the up-to-date techniques project spher-
ical functions onto cubemaps. Such an uneven sampling,
especially occurring at corners, needs normalization to
keep the energy of the functions consistent. In addition,
transport functions (or simply BRDFs) in a global frame
require more space for storage, and are more difficult to
be coupled with local-frame shading techniques such as
bump mapping. Recently, new techniques have been pro-
posed to model transport and lighting functions for more
glossy materials [3] or better performance [18].

684 W.-C. Ma et al.

Spherical wavelets. Spherical wavelets have been used
for BRDF representation [12], texture processing [13],
analysis of fluid flow [10], image-based relighting [22]
and other applications. Schörder et al. [12] are the first
to introduce the concept of spherical wavelets to graph-
ics community. They have demonstrated the potential of
using spherical wavelets for rendering by representing
a partial BRDF defined on a single hemisphere by fixing
the incoming direction. Our spherical wavelets are de-
rived from the studies on the orthogonality of triangular
Haar spherical wavelet basis by Bonneau [1] and Niel-
son et al. [10].

3 Algorithm

We develop our algorithm based on the triple product for-
mulation introduced by Ng et al. [9], which we describe
below for completeness and clarity for symbols. This
framework is based on the rendering equation for direct
illumination.

B(x, ωo)=
∫

Ω

L(x, ωi)V(x, ωi)ρ(x, ωi,ωo)(ωi ·n(x))dωi,

(1)

where B is the radiance function of position x and outgo-
ing direction1 ωo, L and V are the lighting and visibility
functions, respectively, ρ is the BRDF and n is the surface
normal. By assuming the lighting L is a distant illumi-
nation function (environment map) and incorporating the
term ωi ·n(x) into the BRDF function as the function ρ̃,
Eq. 1 becomes

B(x, ωo) =
∫

Ω

L(ωi)V(x, ωi)ρ̃(x, ωi, ωo)dωi . (2)

For a given view, for each position x, we can infer the
corresponding outgoing directions ωo and calculate the
reflected color Bx,ωo by the following triple product inte-
gration,

Bx,ωo =
∫

Ω

L(ωi)V x(ωi)ρ̃
x,ωo(ωi)dωi, (3)

where V x is the visibility function for the given position
x; similarly, ρ̃x,ωo is ρ̃ for the given position x and the
given direction ωo. As shown by Ng et al. [9], by expand-
ing the spherical functions, L, V x and ρ̃x,ωo , with some

1 Note that ωo is a function of x for a given view. Hence, ωo is actually an
abbreviation for ωo(x).

appropriate basis functions Ψ(ω),

L(ω) =
∑

i

LiΨi(ω),

V x(ω) =
∑

j

V x
j Ψj(ω),

ρ̃x,ωo(ω) =
∑

k

ρ̃
x,ωo
k Ψk(ω), (4)

where Li , V x
j and ρ̃

x,ωo
k are coefficients for the spherical

illumination, visibility and BRDF functions respectively,
Eq. 3 can be written in terms of these basis functions,

Bx,ωo=
∑

i

∑
j

∑
k

Li V
x
j ρ̃

x,ωo
k

∫

Ω

Ψi(ω)Ψj(ω)Ψk(ω)dω. (5)

The above equation is complicated for evaluating because
of the triple product integrals. Ng et al. call these integrals
the tripling coefficients Cijk as

Cijk =
∫

Ω

Ψi(ω)Ψj(ω)Ψk(ω)dω. (6)

They have devised and analyzed procedures to evalu-
ate Cijk for different basis functions including points,
2D Fourier series, spherical harmonics and 2D Haar
wavelets [9]. For the relighting application in Eq. 5, they
use cubemap Haar wavelets as the basis functions and
parameterize the spherical lighting, visibility and BRDF
functions using a global frame. In the following, we in-
troduce our extensions of spherical wavelets, local-frame
parameterization, per-pixel shading and visibility textures,
to make the original triple product algorithm more flexible
and efficient.

3.1 Spherical wavelets

Since the lighting, visibility and BRDF functions in Eq. 3
are all spherical functions, we choose to use spherical
wavelets [12] as the basis functions to avoid uneven sam-
pling and energy normalization of cubical parameteriza-
tion used in most previous work [7–9, 19]. We believe
that the spherical parameterization is a natural and bet-
ter choice than cubical one. Actually, spherical wavelets
have been used for representing illumination and BRDFs
by Schröder et al. [12].

Many spherical wavelet bases have been proposed,
such as lifted butterfly basis and Bio-Haar basis. We
have derived our spherical wavelets based on the opti-
mal triangular Haar bases [1]. The construction of spher-
ical wavelets relies on the geodesic sphere construction
shown in Fig. 2. Staring with an icosahedron (subdivision
level 0), for each subdivision step, each geodesic triangle
is divided into four sub-triangles by bisecting the geodesic

Real-time triple product relighting using spherical local-frame parameterization 685

Fig. 2a–c. Geodesic sphere construction. Staring with the icosahe-
dron (a) subdivision level 0, successive levels (b, c) are generated
by subdividing triangles into four sub-triangles, accomplished by
adding geodesic edges connecting midpoints of original edges

edges at their mid-points. Let Tl
i be the i-th triangle at the

subdivision level l. For level l, we define the i-th scaling
function ϕl

i(ω) as

ϕl
i(ω) =

{
1 if ω ∈ Tl

i
0 otherwise.

Let Tl+1
4i , Tl+1

4i+1, Tl+1
4i+2 and Tl+1

4i+3 be the four sub-triangles
of Tl

i (Fig. 3) and the area for each of the twenty trian-
gles at level 0 equal 1, denoting as A0 = 1. According to
the subdivision rule, we have Al+1 = 1

4 Al. Hence, the area
Al of a triangle Tl

i at level l is equal to 4−l. We then de-
fine three types of wavelet functions associated with the
domain Tl

i at level l as

ψl
i,0(ω) = ϕl+1

4i (ω)−ϕl+1
4i+1(ω)−ϕl+1

4i+2(ω)+ϕl+1
4i+3(ω)

ψl
i,1(ω) = ϕl+1

4i (ω)−ϕl+1
4i+1(ω)+ϕl+1

4i+2(ω)−ϕl+1
4i+3(ω)

ψl
i,2(ω) = ϕl+1

4i (ω)+ϕl+1
4i+1(ω)−ϕl+1

4i+2(ω)−ϕl+1
4i+3(ω)

Figure 4 illustrates the scaling function and the wavelet
functions. This set of level-0 scaling and wavelet functions
Ψ = {ϕ0

i0
, ψ1

i1,0, ψ1
i1,1, ψ1

i1,2, . . . ψl
il ,0

, ψl
il,1

, ψl
il,2

, . . . }
forms a basis for spherical functions, where il ∈ {0, 1, 2,
. . . , 20 · 2l −1}. The set Ψ is an orthogonal basis because

Fig. 3. Subdivision of a geodesic triangle Tl
i into four sub-triangles

Tl+1
4i , Tl+1

4i+1, Tl+1
4i+2 and Tl+1

4i+3

Fig. 4a–d. Scaling and wavelet functions. a scaling function ϕl
i .

b type-0 wavelet function ψl
i,0. c type-1 wavelet function ψl

i,1.
d type-2 wavelet function ψl

i,2

∫

Ω

ϕ0
i (ω)ϕ0

i′(ω)dω = A0δii′ = δii′

∫

Ω

ϕ0
i (ω)ψl

i′,t(ω)dω = 0

∫

Ω

ψl
i,t(ω)ψl′

i′,t′(ω)dω = Alδll′ δii′δtt′ ,

where δij is Dirac’s delta function. Note that Ψ is not or-
thonormal. We could scale the wavelets properly to make
the basis orthonormal, but we prefer to leave them unnor-
malized so that they reflect the underlying energy appro-
priately. We have derived the tripling coefficients for the
spherical wavelets defined above:

Tripling coefficient theorem for spherical wavelets. Here,
a tripling coefficient defined in Eq. 3 for our spherical
wavelets is non-zero only for the following three cases:

Case 1. All three bases are the same scaling function.∫

Ω

ϕ0
i (ω)ϕ0

i (ω)ϕ0
i (ω) =

∫

Ω

ϕ0
i (ω)dω = 1.

Case 2. All three are different types of wavelets at the
same level with the same index.∫

Ω

ψl
i,0(ω)ψl

i,1(ω)ψl
i,2(ω) =

∫

Ω

ϕl
i(ω)dω = 4−l.

Case 3. Two are identical wavelets at level l and their do-
main is overlapped with the domain of the third one who
is at a strictly coarser level l′, i.e. , l′ < l,∫

Ω

ψl
i,t(ω)ψl

i,t(ω)ϕl′
i′(ω)dω =

∫

Ω

ϕl
i(ω)ϕl′

i′(ω)dω = 4−l

∫

Ω

ψl
i,t(ω)ψl

i,t(ω)ψl′
i′,t′(ω)dω =

∫

Ω

ϕl
i(ω)ψl′

i′,t′(ω)dω

= ±4−l,

686 W.-C. Ma et al.

where the sign depends on which part the coarser-level
basis overlaps with the other two’s domain. It is not sur-
prising that our spherical wavelet tripling coefficients are
similar to 2D Haar wavelet tripling coefficients proven by
Ng et al. [9] since spherical wavelets are isomorphic to 2D
Haar wavelets.

3.2 Local-frame parameterization

To the best of our knowledge, all relighting papers using
wavelets [8, 9, 19] parameterize the lighting, visibility and
BRDF functions with respect to the global frame. That
is, the integration domain Ω in Eq. 3 is defined over the
global frame and the same for all positions x when calcu-
lating Bx,ωo . It is a natural choice to use the global frame
since Eq. 3 is defined with respect to the global frame.
In such a setting, we only need to store a global lighting
function. However, each position x has to store its own
BRDF function even if they are made of the same ma-
terial. It is because BRDF is defined with respect to the
local frame defined at x. It requires a lot of storage to store
a BRDF function per x considering that BRDF is a 4D
function. To save space, Ng et al. [9] precompute several
rotated versions of the BRDF function and use n(x) to
look up the appropriate rotated BRDF to be used for x.
It is why ρ̃ in Eq. 3 depends on x. In this setting, ro-
tating lights is achieved by rotating and resampling the
lighting function on the fly and changing views only in-
volves using different x and ωo to look up the BRDF
table.

We propose to parameterize these functions using the
local frame defined for each vertex. With the local-frame
parameterization, when evaluating Eq. 3 for a position x,
the integration domain becomes defined over the local
frame, which is established by x’s normal n(x) and tan-
gent t(x). Hence, in this setting, Eq. 3 becomes

Bx,ωo =
∫

Ωx

Lx(ωi)V x(ωi)ρ̃
ωo(ωi)dωi, (7)

where Ωx is the spherical domain defined by x’s local
frame and Lx is the global lighting function reparame-
terized in x’s local frame2. Using this parameterization,
the object of the same material can share the same BRDF
table. However, the global illumination function needs to
be rotated into different local frames for different x’s dur-
ing rendering. Unfortunately, as cubical 2D wavelets, we
are not aware of any efficient algorithm to rotate spheri-
cal wavelets. To solve this problem, similar to Ng et al.’s
solution, we precompute a set of rotated versions of the
lighting function by uniformly sampling Euler angles and
use x’s normal to look up the proper rotated lighting func-
tion Lx when rendering x.

2 Note that, while using the same symbol, V x(ωi) in Eqs. 3 and 7 are
parameterized with respect to different frames.

In local-frame parameterization, only one BRDF table
is required for a material, but multiple pre-rotated light-
ings are required. On the contrast, the global-frame param-
eterization only needs to store a lighting function but has
to store multiple rotated BRDF functions. We argue that
the local-frame approach is more storage efficient since
it stores multiple 2D lighting functions while the global-
frame approach would have to store multiple 4D BRDF
functions, as indicates by Clarberg et al. [2]. There is only
one lighting function at a time, but there could be several
BRDF functions. Using the symbols defined in Table 2,
the storage requirement is nωi

l +nxnwi
v +nρrρnωo

ρ nωi
ρ for

the global-frame approach and rln
ωi
l +nxnwi

v +nρnωo
ρ nωi

ρ

for the local-frame approach without other parameteri-
zation and compression. Table 1 compares these two pa-
rameterization schemes. In general, (rl − 1)nωi

l is less
than nρ(rρ −1)nωo

ρ nωi
ρ , justifying our choice of the local-

frame parameterization. Hence, the local-frame parame-
terization greatly reduces the data size of BRDFs and
allows us to use more materials. For example, we can
use spatially-varying BRDF, a composition of multiple
BRDFs. In addition, local-frame parameterization allows
us to separate the precomputation of BRDFs from the
knowledge of normals. Thus, the precomputation can be
performed separately and it becomes straightforward to
apply bump maps. On the other hand, the global-frame ap-
proach is better for applications which requires dynamic
lighting.

To allow for anisotropic materials, we actually sam-
ple the lighting function with both normal and tan-
gent, making the lighting function a 3D array. Again, it
would cause a larger storage increase to extend global-
frame parameterization to support anisotropic materi-
als.

3.3 Per-pixel shading and visibility textures

Most existing all-frequency relighting approaches evalu-
ate Eq. 7 for each vertex x and then interpolate vertices’
colors to rasterize visible triangles. This per-vertex shad-
ing approach can be described more precisely in pseu-
docode:

for each visible triangle T do
for each of T ’s vertices x1, x2 and x3 do

evaluate Eq. 7 for xi to obtain its color Bxi

end for
for each pixel p within T do

evaluate B p by interpolating Bx1 , Bx2 and Bx3

end for
end for

Instead of interpolating colors, we interpolate func-
tions and use the interpolated functions to evaluate color
for each visible pixel p. Here is a more precise description
of per-pixel shading method:

Real-time triple product relighting using spherical local-frame parameterization 687

Table 1. Comparisons between global-frame parameterization and local-frame parameterization

Rendering equation Bx,ωo = ∫
Ω L(ωi)V x(ωi)ρ̃

x,ωo(ωi)dωi Bx,ωo = ∫
Ωx

L x(ωi)V x(ωi)ρ̃
ωo(ωi)dωi

Lighting function L One copy Multiple rotated versions indexed by normal n(x)
Visibility function V One copy per x One copy per x
BRDF function ρ̃ Multiple rotated versions indexed by normal n(x) One copy per material
Storage requirement∗ nωi

l +nxnwi
v +nρrρnωo

ρ nωi
ρ rln

ωi
l +nxnwi

v +nρnωo
ρ nωi

ρ

∗ The storage requirement is estimated without other parameterization and data compression. Related symbols are defined in Table 2

Table 2. Symbols for storage requirement calculation

Symbol meaning

nωi
l Sampling resolution of a lighting function
rl Number of precomputed rotations of lighting

nwi
v Sampling resolution of a visibility function

nx Number of vertices
nωo

ρ Number of samples for outgoing directions
nωi

ρ Sampling resolution of a BRDF function
rρ Number of precomputed rotations of normals
nρ Number of materials

for each visible triangle T with vertices x1, x2, x3 do
for each pixel p within T do

obtain L p by interpolating Lx1 , Lx2 and Lx3

obtain V p by interpolating V x1 , V x2 and V x3

obtain ρ̃ p by interpolating ρ̃ωo(x1), ρ̃ωo(x2)

and ρ̃ωo(x3)

evaluate Eq. 7 using L p, V p, ρ̃ p to obtain B p

end for
end for

Analogous to the comparison between Phong shading and
Gouraud shading, per-pixel shading renders more accurate
results than per-vertex shading with less vertices. Figure 5
clearly shows the advantages of per-pixel shading over
per-vertex shading. In addition, per-pixel shading shifts
most computation (Eq. 7) from vertex shaders to more
powerful pixel shaders. Per-pixel shading also allows us
to better render spatially varying material with mapping
techniques such as SBRDFs, texture mapping and bump
mapping.

Another problem with per-vertex shading is that to
obtain fine shadows, the models often have to be finely
tessellated. For example, to render very simple geometry
such as a floor (simply a quadrangle), we usually have to
subdivide it into tens of thousands of triangles to have
a very high vertex density on the floor for better render-

Fig. 5. Comparisons between per-vertex shading and per-pixel
shading. The left column shows rendering of a statue model with
different shading methods. Closeup renderings of the same model
from other view are shown on the right. Per-pixel shading clearly
yields substantial improvement over per-vertex shading

ing. This, however, takes too much time for vertex pro-
cessing. For faster rendering, we propose using visibility
textures to reduce vertex count required for fine shadows.
To create a visibility texture for a model, we first parame-
terize the model into a 2D (u, v)-map. Figure 6(b) shows
the mapping between triangles and the resulting map for
the dragon model (Fig. 6(a)). We used Maya to generate
this parameterization. Better approaches such as geometry

688 W.-C. Ma et al.

image [4] could improve the utilization of texture maps
for better results. For each texel of this map, we find its
corresponding position x on surface of the 3D mesh and
compute x’s visibility function V x. The result is a visibil-
ity texture map for the original model. In this map, each
“texel” represents a visibility function for some position
over the original surface by storing wavelet coefficients of
the associated visibility function. Figure 6(c) is the visi-
bility texture associated with the floor in Fig. 6(a). At first
sight, this approach seems not too different from highly
tesselated meshes since we just shift fine tessellation from
vertices to texels. However, mapping visibility as a texture

Fig. 6a–f. Illustrations and comparisons for visibility textures. The
models a are first parameterized in a 2D texture space (b for
Dragon). Visibility is sampled for each texel of the texture space to
synthesize a visibility texture (c for the floor and d for the Dragon
model). Without visibility textures, models have to be finely tessel-
lated (e) to have comparable rendering (f), but about three times
slower

over the surface speeds up rendering by 300% along with
per-pixel shading. One concern about visibility texture is
about the possible aliasing problem as most mapping tech-
niques have to face. Our argument is that one can just use
a high-resolution visibility map to avoid aliasing. In add-
ition, mesh tessellation faces similar aliasing problem as
well.

In summary, to accurately render spatially varying ma-
terials requires highly tessellated meshes with per-vertex
shading. In contrast, per-pixel shading along with visi-
bility textures renders similar results in a shorter time by
using coarse meshes.

4 Implementation

In this section, we discuss implementation details of our
real-time triple product relighting system.

4.1 Precomputation

At the precomputation stage, we need to compute and
store spherical wavelet coefficients for Lx(ωi), V x(ωi)
and ρ̃ωo(ωi) in Eq. 7. For each spherical function, we sam-
ple its values at 5120 different ωi-directions. These di-
rections are generated by subdividing an icosahedron for
five levels. Discrete spherical wavelet transform is then
applied to these sampled values to generate wavelet co-
efficients for the spherical function. Thus, in our imple-
mentation, nωi

l = nwi
v = nωi

ρ = 5120 before data compres-
sion. For a lighting function, we precompute 32 ×16 ×
32 rotations for 32×16 different normals and 32 tangent
angles by uniform sampling, thus, rl = 16384. For each
material, we sample 128 × 64 ωo-directions, i.e. nωo

ρ =
8192, Hence, excluding storage requirement for visibil-
ity, local-frame parameterization would require roughly
170 MB (without anisotropic materials) and 480 MB (with
anisotropic materials) before data compression. On the
contrast, global-frame parameterization requires 82 GB
without anisotropic materials using formulas in Table 1.

Fortunately, not all coefficients need to be stored. To
determine a strategy of selecting coefficients to store, we
have experimented with two different strategies. The first
one is adaptive, storing the n largest area-weighted coeffi-
cients. The second one is called top-only strategy, storing
only the n coefficients in the top level. Figure 7 shows
a comparison for them in terms of mean square errors. We
have found that, in general, the adaptive approach is bet-
ter than the top-only approach, but not by much as long as
n is sufficiently large. The reason why both have similar
performances could be explained by the tripling coeffi-
cient theorem for spherical wavelet in Sect. 3.1. It implies
that, for a triple product to contribute, at least two of the
lighting, visibility and BRDF functions must carry co-
efficients at the same level of details. Since there is no

Real-time triple product relighting using spherical local-frame parameterization 689

Fig. 7. Comparisons between adaptive and top-only strategies. Top
row shows reference image and renderings, and the bottom row
shows error for each pixel

way to predict where high-frequency parts will coincide
during precomputation, most high-frequency coefficients
are actually wasted because the other two functions do
not necessarily store high frequency there. Hence, other
than a few occasional matches, storing top-level coeffi-
cients first is a reasonable approach since they represents
more energy and are more likely to contribute. The top-
only approach is only worse than the adaptive approach
for hard shadows (where V and L happens to have high-
frequency coefficients of the same level at the same place)
and specularity (where ρ and L matches). But, the top-
only approach is better suited for GPU rendering because
of its regularity. Thus, users have to make a trade-off be-
tween speed and quality here.

To decide the number of coefficients to store, we have
performed experiments to determine the impact of number
on rendering quality. In general, we found that render-
ing with 80 or 320 coefficients gives sufficient quality
with real-time performance. Figure 8 shows a comparison.
After such a reduction, typical storage usages for lighting
and BRDF are 11.5 MB/46.1 MB and 7.2 MB/28.6 MB
(80/320) respectively.

Since all the rendering computation is performed in
GPU, in order to accelerate the rendering pipeline, all the
textures are quantized to 8-bit RGBA, and tiled so that
their sizes are powers of two in order to enable hardware-

Fig. 8. A comparison of rendering with different number of coeffi-
cients, 20, 80 and 320

based linear interpolation. For visibility texture, the tex-
ture size of per-vertex interpolated visibility depends on
the number of vertices, a 4096×4096 texture (maximum
size) can support up to 204K vertices. The size of the vis-
ibility texture depends on the UV resolution of the model.
We use a 1024 ×1024 ×128 3D texture for all results in
this paper.

4.2 Rendering

Given the textures generated at the precomputation stage,
to render at x, we use x’s normal n(x) and tangent t(x) to
look up nearby lighting functions and obtain coefficients

Fig. 9. Material editing of a glossy Buddha in Grace Cathedral.
The Buddha model is rendered using the Phong model with differ-
ent glossiness numbers. The bottom row shows closeup views of
the top row. Our system allows changing parameters of BRDFs by
sampling new BRDFs on the fly in a few seconds

690 W.-C. Ma et al.

Fig. 10. Rendering with spatially-varying BRDF. Both the Dragon
model and the floor are mapped with SBRDFs and the scene is
illuminated by the Uffizi Gallery environment map with different
orientations

Lx
i by interpolating coefficients of nearby lighting func-

tions. Similarly, we can retrieve coefficients V x
j and ρ̃

ωo
k

from the the corresponding textures, and then apply the
triple product algorithm to evaluate Eq. 7.

In our framework, spatially-variant BRDF can be ren-
dered easily by a linear combination of coefficients from
two different BRDF textures. It is also very simple to im-
plement bump mapping with local-frame parameterization
by rotating the lighting function the same amount as the
bump map indicates. Note that this is not a physically cor-
rect solution. The visibility function should rotate accord-
ingly but cannot get rotated easily. However, in practice,
we found this approximation works well visually.

5 Results

Rendering was performed and timings were collected on
a machine with Intel dual core Pentium D 3.2 GHz with
2GB memory and an ATI X1900 XTX with 512 MB
graphics memory. The rendering resolution is 1024×768.
Table 3 lists the average rendering speed under different
settings for wavelet coefficients and visibility estimation.
The "visibility texture" column, reports frame rates using
visibility textures, while the "interpolated visibility" col-
umn reports frame rates of rendering with estimated vis-
ibility by interpolating visibility functions of nearby ver-
tices. In the case of interpolated visibility, a floor of 26K

Table 3. Frame rates (in fps) of rendering models in this section
with different numbers of coefficients and visibility estimation ap-
proaches

Model Number of Visibility Texture Interpolated Visibility
Vertices 80 320 80 320

Dragon 25k 97.4 38.4 21.5 8.5
XYZRGB 50k 46.6 16.9 14.7 6.9
Buddha 50k 43.5 17.6 15.1 6.8

triangles must be used to provide comparable shadow ef-
fects.

Our system allows real-time rendering of objects with
complex materials. Figure 9 shows the results of a glossy
Buddha with different glossiness settings. Note that our
system could support interactive material editing. After
adjusting parameters of BRDFs, it typically takes 2 to 3

Fig. 11. A sphere rendered with Ward’s anisotropic BRDF with
αx = 0.1 and αy = 1.0. The image on the left is illuminated by an
area light source while the image on the left is illuminated by the
Grace Cathedral environment map

Fig. 12. Bump mapping. The floor is mapped with a wave bump
map and illuminated by the Grace Cathedral environment map
with different orientations

Fig. 13. The Buddha model is illuminated by a set of multiple area
light sources from three different orientations and casts shadows on
the ground

Real-time triple product relighting using spherical local-frame parameterization 691

Fig. 14. Rendering results of
objects with complex materi-
als under different viewing and
lighting conditions. Both the
XYZRGB Dragon model and the
floor are mapped with SBRDFs.
In addition, the floor is bump
mapped

seconds to resample the edited BRDF. Figure 10 demon-
strates the effects for spatially-varying BRDFs under two
different lighting conditions. Figure 11 shows the render-
ing of Ward’s anisotropic model. We use a sphere as the
model to clearly demonstrate the effects of anisotropic
models. Figure 12 displays bump mapping effects under
two different lighting conditions. Figure 13 shows com-
plex shadowing effects from multiple area light sources.
Finally, Fig. 14 demonstrates the combination of these ef-
fects.

6 Conclusions and future work

We present extensions to the triple product all-frequency
relighting method based on spherical wavelets, local-
frame parameterization and per-pixel shading. The result-
ing rendering algorithm, which is implemented purely on
GPUs, has real-time performance and per-pixel rendering
quality. With this configuration, we achieve comparable
quality to the previous triple product work [9], but two
orders of magnitude faster. There are several interesting
research directions we want to explore:

– Solution for rotating coefficients, continuous spheri-
cal wavelets and other basis functions. To solve the

rotation of lighting coefficients would be the most use-
ful. We could use repeatable property of icosahedrons
or seek for some continuous spherical wavelets which
have the same rotational property as the spherical har-
monics do.

– Integration with bi-directional texture functions. A bi-
directional texture function (BTF) describes spa-
tial variation of different 4D transport functions; it
captures effects such as self-shadowing and self-
occlusion. To the best of our knowledge, currently
there is no truly all-frequency relighting algorithm
for BTFs. We would like to investigate the possibility
to integrate the 6D BTF into our rendering frame-
work.

– Interactive material editing. Our framework is ca-
pable of changing BRDF parameters on the fly.
Currently, it takes a couple of seconds to do so.
With proper approximation and help of GPUs, it
is possible to make material editing more interac-
tive.

Acknowledgement The authors would like to thank Peter Pon for
his suggestions on GPU programming. This research was done
while Wan-Chun was a visiting scholar in Graphics Lab, Institute of
Creative Technologies, University of Southern California. This re-
search was supported by National Science Council of Taiwan under
NSC 94-2213-E-002-096.

References
1. Bonneau, G.P.: Optimal triangular Haar

bases for spherical data. In: IEEE
Visualization 1999, pp. 279–284 (1999)

2. Clarberg, P., Jarosz, W., Akenine-Moller,
T., Jensen, H.W.: Wavelet importance
sampling: Efficiently evaluating products of
complex functions. ACM Trans. Graph.
24(3), 1166–1175 (2005)

3. Green, P., Kautz, J., Matusik, W., Durand,
F.: View-dependent precomputed light
transport using nonlinear gaussian function
approximations. In: Proceedings of I3D
2006, pp. 7–14 (2006)

4. Gu, X., Gortler, S.J., Hoppe, H.: Geometry
images. In: Proceedings of SIGGRAPH
2002, pp. 355–361 (2002)

5. Kautz, J., Sloan, P.P., Snyder, J.: Fast,
arbitrary brdf shading for low-frequency
lighting using spherical harmonics. In:
Proceedings of EGWR 2002, pp. 291–296
(2002)

6. Lehtinen, J., Kautz, J.: Matrix radiance
transfer. In: Proceedings of I3D 2003, pp.
59–64 (2003)

7. Liu, X., Sloan, P.P., Shum, H.Y., Snyder, J.:
All-frequency precomputed radiance
transfer for glossy objects. In: Proceedings
of the EGSR 2004, pp. 337–344 (2004)

8. Ng, R., Ramamoorthi, R., Hanrahan, P.:
All-frequency shadows using non-linear
wavelet lighting approximation. ACM
Trans. Graph. 22(3), 376–381 (2003)

9. Ng, R., Ramamoorthi, R., Hanrahan, P.:
Triple product wavelet integrals for
all-frequency relighting. ACM Trans.
Graph. 23(3), 477–487 (2004)

10. Nielson, G.M., Jung, I.H., Sung, J.: Haar
wavelets over triangular domains with
applications to multiresolution models for
flow over a sphere. In: Proceedings of the
8th conference on Visualization 1997, pp.
143–149 (1997)

11. Ramamoorthi, R., Hanrahan, P.: An
efficient representation for irradiance
environment maps. In: Proceedings of
SIGGRAPH 2001, pp. 497–500 (2001)

12. Schröder, P., Sweldens, W.: Spherical
wavelets: efficiently representing functions

692 W.-C. Ma et al.

on the sphere. In: Proceedings of
SIGGRAPH 1995, pp. 161–172 (1995)

13. Schröder, P., Sweldens, W.: Spherical
wavelets: texture processing. In:
Proceedings of EGWR 1995, pp. 252–263
(1995)

14. Sloan, P.P.: Normal mapping for
precomputed radiance transfer. In:
Proceedings of I3D 2006, pp. 23–26 (2006)

15. Sloan, P.P., Hall, J., Hart, J., Snyder, J.:
Clustered principal components for
precomputed radiance transfer. ACM Trans.
Graph. 22(3), 382–391 (2003)

16. Sloan, P.P., Kautz, J., Snyder, J.:
Precomputed radiance transfer for real-time
rendering in dynamic, low-frequency
lighting environments. In: Proceedings of
SIGGRAPH 2002, pp. 527–536 (2002)

17. Sloan, P.P., Luna, B., Snyder, J.: Local,
deformable precomputed radiance transfer.
ACM Trans. Graph. 24(3), 1216–1224
(2005)

18. Tsai, Y.T., Shih, Z.C.: All-frequency
precomputed radiance transfer using
spherical radial basis functions and
clustered tensor approximation. In:
Proceedings of SIGGRAPH 2006 (to
appear)

19. Wang, R., Tran, J., Luebke, D.:
All-frequency relighting of non-diffuse
objects using separable BRDF
approximation. In: Proceedings of EGSR
2004, pp. 345–354 (2004)

20. Wang, R., Tran, J., Luebke, D.:
All-frequency interactive relighting of
translucent objects with single and multiple

scattering. ACM Trans. Graph. 24(3),
1202–1207 (2005)

21. Wang, R., Tran, J., Luebke, D.:
All-frequency relighting of glossy objects.
ACM Trans. Graph. (to appear)

22. Wang, Z., Leung, C.S., Zhu, Y.S., Wong,
T.T.: Data compression with spherical
wavelets and wavelets for the image-based
relighting. Comput. Vision Image Underst.
96(3), 327–344 (2004)

WAN-CHUN MA is a Ph.D. student in the Com-
munication and Multimedia Laboratory, Depart-
ment of Computer Science and Information En-
gineering at National Taiwan University. He re-
ceived his B.S. degree in Computer Science and
Information Engineering from National Taiwan
University in 2000. His research interests include
real-time rendering, image-based rendering and
modeling, GPU programming.

CHUN-TSE HSIAO is a Ph.D. student in Com-
munication and Multimedia Laboratory, Depart-
ment of Computer Science and Information En-
gineering at National Taiwan University. He re-
ceived his B.S. in Computer Science from Na-
tional Chung Cheng University in 2004. His
research interests include computer vision and
graphics. He is a student member of ACM SIG-
GRAPH.

KEN-YI LEE is a M.S. student in Communi-
cation and Multimedia Laboratory, Department
of Computer Science and Information Engineer-
ing at National Taiwan University. He received
his B.S. degree in Computer Science and Infor-
mation Engineering from National Taiwan Uni-
versity in 2005. His research interests include
real-time rendering and image processing.

YUNG-YU CHUANG is an Assistant Professor
in the Department of Computer Science and In-
formation Engineering at National Taiwan Uni-
versity. He received his B.S. and M.S. from
National Taiwan University in 1993 and 1995,
respectively, Ph.D. from University of Wash-
ington in 2004, all in Computer Science. His
research interests includes real-time and realis-
tic rendering, digital photography and computer
vision.

BING-YU CHEN received the B.S. and M.S.
degrees in Computer Science and Information
Engineering from the National Taiwan Univer-
sity, Taipei, in 1995 and 1997, respectively, and
received the Ph.D. degree in Information Science
from the University of Tokyo, Japan, in 2003. He
is currently an assistant professor in the Depart-
ment of Information Management and the Grad-
uate Institute of Networking and Multimedia of
the National Taiwan University since 2003. His
research interest are mainly for computer graph-
ics, geometric modeling, computer animation,
web and mobile graphics. He is a member of
ACM, ACM SIGGRAPH, Eurographics, IEEE,
IEICE, and IICM.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

