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A Theoretical Investigation of Low-Dimensional Bose-Einstein Condensations
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Low-dimensional Bose-Einstein condensations (BEC) for g(ε) (the density of states) =
Cdε

d−1 with d ≤ 1, corresponding to a dimensionality of not larger than 2, are theoretically
analyzed. When the energy quantization of the first excited state is taken into account,
the boson number in the excited states is finite even for d ≤ 1 with the density of states
remaining proportional to εd−1. The condensation temperature increases with the particle
number faster for d ≤ 1 than for d > 1. The condensation depends highly on the quantized
energy ε1 of the first excited state. When ε1 just deviates slightly from zero, the condensation
temperature quickly increases with ε1. Theoretical estimation shows that a low-dimensional
BEC can occur at a temperature above 1 K for excitons in semiconductor quantum wells
even without the harmonic-oscillator potential.

PACS numbers: 05.30.Jp, 03.75.Hh, 64.60.-i

I. INTRODUCTION

The Bose-Einstein condensation (BEC) has attracted significant attention recently. It
has been observed in atoms [1–4] and molecules [5, 6]. A BEC of excitons in semiconductors
[7–9] is also expected. In the past, a low-dimensional BEC was deemed to be impossible
unless the potential is modified, and so the density of states g(ε) (= Cdε

d−1) is changed
to have d > 1. The conditions with modified potentials are like the harmonic oscillator
potential [10–13], power-law traps [14], optical lattices [15], and so on. In this work, we
derive the low dimensional BEC for the density of states g(ε) (= Cdε

d−1) with d ≤ 1 and
compare it with the situation when d > 1. In contradiction to conventional concepts, the
derivation shows that a low dimensional BEC could occur at a higher temperature for d ≤ 1
than for d > 1.

The density of states plays a crucial role for explaining the existence of a BEC. The
density of states for the general 3-dimensional case has the form of g(ε) = C3Dε1/2, so the

integral
∫ g(ε)dε

Z−1eβε
−1

converges, giving rise to a finite number of bosons in the excited states.
For the 2-dimensional case or lower dimensionality without special types of potentials,
g(ε) = Cdε

d−1 with d ≤ 1. A low dimensional BEC is supposed to be impossible because
the integral for excited states diverges [16] as long as the density of states has the form
g(ε) = Cdε

d−1 with d ≤ 1. It would lead to a near-to-zero number of bosons in the
ground state, so there is no condensation. However, the divergence is actually caused by
the singular point at ε = 0. In a practical physical system, the excited states cannot start
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from ε = 0. In particular, when the quantization of energy is taken into account, there is
always an energy difference ∆ε between the ground state and the first excited state. If the
integral

∫ g(ε)dε
Z−1eβε

−1
excludes the ground state, the integration converges for ∆ε > 0. Then,

even though the density of states g(ε) (= Cdε
d−1) of low dimensionality retains its original

form, i.e., d ≤ 1, a BEC still occurs.

II. CONVERGENCE OR DIVERGENCE OF THE INTEGRAL
∫

∞

0
g(ε)dε

Z−1eβε
−1

For a boson system consisting of many energy states ε0, ε1, ε2, . . ., the total number
of bosons is given by

N =
∑

i=0

1

Z−1eβεi − 1
, (1)

where Z = eβµ, β = 1/kT. The total number can be further divided into two terms: the
number N0 in the ground state with energy ε0 and the number Nex in the excited states
with energies ε1, ε2, . . .. ε0 is usually treated as zero for the simplicity of discussion, ε0 = 0.
Then we have

N0 =
Z

1 − Z
, (2)

Nex =
∑

i=1

1

Z−1eβεi − 1
. (3)

When the energy levels are closely spaced, the summation of (3) is replaced with the integral

Nex =

∫

∞

0

g(ε)dε

Z−1eβε − 1
. (4)

where g(ε) represents the density of states. The above integral is obtained under the
assumption that ε1 → 0. In reality, the calculation of the excited states with the integral
should start from ε1 instead of 0, i.e.,

Nex =

∫

∞

ε1

g(ε)dε

Z−1eβε − 1
. (5)

The above integral (5) can be written as two terms

Nex =

∫

∞

ε1

g(ε)dε

Z−1eβε − 1
=

∫

∞

0

g(ε)dε

Z−1eβε − 1
−

∫ ε1

0

g(ε)dε

Z−1eβε − 1
. (6)

If g(ε) (= Cdε
d−1) has d > 1, corresponding to the dimension larger than 2, the second term

on the right hand side (RHS) of (6) approaches zero for ε1 → 0. Therefore, it makes no
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FIG. 1: Variation of boson number in the excited states Nex) with the first excited energy ε1.

difference whether the integration for the excited states starts from ε1 = 0 or not. However,
when d ≤ 1, this term diverges. Therefore, it is important to do the integration excluding
ε1 = 0. In the following, we will first study the situation for d = 1, which represents the
2-dimensional case. That is, the particles are confined along the axis (called the third axis)
perpendicular to the plane along which they can easily move. Because of the confinement
along the third axis, the density of states g(ε) (= Cdε

d−1) has d=1. Then the number Nex

in the excited states is given by

Nex =

∫

∞

ε1

C1dε

Z−1eβε − 1
. (7)

The RHS of the above equation can be integrated to obtain

Nex = −C1kT ln(1 − Ze−ε1/kT ) = −C1kT ln[1 − e−(ε1−µ)/kT ] . (8)

Because Z ≤ 1, Nex is always less than the value for Z = 1. As Z → 1, the above equation
becomes

Nex = −C1kT ln(1 − e−ε1/kT ) (9)

Fig. 1 shows the variation of Nex with ε1 for Z = 1. When ε1 approaches zero, Nex

becomes infinite. This clearly indicates that the reason for the divergence of the number
Nex in the excited states is due to the approximation of ε1 by zero. If ε1 6= 0, Nex is finite
even when Z → 1.
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FIG. 2: Nex and N0 vs. temperature for a different total number density of bosons. (Temperature
is represented as kT in units of ε1. The boson number is in units of C1ε1.)

III. DISCUSSION OF THE BOSE-EINSTEIN CONDENSATION IN THE LOW-

DIMENSIONAL CASE

When the total number N of bosons is larger than the number Nex in the excited
states, a BEC occurs. The number condensed in the ground state is given by

N0 = N − Nex = N + C1kT ln(1 − Ze−ε1/kT ). (10)

As the condensation number N0 is large, Z → 1, so

N0 = N − Nex = N + C1kT ln(1 − e−ε1/kT ). (11)

Fig. 2 shows Nex and N0 vs. temperature for a different numbers density n of bosons,
where nex and n0 are number densities, defined as Nex and N0 divided by the volume V ,
respectively, ad n = N/V . It is clear that condensation occurs at temperatures above 0
K and the condensation temperature increases with the total number of bosons. For the
three-dimensional case (d = 3/2) and the three-dimensional harmonic-oscillator potential
(d = 3), the condensation temperature is analytically related to the total number of bosons,
Tc ∝ N1/d. In the two dimensional case with d = 1, there is no analytical formula to describe
the condensation temperature. However, it can still be obtained from the intersection of a
series of curves with the abscissa shown in Fig. 2. The condensation temperature Tc vs. the
total numbers of bosons N for d = 1 is shown by Curve (a) in Fig. 3. The number density
n is defined as the total number of bosons N divided by the colume V . Curves (b) and (c)
are also shown in Fig. 3 for comparison. Curve (b) represents the relation Tc ∝ N2/3, which
is the three-dimensional case (d = 3/2), and Curve (c) shows the relation Tc ∝ N1/3 for the
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FIG. 3: Condensation temperature Tc vs. the total numbers of bosons N for d = 1. Curve (b)
shows the relation Tc ∝ N2/3 for the case of d = 3/2. Curve (c) shows the relation Tc ∝ N1/3 for
the case of d = 3. Curves (b) and (c) are multiplied by different factors for easy comparison.

case of the three-dimensional harmonic oscillator potential (d = 3). Curves (b) and (c) are
multiplied by different factors from Curve (a) for easy comparison. Fig. 3 shows that the
condensation temperature increases with N faster in the two dimensional case with d = 1
than the other two situations (d > 1). It indicates that a smaller d value results in more
states at low energy, so a BEC should more easily occur.

The BEC for the case of d = 1 highly depends on the energy ε1. Fig. 4 shows the
variation of the condensation number density n0 with temperature for various ε1 under a
fixed number density of n. ε1 is in units of ε, which is an arbitrary energy unit used as
a parameter for comparison. From these curves, we are able to obtain the variation of
the condensation temperature with ε1, as shown in Fig. 5. For small ε1, the condensation
temperature quickly increases with ε1. In other words, the nonzero value of the quantized
energy ε1 is very crucial for the existence of a BEC in the low-dimensional case.

In the curves shown above, kT is much larger than ε1 for most of the ranges. Thus
the energy levels are treated as closely spaced compared to kT, and the summation (3) can
be replaced with an integral assuring the validity of the above calculation.

IV. BOSE-EINSTEIN CONDENSATION FOR d < 1

For d < 1, corresponding to a dimensionality lower than 2, we also calculate the
integration for Nex starting from ε1.

Nex =

∫

∞

ε1

Cdε
d−1 dε

Z−1eβε − 1
(12)
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FIG. 4: Variation of the condensation number N0 with temperature for various ε1 under the condi-
tion of N = 500C1ε1. ε is an arbitrary unit of energy used as a parameter for comparison.

FIG. 5: Variation of the condensation temperature with ε1. ε is an arbitrary unit of energy used as
a parameter for comparison.

Rewrite the integral as

Nex =

∫

∞

ε1

Cd dε

Z−1ε1−deβε − 1
<

∞
∫

ε1

Cd dε

Z−1ε1−d
1 eβε − 1

=
Cd

C1

1

ε1−d
1

∫

∞

ε1

C1dε

Z−1eβε − 1
(13)



VOL. 44 Ching-Fuh Lin 85

FIG. 6: A schematic of the example for excitons confined in the region with a QW. The lateral
dimension is L.

where
∫

∞

ε1

C1dε
Z−1eβε

−1
= −C1kT ln(1 − e−ε1/kT ). Then we have Nex(d < 1) <

−Cd
1

ε1−d
1

kT ln
(

1 − e−ε1/kT
)

, so the condensation number N0(d < 1) = N − Nex >

N − Cd
1

ε1−d
1

kT ln
(

1 − e−ε1/kT
)

. Therefore, the number of bosons in the ground state N0

for d < 1 increases with the temperature faster than the situation of d = 1, indicating that
the BEC occurs more easily for d < 1. It also highly depends on the quantized energy level
ε1. This is reasonable because a smaller d value means smaller dimensionality and hence
more states in the low energy, so a BEC should more easily occur.

V. ATOMS OR EXCITONS CONFINED IN LOW DIMENSIONS

It might be difficult to create a potential with 1D or 2D confinement for atoms.
However, it is relatively easy to confine excitons in a slab structure such as quantum wells
(QWs) [9]. With a limited range of the QW structure, the energy in the momentum space
can be easily treated as quantized values. The above derivation and calculation can thus
be illustrated using such an example. For QWs, the energy is described as

E(n, kx, ky) =
π2h̄2n2

2m∗W 2
+

h̄2k2
x

2m∗
+

h̄2k2
y

2m∗
(14)

Here the potential variation of the QW is along the z axis; W is the well width and n is an
integer. When the excitons are limited in a region along the x and y axes with the size of
L, kx = ky = 2πm

L , where m is an integer, the first excited energy level in the momentum
space along the x and y directions is

ε1 =
2π2h̄2

m∗L2
(15)

.
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A schematic of such an example is shown in Fig. 6. This structure can be easily
fabricated using semiconductor processing techniques. The center region of the plateau
with the lateral length L is created by etching down the substrate deep enough, so the QW
(marked as the thick black lines) is above the etched bottom. The lateral dimension L is
much larger than the width W of the QW. Within the plateau region with the size of L,
the potential along the x and y axes is constant instead of a harmonic one. For L = 20
µm, ε1 is around 10−8 eV. As the temperature is near 1 K, ε1 is still much less than kT, so
the summation (3) can be well approximated with an integration. However, such a small
ε1 already results in significant difference from ε1 = 0. The density of states for the QW
is given by g(ε) = C1 = m∗

πh̄2 [17]. If the density of the excitons in the QW is 1012 cm−2,
the condensation temperature can be above 1 K. This might explain the observation of the
BEC in Ref. [9], where the potential might not be that of a harmonic-oscillator upon careful
examination of the reported data. According to the above theoretical derivation, a BEC
could occur in QWs without the necessity of a harmonic-oscillator potential.

VI. CONCLUSION

We theoretically analyzed the BEC for g(ε) (= Cdε
d−1) with d ≤ 1, which corresponds

to a dimensionality of not larger than 2. When the energy quantization of the first excited
state is taken into account, the condensation temperature increases with the particle number
faster in the case of d = 1 than in the situation with d > 1. The condensation highly depends
on the quantized energy ε1 of the first excited state. The condensation temperature quickly
increases when ε1 deviates from zero. Our theoretical estimation shows that 2-dimensional
excitons in semiconductors like QWs could have a BEC at temperatures above 1 K without
a harmonic-oscillator potential.
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