Real-time realisation of noise-immune gradient-based

edge detector

P.-Y. Hsiao, C.-H. Chen, H. Wen and S.-J. Chen

Abstract: A computational field-programmable gate array (FPGA) realisation for edge detection
that is particularly immune to noise by a digital approximated Gaussian smoothing filter is
described. The proposed systolic array architecture was examined for convolution operation in
order to put simplicity and regularity to the design. Moreover, most of the presented processing
structures are highly pipelined, so that the goal of real-time computing is substantially achieved
with the processing frame rate reaching up to 280 frames per second. For an efficient hardware
mapping, the absolute difference mask algorithm was adopted because of its regularity and inde-
pendent operations, as well as its important property of performing one-pixel-edge localisation.
A scalable first in, first out (FIFO) design was also proposed to make the edge detector applicable
to five different image sizes. The FPGA realisation on the presented versatile development platform
shows that the proposed design improves both the speed and the hardware usage. This is attributed
to the utilisation of the proposed parallel and pipelined structure so that a fast operating speed of
73.6 MHz, which is about 265 times faster than the digital signal processing environment, is

obtained in the present investigation.

1 Introduction

Edge detection plays a key role in the widespread
application of image processing such as in computer
vision [1—4], pattern analysis [5—7] and so on. Basically,
edges can be identified as the locations of abrupt discontinu-
ity in the grey level of an image [1, 5, 8]. Although edge
detection is mostly employed in the pre-processing step of
image processing, the resulting quality of edges may
seriously affect the performance of the remaining steps.
As described in the literature on digital image processing,
edge detection can be done in both spatial and frequency
domains [8—11], wherein the spatial domain filtering
shows more versatility and feasibility.

As the computation speed of application-specific inte-
grated circuits (ICs) and general-purpose processors has
grown exponentially in recent years, more and more
studies have been devoted to optimising and speeding-up
those computationally-complex applications. Gradient
image acquisition is the usual method for edge detection.
Indeed, it performs quite well in spite of the fact that the
operations are much simpler than those of advanced
algorithms like the Canny edge detector [10]. The most
widely used edge detectors in low-level edge detection
are the 3 x 3 masks such as those of Sobel and Prewitt
wherein they extract the first-order derivatives of an
image. However, a review of the literature reveals
that all of these methods start from a mathematical

© The Institution of Engineering and Technology 2006
IEE Proceedings online no. 20050199
doi:10.1049/ip-cdt:20050199

Paper first received 25th November 2005 and in revised form 28th February
2006

P.-Y. Hsiao and H. Wen are with the Department of Electronic Engineering,
Chang Gung University, 259 Wen-Haw Ist Road, Kwei-Shan Tao-Yuan 333,
Taiwan, Republic of China

C.-H. Chen and S.-J. Chen are with the Department of Electrical Engineering,
National Taiwan University, 1 Roosevelt Rd. Sec. 4, Taipei 106, Taiwan,
Republic of China

E-mail: pyhsiao@mail.cgu.edu.tw

IEE Proc.-Comput. Digit. Tech., Vol. 153, No. 4, July 2006

manipulation before a software-oriented algorithm is devel-
oped. Afterwards, the hardware realisation is eventually
tackled. On the other hand, the adopted low-computational
complexity of the absolute difference mask (ADM)
algorithm [9] is especially suitable for hardware realisation.

With the advantages of rapid prototyping and ease of
verification, using the field-programmable gate array
(FPGA) is a good choice for realising image processing
hardware design. Several FPGA and/or very large scale
integration (VLSI) usages of image processing realisations
have been presented in recent years [3, 4, 6, 7, 11-18]. In
the present paper, we employ a systolic array structure to
optimise the design that has proven to be highly regular
and efficient for mask operation [12].

2 Noise reduction strategies
2.1 Spatial filtering

For most applications, image processing tasks are applied to
real world images. As the source images are usually
retrieved from the complementary metal-oxide-semicon-
ductor (CMOS) or charge-coupled device (CCD) image
acquisition devices, such as 1D scanners or 2D digital still
cameras, noise signal is easily introduced into the image
during the acquisition stage and an additional step is
required to eliminate it. These noise signals can be visually
recognised as dots in the images that appear in a distinctive
greyscale value from the quantised number point-of-view.

The technique of noise reduction usually involves the
averaging of all the values within the local area using
various sizes of masks. As expected, a larger-sized aver-
aging mask has a better noise reduction capability because
more pixels contribute their values to the target pixel.
After a local averaging, an image would look blurred or
smoothed. This is the reason why the noise reduction
process is usually called the smoothing process. The most
commonly used averaging mask is shown in Fig. la.
However, images processed by this mask become quite
blurred and a lot of detailed information contained in the

261

I EIERE —x |2
16
TEE 1

TN AN
N

a

Fig. 1 Averaging masks for smoothing

a Common averaging mask
b Weighted averaging mask

original image can be lost. A more practical averaging mask
is the weighted average mask that gives more emphasis on
the centre pixel. The weights are larger in the central area
and decrease in the outer positions. An example of the
weighted average mask is illustrated in Fig. 15.

2.2 Gaussian mask

In the present study, we chose the weighted averaging mask
for noise reduction, particularly the 2D Gaussian function
for coefficient selection. An example of the distribution of
the 2D Gaussian function is shown in Fig. 2 with a standard
deviation o= 0.9.

The Gaussian function is a good model for weighted
averaging mask. With different standard deviations o, we
obtain various weighted masks with different decay rates
and smoothing capabilities. In the present design, we used
a 5 x5 smoothing mask for better performance and
feasibility. The coefficients of the mask are generated by
substituting x and y with —2, —1, 0, 1, 2 in the 2D
Gaussian equation. Fig. 3 shows the results of the
Gaussian mask at = 0.9 and 1.2.

2.3 Gaussian 2" approximation

Our goal is to design a hardware smoothing unit for noise
reduction with simple and nearly optimal smoothing
filters. The aforementioned masks shown in Fig. 3 have
coefficients that are difficult to apply on hardware because
they are all floating-point numbers. However, we can still
approximate those values using one or more power-of-two
terms that can be effectively applied in digital circuits.

To generate the desired 2"-approximated mask, we first
define A as the number of terms used to approximate the
original coefficients and we let A be either 2 or 3. Thus,
two power-of-two terms will be used if A =2 or three
terms at the most if otherwise. The list of the decimal

[Jo=09

08 A
o / i tt y
- ff;"’ﬂ“t“i‘ i
0.4)
AT
AN
0.2+ i
BT
0 A
it o
2 e AR L T
AN

y-axis 2 2

H-axis

Fig. 2 Distribution of 2D Gaussian function

262

0.001418{0.009035|0.016750{0.009035|0.001418| 10.007332(0.020779|0.029406|0.020779(0.007332

0.009035(0.057569 (0.106727|0.057569|0.009035| [0.020779|0.058888|0.083334|0.058888|0.020779

0.016750(0.106727(0.197859|0.106727|0.016750| |0.029406(0.083334/0.117928|0.0833340.029406

0.009035{0.057569|0.106727{0.057569|0.009035| 10.020779(0.058888|0.083334/0.058888(0.020779

0.001418{0.009035|0.016750{0.009035|0.001418| 10.007332(0.020779|0.029406|0.020779(0.007332

a b

Fig.3 Two examples of 5x 5 Gaussian masks

a c=09
bo=12

values of power-of-two terms with the power range from
0 to —7 is as follows:

2° =1.000000 27! =0.500000
272 =0.250000 27 =0.125000
274 =0.062500 27> =0.031250
270 =10.015625 277 =10.007813

Then, we develop a heuristic algorithm to generate the
2"-approximated Gaussian masks. First we approximate
each of the 5 x 5 elements by successively passing each
of the power-of-two terms listed earlier. If the remaining
value of the element is larger or equal to a term, we subtract
that value from that term. This operation is repeated for this
element until either the number of terms, A, for the element
is reached, or the remaining value is less than 27’ This
method is applied to all the 5 x 5 elements. Note that, if
the original coefficient is smaller than 277, 0 will be used
to approximate the value.

The normalisation term for each mask is estimated by
first summing up all of the twenty-five 2"-approximated
values. Then the 2" approximation for this normalisation
term is determined using the same method for the 5 x 5
elements, except that the range of the power-of-two term
is extended to 27 '° instead of 277, Two examples of the
2"-approximated Gaussian masks for o= 0.9, A =3 and
for 0 = 1.2, A = 2 are illustrated in Fig. 4.

To describe the errors between the original Gaussian
mask and the 2"-approximated Gaussian mask in a formal
way, we define each of the normalised elements in the
original Gaussian mask as

Golis)i j=1-5,0-0.1-5

We can also define each of the approximated normalised
elements in the 2"-approximated Gaussian mask as

A\ (G)] j=1-5,0=0.1-5.1=20r3

Consequently, the absolute accumulated error for the
2"-approximated Gaussian mask is defined as

5 5

Eo’)\ = Z Z |Go(l’]) _AO')\(i’j)|

i=1 j=1

The decision for the acceptable accumulated error affects
the algorithm we adopted to approximate the Gaussian
mask. Fig. 5 shows the distribution of the accumulated
errors for A =2 and A = 3 2"-approximation with respect
to the standard deviation from 0.1 to 5.0. On the basis

IEE Proc.-Comput. Digit. Tech., Vol. 153, No. 4, July 2006

24 2228+ 2 2222282t 2t

@ -3 +2-8 +2-9) x 23 |plyo2p0d| 9040l odlolin2 o 93

24 22493104014 024 0492, 93,04 24

0 22 224273 22 0

22 27422 | 29422 | 214272 22

(2-4 +2-7) y 22493 20402 20401 20402 22493

22 21422 20422 21422 22

0 22 224273 22 0

b

Fig. 4 Two examples of 2"-approximated 5x 5 Gaussian masks

a oc=09, A=3
bo=12,A=2

of empirical experiences, we chose the acceptable
accumulated error for o to be within [0, 0.15].

3 Gradient-based ADM algorithm

The edge detection algorithm, proposed by Alzahrani and
Chen [9], presents a regular computational structure that
is suitable for a VLSI implementation and integration, and
is divided into the three stages shown in Fig. 6. The fact
that the algorithm can be designed in a highly pipelined
fashion helps to produce one single-pixel localised edge
per clock cycle. The first stage is dedicated to noise
removal so that the features can be correctly extracted.
The second stage involves the determination of the edge
strength and direction of each pixel. Finally, the edge detec-
tion and localisation are performed, and the single-pixel
edge map is produced for further processing in the last
stage. In the present paper, we propose an efficient pipelined
structure to accomplish the aforementioned three-staged
algorithm, which is different from the tree-based architec-
ture that appeared in the previous implementation [9].

In Fig. 6, the Gaussian smoothing filter is employed to
perform the image smoothing of the first stage. Here we

Input image

Gaussian smoothing

y

Edge strength calculation

v

Edge localisation

v

One-pixel edge map

Fig. 6 Processing stages

=3

=2 and \

o
=
N

0.10
0.09263

0.08

Accumulated Error E_, for A

—o—A=2 =+)A=3

0.1 0.6 11 1.6 21

2.6 31 3.6 4.1 4.6

Standard Deviation o

Fig.5 Accumulated error for A = 2, = 3 with respect to standard deviation o

IEE Proc.-Comput. Digit. Tech., Vol. 153, No. 4, July 2006

263

adopted our 2"-approximated Gaussian mask instead of the
semi-Gaussian mask proposed by Alzahrani and Chen [9].
The semi-Gaussian mask is a 5 x 5 digitally approximated
smoothing filter that is simpler than our proposed
2"-approximated Gaussian mask in Section 2, but has a
much higher accumulated error. It actually averages all
the grey values of the pixels in the 5 x 5 area with decaying
weights. The coefficients of this mask are selected to be in
the form of 1, 3/4, 1/2, 1/4 in order that the operations can
be performed in the hardware by merely adding and bit-
shifting operations. Fig. 7 illustrates the semi-Gaussian
smoothing mask proposed by Alzahrani and Chen [9].
Note that in Fig. 7, all elements are divided by two and
the normalisation coefficient is multiplied by two for an
easy comparison between the semi-Gaussian mask and
our 2"-approximated Gaussian masks.

In the work of Alzahrani and Chen [9], we did not find
any information on which o to use in order to generate
the semi-Gaussian mask. Thus, we conducted a simple
experiment to determine it. The semi-Gaussian mask was
passed to all the real Gaussian masks with ¢ in the range
of [0.1, 5]. The absolute-accumulated-error curve obtained

Fig. 7 Semi-Gaussian smoothing mask proposed by Alzahrani
and Chen [3]

between the semi-Gaussian mask and each of the o is pre-
sented in Fig. 8. From the results, we could predict that
the original mask [9] was generated at o = 1.7, as it gave
the smallest error.

From Figs. 5 and 8, we can see that under the same stan-
dard deviation of o= 1.7, the proposed 2"-approximated
Gaussian mask has a Dbetter precision over the
semi-Gaussian mask, regardless of the terms employed.
For a more precise Gaussian-approximated smoothing
mask, we adopted our o= 1.7, A =2 2"-approximated
mask in the present paper as shown in Fig. 9.

The second stage shown in Fig. 6 calculates the edge
strength and direction of each pixel. After finding the four
absolute differences, the ADM algorithm chooses the
maximum value as the edge strength, and the direction
corresponding to the minimum value as the edge direction.
Note that for each direction, the difference is calculated
using four pixels instead of two in order to obtain better
precision.

Once the edge strength is determined, a local maximum is
calculated, that is one pixel is compared with two
neighbouring pixels in the edge direction. The maximum

2° 2%42° 2! 2%42° 2

22493 | o402 | 21402 | 2402 | 22408

2_4 2t 2402 | %0 | ol4p? 2t

2%42° | 24427 | 2427 | 2427 | 2%42°

22 [2%2° | 2t | 2%t 27

Fig.9 Proposed 2"-approximated Gaussian smoothing mask for
A=2,0=17

o=1.7

Semi-Gaussian Mask Error
o
S

011007 |--==ssmmmssmmmnsmmmnsmn s S
010

Semi-Gaussian

0.1 0.6 11 1.6 2.1

2.6 3.1 3.6 4.1 4.6

Standard Deviation

Fig. 8 Semi-Gaussian mask error with respect to standard deviation o

Note that the semi-Gaussian error for o < 1.0 is way over 0.4 and thus omitted here

264

IEE Proc.-Comput. Digit. Tech., Vol. 153, No. 4, July 2006

(0,1) £(0,00—{ (0.0) (01)

0.2)

0,3) 0,4)

f(1,1) f(1,0—> 1.0) @y

(1,3) 1,4)

f(2,1) £(2,00—»] (20) (21)

(23) @4

f(3,1) f(3,0—> G0 @31

(3.3) (3.4)

f(4,1) f(4,0)—» (40 @1

LLLiL
CLLLL
CLLLL

(4,3) (4,4)

+

CLLLLL

f(2,2) f(2,3)

Fig. 10 Proposed 5x 5 systolic array for the smoothing unit

greylevel pixel in the 3 x 3 region goes through the final
thresholding step. Thus, those pixels that are greater than
the threshold are identified as edge points.

4 Pipelined architecture and timing analysis

In addition to two of our schemes for a scalable first in first
out (FIFO) design, the proposed architecture is divided into
three function units that correspond to the three stages
described in Section 3. As shown later on, the major modi-
fications and improvements over the original design are
Scheme 2 scalable FIFO design, the more precise
Gaussian smoothing unit and the edge localisation unit.
The scalable FIFO design enables the possibility of using
the same hardware resource to process images with five
different sizes. With the proposed optimised architecture,
not only is the hardware usage reduced, but also the path
delay is considerably improved.

4.1 Systolic Gaussian smoothing unit

As the convolution is the sum of the products of each pixel
and the corresponding mask coefficient, the arithmetic oper-
ation can be executed independently. Thus, the parallel
architecture of a 5 x 5 systolic array, as shown in Fig. 10,
is presented. Each processing element (PE) in this array
should be responsible for the pixel-weighting multiplication
and the addition with the preceding stage PE. As multipli-
cation requires a large hardware resource and longer
execution time, the proposed architecture rearranges all
the coefficients so that it can be implemented simply by
bit-shifting. Fig. 10 illustrates the data flow in the systolic
array and Fig. 11 unveils the inner structures of the PEs.
Note that we divided the PEs into four categories according
to their positions in the array. Their structures are slightly
different to enable hardware resources to be saved.

For example, Fig. 11c is the general form of the PE that is
used in the lower left 4 x 4 area shown in Fig. 10. As the
horizontal dashed line is elaborated, the PE operates in a
pipelined manner in order to meet the timing demand for
the systolic array to ensure the correctness of the function.
Fig. 11a shows the structure of the upper four PEs as
depicted in Fig. 10. This structure is a simplified version
of the general PE wherein the data path of the preceding

IEE Proc.-Comput. Digit. Tech., Vol. 153, No. 4, July 2006

row input is removed. The structure shown in Fig. 115 is
also derived from the general PE and is mounted on the
upper-right corner of the systolic array. The data path of
the input from the preceding row and that of the output in
the next column are all eliminated. Finally, Fig. 11d
shows the structure of the four right PEs with the data
path of output in the next column removed. Another import-
ant component is the delay unit for the control of incoming
data. Five pixel data obtained from the FIFO should be
delayed by one more clock cycle than the previous row.

4.2 Edge strength unit and edge location unit
Edge strength and direction are determined by comparing

four absolute differences. To keep this unit functioning cor-
rectly, the most intuitive way of designing it is to form a

Coefficient

Selection Unit

Coefficient
Selection Unit

LATCH rCH
f
SUM_OUT SUM_OUT
a b
Pre_SUM Pre_SUM
f f
ffici Coefficient
[CATCH]] [[ATcH |
SUM_OUT f SUM_OUT
c d

Fig. 11 PE structures in four different positions
a Upper

b Upper-right

¢ General

d Right

265

b a 8 R
8 E E(Tge
P5(7:0) 3 1 1 5
8 2 é MUX _E: MUX —] L 3D_ .
Irection
=y i
5 Volt - boa
olts
Final AND
T7(7:0) — ASB 3
< mg-
PY(7:0) 3
P6(7:0) ‘mxl _| <EA78
s, Hlaes . o
B o zZ
1 = <
P1(7:0) <o)
P4(720) 4101
P3(7:0) mux
P2(7:0)
d5(2:0) I

Fig. 12 Optimised structure of the edge localisation unit

parallel-pipeline so that 16 inputs, 8 additions, 4 absolute The edge location unit performs the one-pixel edge local-
difference calculations and comparisons can be completed isation by comparing the edge strength values of the centre
in 4 clock cycles. Here we basically keep the original pixel with that of the other two edge pixels in the derived

design of the unit intact. edge direction. In the original design, there were nine

RAM Based

D-FF| D-FF D-FF D-FF D-FF| 1 Shift Registers
Depth=27

le in[7:0]I A I A I A I A I A
|, RAM Based

°r's'§ Shift Registers
Depth=59

pxl_out[7:0]

RAM Based
T Shift Registers
Depth=123

N RAM Based
Shift Registers
Depth=251

RAM Based
Shift Registers
Depth=507

scl_sel

RAM Based N
Shift Registers
Depth=27 8

4 pxI_out[7:0]

RAM Based
Shift Registers
Depth=32

RAM Based
Shift Registers
Depth=64

RAM Based
Shift Registers
Depth=128

RAM Based
Shift Registers
Depth=256

scl_;el

3

Fig. 13 Scalable FIFO

a Scheme 1
b Scheme 2

266 IEE Proc.-Comput. Digit. Tech., Vol. 153, No. 4, July 2006

Table 1: Hardware usage of scalable FIFO schemes

Fixed size Scalable
(512 x 512) Scheme 1 Scheme 2
Hardware usage 132 160 258 968 137 368
(gate counts)
Input Image
D(i%8
FIFO, FIFO, FIFO,
(512x4+5) Shift Registers (512x4+5) Shift Registers (512x2+3) Shift Registers

Fo()| 40 Fi(/{128 F()/ 75

Smoothing Unit

(5x5 Systolic Array) Edge Strength Unit

Edge Localization Unit

Output Image

D(i): Input Data of FIFOq

S(k): Input Data of FIFO,

T(m): Input Data of FIFO,

L(o): Output Data for Edge Map

Fo(j):Input data of smoothing Unit
Fi(1):Input data of Strength Unit
Fo(n):Input data of Localization Unit

Fig. 14 Pipelined computational structure

comparators used for edge localisation, but only three com-
parators are used in the present work. The reason behind this
is that we first multiplex four input pairs, which are
controlled by the edge direction, ahead of the comparison
rather than doing it afterwards. It is noted that about 66%
of the hardware resources are saved in this unit compared
with the design of Alzahrani and Chen. The optimised struc-
ture is shown in Fig. 12, wherein the ‘Final’ control signal
decides the edge map output as a binary image while
‘Final’ = 0, or as the original grey values of the edge
pixels while ‘Final’ = 1.

4.3 Scalable FIFO design

As the size of the FIFO depends on the size of the input
image, it is a good idea to design a FIFO that is applicable
to various image sizes. With a run-time reconfiguration
capability, the hardware is capable of handling images of
different sizes without service downtime. Take the
FPGA-based hardware design as an example. In order to
adjust the design so that the hardware can perform
image processing tasks of different image sizes, a
code modification and a full recompilation to generate
the FPGA ROM file are required. The whole process is

Table 2: lllustration of the latency calculation

time-consuming and the application-specific integrated
circuit (ASIC) digital tape-out flow is even more costly.
For the more recent and advanced FPGA technology, to
reconfigure hardware still requires some microcode reconfi-
guration that can take fewer service downtimes, but not very
many FPGAs support this feature.

The common sizes of input images are usually powers of
two. Thus, we developed a scalable FIFO that can be used
for five different sizes, namely, 32, 64, 128, 256 and 512
bits. However, the way we developed this flexible structure
determines the hardware usage of the whole design and
thus, we had to find out the best structure with minimal
hardware usage. Below, we propose two schemes to
implement a scalable FIFO and we prove that Scheme 2
is the most efficient way to complete the task.

Fig. 13a is the straightforward Scheme 1 to complete a
scalable FIFO design where five shift register components
in different sizes are multiplexed at the output. Although
it is a simple and straightforward design, the huge costs of
the FPGA resources make it impractical.

The other idea of designing the scalable FIFO is shown in
Fig. 13b. Obviously, Scheme 2 is a lot better than the original
Scheme 1. Owing to the consecutive property of the shift reg-
ister, the row shift register can be cut into a few segments.
We may bypass the registers in the different lengths and
output the data. Thus, scalable FIFO in five different sizes
can be obtained efficiently. Table 1 gives the detailed infor-
mation about the hardware usage of the two scalable FIFO
schemes. It is noted that Scheme 2 reveals a scalable FIFO
in five different sizes with only 3.8% increment in the hard-
ware usage with respect to a fixed size of 512-bit wide FIFO,
whereas Scheme 1 practically doubles the usage.

4.4 Timing analysis

All of the aforementioned proposed function units work in a
pipelined manner such that, with a certain amount of
latency, the edge pixel is efficiently generated at every
clock cycle. The whole picture of the pipelined design is
shown in Fig. 14.

For a successful pipeline scheme, we have to be con-
cerned not only with the inside of each function unit, but
also with the external parallel execution schedule for the
overall architecture [6, 8, 9, 11]. As shown in Table 2, the
latency of the whole architecture is Lo+ Ls+L; +
Lt + L, + Ly = 2583 cycles. It means that we are able to
obtain the first pixel of the output image (edge map) after
2583 cycles. On the other hand, this structure is suitable
for images of all sizes, which is within a 512-pixel width
while needing only to adjust the width of the FIFO to as
large as the input image.

ty t ... t+L to+Lo+1 ... to+Lo+Lls+Li+Li+Ly to+Llo+Lls+Li+Li+Ly+ L
FIFOo D(0) D(1) D(1027) D(1028) D(2582) D(2583)
Smoothing unit Fol0) Fol1) ..., Fo(1555) Fo(1556)
FIFO, . . S(1545) S(1546)
Edge strengthunit F.(518) F4(519)
FIFO, . . T(514) T(515)
Localisationunit F»(0) Fy(1)

Latency (cycle)

FIFOg: Lo =512 x 2+ 3 = 1027
FIFOq: Ly =512 x 24+ 3 = 1027
FIFO,: L, =512 x 1+2 =514

Smoothing unit: Lg = 10
Edge strength unit: Lt = 4
Edge localisation unit: L, =1

IEE Proc.-Comput. Digit. Tech., Vol. 153, No. 4, July 2006

267

5 Experiments

The present work was primarily implemented in a schematic
manner for the top structure and accompanied by the Verilog
HDL for all the detailed function units. We used the Xilinx
Spartan II 200 FPGA(xc2s200,-5¢) as the carrier for our
design. The development CAD environment of the entire
processing was the Xilinx Foundation. This tool helps the
designer to go through the entire design flow, from the
design entry, to the synthesis, to the placement and routing
and finally to the programming itself. At the same time,
both the function and timing simulation are also supported.
As described in the implementation reports, this design can
be operated at an extremely high frequency of 73.6 MHz.
The three function units use a total of 11 298 gates, while
the whole design occupies 90% of the device. The perform-
ance and hardware usage detail of the top design and of each
of the function units are shown in Table 3, whereas the per-
formance comparison between the proposed design and that
of Alzahrani and Chen [9] is shown in Table 4.

Moreover, our design is verified by both C programming
and FPGA prototyping on the developed versatile develop-
ment platform with an embedded ARM7 controller [6, 16].
Figs. 15a and b show a real-world image and the edge detec-
tion result. The processing time of a 512 x 512 image on a
TI TMS320C6416T DSP is 0.95s. On the other hand, the
FPGA implementation of the proposed architecture produces
one edge pixel for each clock cycle. Thus, at 73.6 MHz
working frequency, a 512 x 512 image needs only 3.56 ms
for the whole process, which is about 265 times faster than
the DSP execution. When working at maximum frequency,
our design reaches a high frame rate of 280 frames/s for
512 x 512 images. Fig. 16 gives the top view of the
presented image processing development platform [16] for
hardware prototyping and verification wherein the edge
map can be shown on a 120 x 160 LCD in real time.

6 Conclusion

For real-time image processing applications, a hardware
realisation is obviously preferred for a more superior

Table 3: Performance illustration

Proposed Smoothing Strength Localisation Total
architecture unit unit unit
Gate count 7624 3042 632 11298
Maximum - - - 73.6
frequency, MHz
Latency 10 4 1 15
Table 4: Performance comparison
Proposed ADM [9]
architecture
Gate count 354 202 351796
Max. frequency, MHz 73.6 64.1
Latency 2583 2578
Acc. Gaussian error 0.09263 0.11007
Pipeline structure Systolic array Tree based
Hardware complexity High regularity Normal
and simplicity
Image processing size Five different sizes Fixed size

268

[Bl figral Wayeetorm [Devee Options Jook Yiew Wedow Help -l x|
i g [[] o R e o =y 8 oo

W VA A AR WA VA A A VL)

Fig. 15 Processing result

a Edge map
b Extracted waveform

Fig. 16 Proposed versatile development platform

processing capability instead of using a general purpose
processor. From the point of view of the hardware, such
advantages like parallelism and modularity make those
algorithms of low-computational complexity and indepen-
dent operations as good choices; for example, the ADM
that was adopted here. In the present paper, we have
shown an efficient architecture that is suitable for low-cost
VLSI prototyping. A systolic array of Gaussian smoothing
filter with the proposed 2"-approximated parameter was
also investigated for its highly regularised structure. The
goal of real-time processing was achieved; that is, an
output of one-edge pixel every clock cycle under a
maximum working frequency of 73.6 MHz and the result-
ing processing speed is 120 times faster than the software
simulation. Moreover, we also proposed a scalable FIFO
design in two distinct schemes that can be used for five
different sizes. The present work achieved a compact and
flexible primitive core for edge detection at a high frame
rate of 280 frames/s with low complexity and hence, suit-
able for various high mobility-demanding machine vision
applications [2, 7].

In Section 2, we introduced a heuristic algorithm to gen-
erate the proposed 2"-approximated Gaussian masks. For
our future work, owing to the Gaussian masks being quite
useful for various real-time imaging applications, we are
interested in realising an accurate, adaptive and parame-
terised architecture for a general purpose Gaussian operator.

7 Acknowledgments

This work was supported in part by National Chip
Implementation Center under grant D35-93C-76b and
National Science Council, Taiwan, Republic of China

IEE Proc.-Comput. Digit. Tech., Vol. 153, No. 4, July 2006

under grant NSC93-2215-E-182-005 and NSC94-2215-
E-182-010. Special thanks to Assistant Professor
Wen-Chung Kao and his students Sheng-Hong Wang,
Lien-Yang Chen, of National Taiwan Normal University,
for their technical support on the DSP tool and platform.

8 References

1 Forsyth, D.A., and Ponce, J.: ‘Computer vision: a modern approach’
(Prentice-Hall, New Jersey, 2002)

2 Lorca, F.G., Kessal, L., and Demigny, D.: ‘Efficient ASIC and FPGA
implementations of IIR filters for real time edge detection’. Int. Conf.
on Image Processing, 26—29 October 1997, pp. 406—409

3 Hsiao, P.Y., Hua, C.H., and Lin, C.C.: ‘A novel FPGA architectural
implementation of pipelined thinning algorithm’. IEEE Int. Symp.
on Circuits and Systems, Vancouver, Canada, 23—-26 May 2004,
pp. 593-596

4 Huang, S.S., Chen, CJ., Hsiao, P.Y., and Fu, L.C.: ‘On-board
vision system for lane recognition and front-vehicle detection to
enhance driver’s awareness’. IEEE Int. Conf. on Robotics and
Automation, New Orleans, LA, USA, 26 April—-1 May 2004,
pp. 24562461

5 Gonzalez, R.C., and Woods, R.E.: ‘Digital image processing’
(Prentice-Hall, New Jersey, 2002, 2nd edn.)

6 McBader, S., and Lee, P.: ‘An FPGA implementation of a flexible,
parallel image processing architecture suitable for embedded vision
systems’. Proc. 2nd Int. Symp. on Parallel and Distributed
Processing, 22—-26 April 2003, pp. 228-232

7 Dung, L.R., and Lin, M.C.: ‘A maskable memory architecture for
rank-order filtering’, /EEE Trans. Consum. Electron., 2004, 50, (2),
pp. 558-564

IEE Proc.-Comput. Digit. Tech., Vol. 153, No. 4, July 2006

11

12

13

14

15

Basu, M., and Woods, R.E.: ‘Gaussian-based edge-detection methods —
asurvey’, [EEE Trans. Syst., Man, Cybern. C, Appl. Rev., 2002, 32, (3),
pp- 252-260

Alzahrani, FM., and Chen, T.. ‘A real-time edge detector:
algorithm and VLSI architecture’, Real-Time Imaging, 1997, 3, (5),
pp. 363378

Canny, J.: ‘A computational approach to edge detection’, IEEE Trans.
Pattern Anal. Mach. Intell., 1986, 8, (6), pp. 679—698

Demigny, D.: ‘On optimal linear filtering for edge detection’, IEEE
Trans. Image Process., 2002, 11, (7), pp. 728—737

Boo, M., Antelo, E., and Bruguera, J.D.: “VLSI implementation of an
edge detector based on Sobel operator’. 20th EUROMICRO Conf., 5—
8 September 1994, pp. 506—512

Hajjar, A., and Chen, T.: ‘A VLSI architecture for real-time edge
linking’, IEEE Trans. Pattern Anal. Mach. Intell., 1999, 21, (1),
pp. 89-94

Sivaswamy, J., Salcic, Z., and Ling, K.L.. ‘A real-time
implementation of nonlinear unsharp masking with FPLDs’,
Real-Time Imaging, 2001, 7, (2), pp. 195-202

Hsiao, P.Y., Hsu, Y.C., Lee, W.T., Tsai, C.C., and Lee, C.H.: ‘An
embedded analog spatial filter design of the current-mode CMOS
image sensor’, [EEE Trans. Consumer Electron., 2004, 50, (3),
pp. 945-951

Hsiao, P.Y., Wen, H., and Chen, Y.P.: ‘Real-time implementation of
noise-immune gradient-based edge detection’. IEEE 7th Int. Symp.
on Signals, Circuits and Systems, Romania, 14—15 July 2005,
pp. 633-666

Kanopoulos, N., Vasanthavada, N., and Baker, R.L.: ‘Design of an
image edge detection filter using the Sobel operator’, [EEE
J. Solid-State Circuits, 1988, 23, (2), pp. 358—367

Lee, C.Y., Cathoor, F V.M., and De Man, H.J.: ‘An efficient ASIC
architecture for real-time edge detection’, IEEE Trans. Circuits
Syst., 1989, 36, (10), pp. 1350—1359

269

Copyright of IEE Proceedings -- Computers & Digital Techniques is the property of Institution of
Engineering & Technology and its content may not be copied or emailed to multiple sites or posted
to a listserv without the copyright holder's express written permission. However, users may print,
download, or email articles for individual use.

