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A Robust MRAC Using Variable Structure Design for 

Multivariable Plants* 
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The variable structure design concept has been successfully incorporated to 
establish a model reference adaptive controller for multivariable plants with 
arbitrary generalized relative degree and with the aim of achieving global 

stability, good robustness and well-behaved tracking performances. 
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Abstract-It is well known that undesirable transient 
responses and tracking performances have been frequently 
observed in traditional model reference adaptive control 
(MRAC) problems, especially for multivariable plants with 
unmodeled dynamics and output disturbances. In this paper, 
a new robust model reference adaptive control using variable 
structure design (VSD) is proposed to investigate the 
solution. Based on a definition of generalized relative degree 
(GRD) for multivariable plants, the general case for plants 
with arbitrary GRD is completely solved. It is shown that, 
even when the uncertainties are presnet, global stability and 
robustness of the closed-loop control system are achieved. 
Furthermore, without any persistence of excitation, the 
tracking errors will, at least asymptotically, converge to zero 
for GRD-one plants and to a small residual set for plants 
with any higher GRD. With a suitable choice of initial 
control parameters, the tracking errors can even be driven to 
zero in finite time for GRD-one plants and to a small 
residual set exponentially for plants with any higher GRD. 
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1. INTRODUCTION 

With advances in designing adaptive controllers 
for single-input single-output (SISO) dynamical 
systems, a multi-input multi-output (MIMO) 
model reference adaptive control system has 
been proposed by Elliott and Wolovich (1982). 
Since an important problem for parameterization 
of an MIMO plant in the context of MRAC is 
the determination of its interactor matrix 
(Wolovich and Falb, 1976), some research has 
been conducted on how to use less a priori 
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knowledge of the interactor matrix to design an 
adaptive controller (Das, 1986; Dion ef al., 1988) 
and or how to decide the interactor matrix from 
information on the relative degree of each entry 
of the MIMO transfer matrix (Singh and 
Narendra, 1984; Asano et al., 1990). However, 
the robustness problem and/or tracking perfor- 
mance are not addressed in the above work. 
Hence another line of research, such as that by 
Tao and Ioannou (1988), is focused on the 
development of the MRAC scheme for MIMO 
systems with unmodeled dynamics and output 
disturbances. Solving the problem of unpredic- 
table transient response and tracking perfor- 
mance has recently become one of the 
challenging aspects of MRAC. A considerable 
amount of effort has been made to improve 
these schemes to obtain better control responses. 
It should be noted that the variable structure 
design (VSD) or switching mechanism with 
high-gain feedback is now frequently used to 
design controllers or update laws for SISO plants 
(Hsu and Costa, 1989; Hsu, 1990; Fu, 1991; 
Narendra and BoskoviC, 1992; Miller and 
Davison, 1991) and a class of MIMO plants (Tao 
and Ioannou, 1989; Chien and Fu, 1992) in order 
to overcome these difficulties. For SISO linear 
time-invariant systems, the so-called VS-MRAC 
scheme, first proposed by Hsu and Costa (1989) 
incorporates switching on the adjustable para- 
meters 8 to achieve tracking performance. The 
robustness problem of the VS-MRAC scheme 
was discussed by Costa and Hsu (1992). The 
later work by Fu (1991) applied switching not 
only to parameter adaptation but also to plant 
control input with the consideration of un- 
modeled dynamics and output disturbances. 
However, only plants of relative degree one are 
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considered in the above papers. Owing to the 
assumption that only input-output measurement 
is available, the extension of the above- 
mentioned adaptive variable structure design to 
that for systems with arbitrary relative degree is 
difficult. A special case for plants of relative 
degree two with uncertainties was discussed by 
Fu (1992), who obtained good tracking perfor- 
mance. On the other hand, the VS-MRAC 
scheme was extended to the general case of 
plants of arbitrary relative degree by Hsu (1990); 
however, the robustness issue was not addressed 
and the crucial assumption that ‘equivalent 
control’ is measurable was overly restrictive. 
Furthermore, a combined direct, indirect and 
variable structure design approach can be found 
in the work by Narendra and Boskovic (1992). 
For MIMO linear time-invariant plants, rela- 
tively fewer results are found in this field. The 
first work to study the robustness of MIMO 
MRAC schemes by using variable structure 
design was that of Tao and Ioannou (1989). 
Later, Chien and Fu (1992) introduced the 
variable structure concept into the design of 
controller for MIMO plants in order to 
guarantee the robustness and performance of the 
closed-loop system. However, both results are 
not for the general case, and are limited to a 
class of multivariable plants. 

In this paper, some prior information for 
multivariable plants, such as the interactor 
matrix, is used to develop a new adaptive 
variable structure scheme for solving problems 
with global stability, robustness, tracking and 
transient performances existing in traditional 
MRAC systems. By a definition of generalized 
relative degree (GRD) for multivariable plants, 
the adaptive variable structure controllers here 
are then designed for the arbitrarily GRD case 
(the so-called general case; Hsu, 1990). Com- 
pared with previous work, which used adaptive 
variable structure design or the traditional robust 
adaptive approaches for the linear MRAC 
problem, this paper has the following special 
features. 

(0 

(ii) 

(iii) 

This is the first work that applies the 
adaptive variable structure design for 
multivariable unknown plants in the general 
case under the robustness consideration. 

The control strategy using the concept of 
‘average control’ rather that that of 
‘equivalent control’ is thoroughly analyzed. 

A systematic design approach is proposed 
for multivariable plants with arbitrary 
GRD, and a new adaptation mechanism is 
developed so that prior upper bounds on 

(4 

some appropriately defined but unavailable 
system parameters are not needed. It is 
shown that, without any persistent excita- 
tion, global stability and robustness with 
asymptotic tracking performance can be 
guaranteed. The output tracking errors can 
be driven to zero for GRD-one systems and 
to a small residual set (whose size depends 
on the level of magnitude of some design 
parameter) for systems with any higher 
GRD. Both results are achieved even when 
unmodeled dynamics and output distur- 
bances are present. 

If the aforementioned bounds on the system 
parameters are available by some means 
before controller design then, with a 
suitable choice of initial control parameters, 
the output tracking errors can even be 
driven to zero in finite time for GRD-one 
systems and to a small residual set 
exponentially for systems with any higher 
GRD. It should be noted that these bounds 
are usually assumed to be known before the 
construction of the variable structure 
controller (Hsu, 1990) or the robust 
adaptation law (switching (T modification; 
Tao and Ioannou, 1988). 

In order to make a comparison between the 
proposed adaptive variable structure scheme and 
the traditional approaches, we choose the robust 
adaptive MRAC scheme with switching (T 
modification (Tao and Ioannou, 1988) for 
computer simulations, since this is the only work 
that successfully solves the general case of the 
robust MRAC problem for MIMO plants to 
date. The differences in tracking performance 
between these two schemes will be easily 
observed from the simulation results, and some 
remarks about the advantages of our design will 
also be made. 

The theoretical framework in this paper is 
developed on the basis of Filippov’s (1964) 
solution concept for differential equation with 
discontinuous right-hand side. In the subsequent 
discussion, the followng notation will be used. 

6) 

(ii) 

(iii) 

(iv) 

G(s)[u](t) denotes the filtered version of 
u(t) with a proper or strictly proper transfer 
function (matrix) G(s). 

I * I denotes the absolute value of a scalar or 
the Euclidean norm of a vector or matrix. 

I/( .), 11% = supr5, I( .)(r)l denotes the trunc- 
ated L, norm of the argument function or 
vector. 

IIG(s)llZ denotes the H, norm of the 
transfer function G(s). 
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The paper is organized as follows. In Section 
2, we give a detailed problem formulation 
including plant parameterization, control objec- 
tive, plant assumptions and definition of GRD, 
and derive a suitable error equation between the 
plant and reference model. Based on the concept 
of GRD, a robust adaptive variable structure 
controller is proposed in Section 3 for multivari- 
able systems with GRD equal to one. An 
extension of this controller design concept to 
systems with GRD greater than one is presented 
in Section 4. Section 5 gives simulation results of 
an aircraft model to demonstrate the 
effectiveness of the adaptive variable structure 
controller, which is compared with a traditional 
robust adaptive approach. Finally, conclusions 
are drawn in Section 6. 

2. PROBLEM FORMULATION 

2.1. Plant description and MRZ matrix 
The interactor matrix (Wolovich and Falb, 

1976; Elliott and Wolovich, 1982, 1984; Das, 
1986; Dion et al., 1988; Tao and Ioannou, 1988) 
or the Hermite normal form (Singh and 
Narendra, 1984) plays an important role in 
parameterizing MIMO plants in the context of 
MRAC for either continuous-time or discrete- 
time systems. In this paper, however, the focus is 
on how to design an adaptive variable structure 
control scheme such that global stability is 
guaranteed in the presence of unmodeled 
dynamics and output disturbances and such that 
the tracking performance is improved compared 
with traditional MRAC systems. To suit our 
purpose, we choose the concept of modified right 
interactor (MRI) matrix (Tao and Ioannou, 
1988) for plant parameterization in the following 
discussion. 

Consider an MIMO linear time-invariant plant 
with IZ inputs and n outputs described by the 
equation 

Ep(f) = P&)[Z + p W4l[~,lW + do(t) 
= y,(t) + 440. (1) 

where P,(s) is the strictly proper rational transfer 
matrix of the nominal plant, ZL AP,,(s) is the 
multiplicative unmodeled dynamics with some 
Z.L E IV, and d, E R” is the output disturbance. It 
has been shown (Tao and Ioarmou, 1988) that if 
the nominal plant PO(s) (i.e. when ZL = 0, d, = 0) 
is strictly proper rational with full rank then 
there exists an upper-triangular polynomial 
matrix S;(s) defined as the MRI matrix of P,(s) 
such that 

lim P,(s)&(s) = ZL 
S--V= 

where K, is nonsingular. Let S, be a matrix such 
that KJ, k Ir is positive-definite. Then the 
following lemma will employ the notion of the 
MRI matrix to give a parameterization of the 
plant PO(s) that is useful in designing MRAC 
schemes. 

Lemma 2.1. The MIMO linear time-invariant 
plant 

with P,(s) strictly proper rational with full rank, 
may be represented as 

(2) 

where &(s) is the MRI matrix of PO(s) with 
high-frequency gain matrix K,, and fr(.s) is an 
arbitrary Hurwitz polynomial whose degree p is 
equal to the maximum degree of the elements of 
&(s). Furthermore, the MRI matrix of P,(s) is 
the diagonal matrix fr(s)Z, and the high- 
frequency gain matrix of P,(s) is equal to 
K,S, A I’,. cl 

2.2. Control objective, plant assumptions and 
generalized relative degree 

By the parameterization of the nominal plant 
P,(s) described in Lemma 2.1, we can now 
rewrite (1) as 

9p(f) = W)bl(O + 440, 
1 

Up(‘) = fr(s> &hNbl(t), (3) 

where 

with 

G,(s) = p,(.s)[Z + CL APur(s (4) 

1 
p,(s) = PO(S) fro h%sN, (5) 

Now the nominal plant for our controller design 
has been reformulated as P,(s), so that it has a 
diagonal MRI matrix fr(s)Z and a positive 
high-frequency gain matrix Ir. The signal u(t) is 
the new design input for this parameterization, 
and will be specified later. 

Now suppose that P,(s) is not precisely known 
but some prior knowledge about its structure 
may be available. The control objective is to 
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design z+,(t) such that the outputs j+,(t) of the algorithm to determine the optimal precom- 
plant track the outputs y,,,(t) of a linear pensator in the sense that the total relative 
time-invariant reference model described by degree is minimum (Asano et al., 1990). 

Yn4) = ~(~)[~lTllW~ 
where M(s) is a stable strictly proper rational 
matrix and r,,,(t) is a uniformly bounded 
reference input vector. Now, in order to achieve 
such an objective, we need some assumptions on 
the modeled part of the plant and the reference 
model as well as the unmodeled part of the 
plant. These assumptions heavily depend on the 
aforementioned plant parameterization, and are 
made in the following. 

Assumption (S2) is equivalent to the assump- 
tion of a known upper bound on the order of 
the transfer function in SISO MRAC systems, 
and is used to parameterize MIMO MRAC 
systems. It should be noted that this 
knowledge is necessary to achieve exact model 
matching in the context of the model reference 
control when uncertainties are absent. 

For the modeled part of the plant and 
reference model, 

Assumption (S3) is equivalent to the assump- 
tion of a known sign of the high-frequency 
gain in SISO MRAC systems, and is used to 
develop a stable adaptation law. 

WI 

cw 

(S3) 

(S4) 

(S5) 

the MRI matrix &(s) of Z’,(s) is known a 
priori; 

an upper bound v on the observability 
index of 

1 
P,(s) = P,(s) fr(s) Z&(s)S, 

is known; 

a matrix S, such that K,S, = r, is positive- 
definite is known; 

PO(s) is nonsingular and has stable zeros 
(minimum phase); 

The degree p of L(s) is chosen such that 
f,(s)ZM(s) is proper and stable. 

For the unmodeled part of the plant, 

CW 

(S7) 

the unmodeled dynamics AP,(s - k,) is a 
strictly proper and stable transfer matrix 
such that IDI <al, ]][AP,(s - k,)s - D](s + 
u2) ]I p < a,, for some constants al, u2 > 0, 
where D = lim,,, AP,,(s)s and 

IIX(~)llce’SUPwER lX(jw)l (Tao and Ioan- 
nou, 1988); 

the output disturbances are differentiable 
and the upper bounds on I&,(t)1 and 
I(d/dt)d,(t)l exist. 

Remark 2.1. 

l Assumption (Sl) is equivalent to the assump- 
tion of known relative degree in SISO MRAC 
systems. It has been shown (Tao and Ioannou, 
1988; Singh and Narendra, 19&4) that, by 
designing a precompensator C(s) for P,(s), the 
interactor matrix can generically be deter- 
mined from the relative degree of each entry 
of P,(s). A systematic approach via network 
theory has been proposed as an efficient 

The minimum-phase assumption (S4) on the 
nominal plant P,(s) is to guarantee internal 
stability, since the model reference control 
involves cancellation of the plant zeros. 
However, as noted by Tao and Ioannou 
(1988), this assumption does not imply that the 
overall plant (1) possesses the minimum-phase 
property. 

The latter part of assumption (S6) is simply to 
emphasize the fact that AP,(s) are uncorre- 
lated with Z..L in all cases (Ioannou and 
Tsakalis, 1988). The reasons for assumption 
(S7) will be clear in the proofs of Theorem 3.1 
and 4.1. 

In order to facilitate the presentation of 
controller design and its subsequent analysis, we 
now give a definition of ‘generalized relative 
degree’ of an MIMO plant based on the 
discussion of the MRI matrix in Remark 2.1. It is 
well known that the relative degree of a transfer 
function p&) can be defined as the degree of 
the manic polynomial t*(s) such that 

lim p&)5*(s) = k, # 0. 
A--am 

A similar idea can now be used to define the 
generalized relative degree as follows. 

Definition 2.1. For a multivariable plant with 
strictly proper rational transfer matrix PO(s), the 
generalized relative degree (GRD) of P,(s) is 
defined as the maximum degree of elements of 
the MRI matrix t,(s) of PO(s) such that 

lim Z%)&(s) = K,, 
S-W= 

where K, is nonsingular. 

Remark 2.2. According to the parameterization 
described in Lemma 2.1, the degree of x(s) is 



Robust MRAC for multivariable plants 837 

equal to the maximum degree of elements of 
&(s). Hence the GRD of the parameterized 
nominal plant P,(s) is also equal to that of P,(s). 
In other words, the GRD is invariant under the 
parameterization given by Lemma 2.1. 

2.3. MRC-based error model 
Since the plant parameters are assumed to be 

unknown, a basic strategy from traditional 
MRAC (Narendra and Armaswamy, 1988) is 
now used to construct the error model between 
&, and y,,,. Instead of applying the traditional 
MRAC technique, a new adaptive variable 
structure control will be given here in order to 
pursue better robustness and tracking perfor- 
mance. Specifically, when the parameterization 
(3)-(6) is used, the control inputs are designed 
in the following form: 

u(t) = @o(t)r(t) + @T(C)Wl(C) 

+ @(t)&(t) + Q3(t)J$(t), 

1 
r+(t) = fro&(sNblw~ 

where 

0 = [00 0; 0: &IT E IWtivx” and the signal 
vectors P(t), w(t) and w&t) as 

+[ i]=[ g+[w;j=w+wd.. (9) 

One can easily show using the matching 
condition described above that if unmodeled 
dynamics and output disturbances exist and u is 
expressed in an implicit form as 

- Q*=wdo - p AZ’,,(s)[u] 

then y,(t) = M(s)[r,,,](t), Hence, from the input- 
output operator point of view, we have 

Q, = [Qll . . * Ql,v-11=, 
0, = [Q*, . . . 02,“__1]=, 

0,,03, 0, E Rnx”, 

(7) 
h(f) = y,(t) + do(t) 

=&l(~~-‘{u - o*=ti + O*=W& 

WlW = g blW7 

G*(C) = g VPIW~ 

where 
+ CL A(s)bll + r)(t) + do(t), (10) 

(8) 
A(s)[u](t) = [I - et= $1 A&(s)[u](t). 

A(s) = [I SZ . . . S”-‘Z]=, 

with n(s) being an arbitrary manic Hurwitz 
polynomial of degree v - 1, and r(t) is to be 
defined shortly. It can be shown (Tao and 
Ioannou, 1988, Narendra and Annaswamy, 1988) 
that, when p = 0 and d, = 0, constant matrices 
St, i = 0, 1,2,3, exist such that for @i(t) E 07, 
the closed-loop transfer matrix from r(t) to y,(t) 
is equal to [l/fr(s)]Z. Let the reference model 
M(s) be chosen such that f,(s)ZM(s) is proper. 
Then it can be easily verified that r(t) = 

fi(~Y~(~)lGnlw. 
Now, consider the existence of unmodeled 

dynamics and output disturbances, and decom- 
pose the signal G*(t) in (8) into two components, 
G*(t) = w2(t) + w&), where 

We now define the tracking errors e,(t) = 
j$(t) - y,.,.,(r), and use (10) with O$-’ = I’, to 
obtain the following error model: 

1 
co(t) = fro Zr,{U - Q*=+ + Q*TWdo 

+ CL A(s)blKt) + do(t). (11) 
In the following sections, a new adaptive 
variable structure scheme is proposed for MIMO 
plants with arbitrary GRD. However, the control 
structure is much simpler for a GRD-one system, 
and hence in Section 3 we shall first discuss this 
class of systems. Based on the analysis for 
GRD-one systems, the general case can then be 
presented in a more straightforward manner in 
Section 4. 

w*(t) = 

$f MO W&0) = 

Further define the traditional control parameters 

3. THE CASE OF GENERALIZED RELATIVE 
DEGREE ONE 

When P,(s) (and hence P,(s)) is of GRD-one, 
the designed Hurwitz polynomial J(s) is of tirst 
order and the reference model M(s) can be 
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chosen to be strictly positive real (SPR) 
(Narendra and Annaswamy, 1988). The error 
model (11) can now be rewritten as 

1 

+ P A(s)[ul + @,*f,t~)k&Jltt). (12) 

In the error model (12), the terms O*-r$, 
Outed, + O$f,(s)[&] and p A(s)[u] are the 
uncertainties due to the unknown plant para- 
meters, output disturbances and unmodeled 
dynamics respectively. Let (A,, B,, C,) be any 
minimal realization of [l/f,(s)]ZI’, that is SPR. 
Then we can get the following state-space 
representation of (12): 

i(t) = A,e(t) + B,{u(t) - @*‘G(t) + O*l‘wd,(t) 

+ p W)blW + @ZM~WlW~, (13) 

e,(t) = C,e(t) 

where the triplet (A,,,, B,, C,) satisfies 

P,,,A, + AT,P,,, = -2Q,, P,,,B, = C’, (14) 

forsomeP,=PT,>OandQ,=QT,>O. 
The adaptive variable structure controller for 

GRD-one plants can now be summarized as 
follows: 

0) 

(ii) 

(iii) 

Construct the regressor signal G(t) as (9) 
and the normalization signal m(t) (Ioannou 
and Tsakalis, 1986) as the state of the 
system 

n?(t) = -Q?z(t) + s,[Iu(t)l + 11, 

m(o)>;) 
0 

(15) 

where &, S, > 0 and &, + a2 < min (k,, k2) 
for some a2 > 0. The parameter k2 >O is 
selected such that the poles of &‘(s - k,) 
and the zeros of n(s - kZ) are stable, which 
is always achievable. 

Design the control signal u(t) as 

u(t) = - sgn kdt)l[P~(t) I@(t)l 
+ P*(f) + Pswwl (16) 

where sgn (4 = [sgn (ed, sgn (Q, . . . , 
w kdlT. 
The adaptation law for the control para- 
meters is given as 

Bl(t) = gl M)l Ifi(t)l , 

820) = g2 l&)L (17) 

M) = g3 l4)l m(th 

where g, >O is the adaptation gain and 

pi(O) > 0 (in general, as large as possible) 
for j = 1,2, 3. 

Remark 3.1. The design concept of the adaptive 
variable structure controller (15), (16) is simply 
to construct some feedback signals to compens- 
ate for the uncertainties for the following 
reasons: 

with the construction of m, it can be shown 
(Ioannou and Tsakalis, 1986) that A(s)[u](t) I 
rm(t) Vt 2 0 for some constant 7 > 0; 

using assumption (S7), it can be easily found 
that ]wd,(_t)l 5 h and Ifr(s)[&](t)l~ d for some 
positive h, d > 0. 

Now, we are ready to state our results 
concerning the properties of global stability, 
robust property and tracking performance of our 
new adaptive variable structure scheme with a 
GRD-one system. 

Theorem 3.1. (Global stability, robustness and 
asymptotic zero tracking performance). Consider 
the system (3)-(6) satisfying assumptions (Sl)- 
(S7), with the degree of L(s) being one. If the 
control input is designed as in (15) and (16) and 
the adaptation law is chosen as in (17) then there 
exists p* > 0 such that for p E [0, p*], all signals 
inside the closed-loop system are bounded and 
the tracking errors will converge to zero 
asymptotically. 

Proof: Consider the Lyapunov function 

where P, satisfies (14), and /3T = (@*I, pz = 
IO*] A + l@dld and /3$ = p*y, with p* defined 
in the Appendix. Then the time derivative of V, 
along the trajectory (13), (17) will be 

l?a = -e”Q,,,e + ez{u - O*Tti + O*T~dc, 

+ /J A(s)[vl+ @~.M~)I~ol~ + ,$ $ (Pj - P?>bj 

5 -e”Q,e - leoI (PI - PT) lkl 

- I4 (Pz - Pz*) - I4 @3 - PT)m 

for some constant q,,, > 0. This implies that 
e E L2 fl L, and /?, , &, &, e, E L,, and hence 
all signals inside the closed-loop system are 
bounded owing to Lemma A.1 in the Appendix. 
On the other hand, it can be concluded that 
t E L, by (13). Hence e E L2 fl L, and C E L, 
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readily imply that e and e, will at least converge 
to zero asymptotically by Barbalat’s lemma 
(Narendra and Annaswamy, 1988). cl 

In Theorem 3.1, a suitable integral adaptation 
law is given to compensate for the unavailable 
knowledge of the bounds on p,+, j = 1,2,3. 
Theoretically, the adaptive variable structure 
controller will stabilize the closed-loop system 
with guaranteed robustness and asymptotic zero 
tracking performance no matter what the &(O) 
are. However, according to the following 
theorem, we expect that positive and large 
values of pi(O) should result in better transient 
response and tracking performance, especially 
when pi(O) > @,+. 

Theorem 3.2. (Finite-time zero tracking perfor- 
mance with high-gain design). Consider the 
system setup in Theorem 3.1. If pj(O) Zpi*, 
i = 1,2,3, then the output tracking errors will 
converge to zero in hnite time, with all signals 
inside the closed-loop system remaining 
bounded. 

Proof. Consider the Lyapunov function V, = 
$e’P,e, where P satisfies (14). The time 
derivative of V, malong the trajectory (13) 
becomes 

ri, = -eTQ,e - leoI (PI - PT) 16 I 

- le.4 (Pz - PB) - leoI (P3 - P4b 
5 -eTQ,e 

5 -k3& 

for some k,>O, since flj(t)rp,* Vtr 0. This 
implies that e approaches zero at least 
exponentially fast. Furthermore, from the fact 
that 

ezI;‘t, = e;fr;‘(C,A,e + C,B,{u - O*TG 

+ @*T~dO + CL W)bl + @8_1X~Wol~) 
52 leoW4 I4 - (PI lkl + P2 

+ Pm - PT I+ I - Pt - PZm)l, 
where k4 = IT;‘C,A,I, and the fact that ]eJ 
approaches zero at least exponentially fast, there 
exists a finite time T, > 0 such that e;fI;‘t, I 
-k5 leoI for all t > Tl and for some k5 > 0. Note 
that 

where U, satisfying lJTU = $(I’;’ + IFT), is 
symmetric positive-definite, so that 

for all f 2 Tl when ] Ue,] # 0. This implies that the 
sliding surfaces Ue, = 0 are guaranteed to be 
reached in some finite time T2 > Tl > 0. Then the 
nonsingularity of the matrix U readily implies 
the finite-time convergence of the output 
tracking errors e,. cl 

Remark 3.2. Although theoretically only asy- 
mptotic zero tracking performance is achieved 
when the initial control parameters are chosen 
arbitrarily one is encouraged to set the 
adaptation gain gj in (17) as large as possible. 
This is because large adaptation gains will 
provide high adaptation speed, and hence 
increase the control parameters to a suitable 
level of magnitude so as to achieve a satisfactory 
performance as quickly as possible. These 
expected results can be observed in the 
simulation examples, and some comments will 
also be addressed in that section. 

4. THE CASE OF ARBITRARY GENERALIZED 
RELATIVE DEGREE 

When the GRD of P,(s) is greater than one, 
the reference model M(s) is no longer SPR, so 
that the controller design becomes more 
complicated. The adaptive variable structure 
control scheme for a multivariable system (1) (or 
equivalently (3)) with GRD r2 that satisfies 
assumptions (Sl)-(S7) is now designed as 
follows. 

Systematic design procedures 

(i) Choose an operator L,(s) = &(s) * * * 
I,_,(S) = (S + aI). - - (s + apdl) such that 

[l/f,(~)lL~(s) is SPR. 

(ii) Define the augmented signal 

Yaw = &) w[ -VI + $je4](') 

(18) 
and auxiliary errors 

e,l(t) = e,(t) - y,(t), 

ea20) = - bdav + &[v21(0~ 
1 (19) 

where [Vi].” is the average control of Vi, 
given by 

with r >O being small enough. The reason 
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(iii) 

why r has to be chosen sufficiently small will 
be clear in Theorem 4.1 and its proof. 

Design the control signals u, ui, i = 
1 , . . . , p, as follows: 

ui(f) = -sgn [eai(r)l[PiI(f) Ititr)l 

+ &Z(f) + MW(~)lt (20) 

v(t) = up@), 
where 

l,(r) = $j. . . l- 
l”-,(s) 

GW) 

1 
= - I[G](r), 

b(s) 

z;(t) = ’ -L,(s)@-J(t), 
F(rs) 
i = 2, . . , p, 

h(r) = -Qn(r) + &&v(r)l + l), 

m(o)>;, 
3 

with 83, 84’0 and 83 + 65 < 
min (k,, k2, a,, . . . , q_,, l/r) for some 
s,>o. 

(iv) Finally, the adaptation laws for the control 
parameters pi,, pizj &, i = 1, . . , p, are 
given by 

Al(t) = gil le,iWl It%4 , 

Mf) = gi2 IGi( , 

A&) = gi3 led~)l~W~ 

(21) 

where gij > 0 and Pii > 0, i = 1, . . , p, 
j = 1,2,3. 

In the following discussions, the construction 
of the feedback signals zl, . . , .$,, m and the 
controller (20) will be clear. 

In order to analyze the tracking performance 
and the closed-loop stability of the proposed 
adaptive variable structure controller, we first 
rewrite the error equation (11) as 

1 
e,(r) = fro Z(u + T,{-O*Tl.it + O**wdc, 

+ CL 4+1)+ b)(t) + 4,(t) (22) 

where I, g Z + Ia. Note that there is one more 
uncertain term rAu appearing in the error model 
(22), which represents the unavailable know- 
ledge of the high-frequency gain matrix K, (and 

hence I,). Second, denote Lj(S) = 
l;(s) * * . l,_,(S) = (S + (Yi) ’ ’ *(s + q-I) for i= 
1 . . , p and L,(s) = 1. According to the design 
of’ the above auxiliary errors (19) and error 
model (22), we readily find that e,, always 
satisfies 

The average control [t& in (15) can now be 
obtained by operating on (23) with l/F(rs), so 
that ea2 satisfies 

ea2(r) = 
1 

-I 
11(s) ( 

u2 - rrwTg2 + 1 

F(rs)L,(s) 

x {I,O*TWdO + f,wka + 
1 

F(n)L2(s) 

x w, ~wbi + bl- e1 > (0, (24) 

where 

1 

s’ = F(rs)L,(s) LWkkl. 

By the same token, we can deduce that 

e,,(r) = 
1 

-z 
ii-l(s) 

u, - rpT$ + 1 

F’-‘@)L;(s) 

. 

X wrwT~do +f,(~WJ + i-1 ’ 
F (rS)Li(S) 

x b-4 A(s)[ui + rad - &i-1 > 0) 

for i = 3, . . . , p, where 

(25) 

1 

si-l = F(rs) 
-LdS)[Ei-21 

+ ~~i-~(S)l.-2(S)[e=i-,l. 

It should be noted that all the auxiliary errors 
are now explicitly expressed as the output terms 
of some linear systems with SPR transfer matrix 
([l/fr(s)]L,(s)Z or [l/Z;-l(S)]Z) deiven by some 
uncertain signals due to the unavailable know- 
ledge of plant parameters, high-frequency gain 
matrix, unmodeled dynamics and output 
disturbances. 

Remark 4.1. The construction of the variable 



Robust MRAC for multivariable plants 841 

structure controller (20) is now clear, since the 
following hold: 

are strictly proper stable with known stability 
margins, 

- 
L,;s)(r O 

r - *=w~, + f,(s)Z[d,]) and 

p”(r;)Li(s) (I@*=u& +f,(~Nm 

i=2,...,p, 

are bounded owing to assumption (S7). 

Therefore the terms in e,, i = 1, . . . , p, will 
satisfy 

for some suitably defined constants p$ >O, 
p3>Oand p$>O, i=l,..., p. 

The results described in Remark 4.1 show that 
the same techniques for the controller design of 
a GRD-one system can now be used for auxiliary 
errors e,,, . . . , e,,. But what happens to the real 
output errors? In Theorem 4.1, we summarize 
the main results of the systematically designed 
adaptive variable structure controller for un- 
known multivariable plants with GRD L 2. 

Theorem 4.1. (Global stability, robustness and 
asymptotic tracking performance.) Consider the 
system set-up in Theorem 3.1 but with P,(s) 
being GRD p L 2. If the adaptive variable 
structure controller is designed as in (18)-(21) 
then there exist r* and I,L* such that for all 
r E (0, r*] and ZA E [0, p*], the following hold: 

(9 

(ii) 

(iii) 

all signals inside the closed-loop system 
remain bounded; 

the auxiliary errors e,i, i = 1, . . . , p, 
converge asymptotically to zero; 

the output tracking errors e, converge 

asymptotically to a residual set whose size 
depends on the design parameter r. 

Proof. The proof consists of three parts. 

Part I. We prove the boundedness of e,i and 
pij, i = 1, . . . , p, j = 1,2,3. 

Step 1. First, consider the auxiliary error eal, 
which satisfies (23). Since [l/f,(s)]L,(s)Z is SPR, 
we have the following realization of (23): 

t1 = AleI + B1 u1 - r,@*‘tl 

e,l = Geb 

where ATP, +P,A, = -QI and P,B,=CT for 
some PI= PT>O and Qi>O. If we choose a 
Lyapunov function similar to V, in Theorem 3.1, 
i.e. 

and apply the control law (20) and the 
adaptation law (21), then for some q1 > 0, 

v, = -eTQIeI + eTI u1 - r,@*‘j, 

+ i: ’ (Plj - P?j)blj 
j=l glj 

5 -41 hl* - ledI WI1 - PM Iid 

+ U312- Pi+3 + Uh- Pf3)ml 

+ 5 ’ @lj - P$>Blj 
j=l glj 

5 -41 hl*- 

This implies that e,, E L2 n L, and pii, p,*, 

P13 E La* 
Step 2. From (24), ea2 satisfies 

ea2 = -alea*+ u2- rrc3*Ti2 

1 
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Note that IelI 5 E* for some E* > 0, since e,, is 
bounded by the result in Step 1. Now choose the 
Lyapunov function 

V, = i e;f2ea2 + & (P21 - PTd2 + k (p22 - p&)* 
21 

+ -L (P23 
2g23 

- m3 - E*J2, 

so that we can again show that ri, 5 -e;f2ea2 5 0 
if the control law in (20) and the update law in 
(21) are applied. This leads to the conclusion 
that ea2 E L2 n L, and p2,, p22, & E L,. 

Step i. Since for 3 I i I p, 

( 1 
e,i = -W-i al e + ui - r,O*T$i + 

F’-‘(zs)L,(s) 

x {r,@*T%” + f,(s)Z[&l] + 
1 

‘_ 
F’ ‘(rs)L;(s) 

and l.s-,l~ E* (with some abuse of notation), the 
Lyapunov function 

K = l eii&i + k (&I - Pi”;)’ + $ (Pi2 - Pi*2)* 
1 12 

+ +& (Pi3 - Pi*3 - E*)2 
1 

can be used to guarantee c 5 -eT,eaj P 0 if the 
control law in (20) and the update law in (21) are 
applied. Consequently, f?,i EL2nL, and 

PiI, Pi29 Pi3 E Lm. 

Part ZZ. We prove the boundedness of all signals 
inside the closed-loop. Define e,; = 
[l/f,(s)]L,_,(s)Z[e,~], i = 2, . . . , p and E, = e,, + 
e,;!+..*+e,,, which is bounded owing to the 
boundedness of eai guaranteed in Part I. Then it 
can be derived from (19) that 

+~~L,-,(s)z(-lu,ll,, + +-#“I) 

=e~+(l-riti)~Z(u,+~~,u~l 

1 +*.e+ 
MS)*. p 2 s 

. [ _ ( p-J) 

ke,+R (26) 

Now, since j1(u),(I, I K II (e,),II_ + K by Lemma 

A.1 in the Appendix, it 
the definition of ui that 

can be easily found from 

1 

+ I,(s) * * 
. 1p_2csl _ 5 K h(eo),h + K. 

Furthermore, since 

= K for some K > 0, 

we can conclude that 

x [K II(eo>,II= + K] 5 $K II(‘%),Il= + K). 

Now, from (26), we have 

ll(4Il=~ IIWJL + llV3ll~ 

5 IIVL)~ll~ + T[K ll(eo),llx + ~1, 
which implies that there exists a r* > 0 such that 
1 - Z*K > 0 and for all r E (0, r*), 

(27) 

This implies that the output errors are bounded. 
Finally, combining Lemma A.1 and (27), we 
readily conclude that all signals inside the 
closed-loop system remain bounded. 

Part ZZZ. We investigate the tracking perfor- 
mance of e,; and e,. Since all signals inside the 
closed-loop system are bounded, we have 

ear E L2 n L,, d,, E L,, i = 1, . . . , p. 

Hence, by Barbalat’s lemma, e,; approaches zero 
asymptotically. Since eai reaches zero asymptoti- 
cally and E, = eal + Fa2 + . . . + t&,, it can be 
concluded that E, will also converge asymptoti- 
cally to zero. It is now clear from (27) that e, 
converges asymptotically to a small residual set 
whose size depends on the design parameter r. 

0 

As discussed in Theorem 3.2, if the initial 
choices of control parameters Pii satisfy the 
high-gain conditions pii 2 /3$ then, by using 
the same argument as given in the proof of 
Theorem 3.2, we can guarantee the exponential 
convergent behavior and finite-time tracking 
performance of all the auxiliary errors eai. Since 
eai reaches zero in some finite time and 
E, = e,, + Fa2 + . . . + Pap, it can be concluded 
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that E, converges exponentially to zero and e, 
converges to a small residual set whose size 
depends on the design parameter r. We now 
summarize the results in the following theorem. 

Theorem 4.2. (Exponential tracking perfor- 
mance with high-gain design.) Consider the 
;yt;; setup in Theorem 4.1. If flij(O) 2 @, 

. * , p, j = 1,2,3, then there exist r* and 
p* such that for all r E (0, r*] and p E [0, b*], 
the following hold: 

(9 

(ii) 

(iii) 

all signals inside the closed-loop system 
remain bounded; 

the auxiliary errors eai, i = 1, . . . , p, 
converge to zero in finite time; 

the output tracking errors e, converge 
exponentially to a residual set whose size 
depends on the design parameter r. 

Remark 4.2. As to the upper bound on the 
feasible value of r, it can actually be obtained 
through a laborious derivation following the 
steps in the proof of Theorem 4.1. However, in 
that case the bound will be over-conservative. 
Therefore it may be better to apply some 
intelligent prior trial-and-error procedure to 
obtain a suitable r. 

5. COMPUTER SIMULATIONS 

5.1. Application to an aircraji model (AZRC) 
The adaptive variable structure scheme is now 

applied to a realistic model taken from the 
Appendix in Maciejowski (1989). It represents a 
linearized model of the vertical-plane dynamics 
of an aircraft, which is minimum-phase with 
three inputs, three outputs and five states. The 
state-space representation of this AIRC model is 

0 

/ 0 

0 1.1320 0 -1.0000 

0 -0.0538 -0.1712 0 0.0705 

A= 0 0 1.0000 , 
0 0.0485 0 -0.8556 

0 1 
-1.0130 

0 -0.2909 0 1.0532 -0.6859 

It can be found, using a Matlab software 
package, that the MRI matrix and high- 

frequency matrix are 

(s 

25 

+ 2) - (s + 2)2 
0 3(s +2)2 

0 
() 1 ’ 

Lo 0 @+2)*J 
0 -13.1250 0.0732 

K,= -0.12 0.9249 -0.0051 . 

0 4.4190 -1.6650 1 
Hence a controller design for a GRD-two system 
is used in this example. Now suppose that there 
are uncertainties 

APU(s) = 
4 s+3 6 

s+8 s* + 11s + 30 s+7 

1 3 2.s+9 

F - - 

s+9 s + 12 s2+17s+70 

s+6 4 5 

s* + 13s + 40 s+7 s + 12 

/.L = 0.01, 
d,(t) = [O.l sin lot 0.1 sin 20t 0.1 cos lOtIT 

present in this system. The parameterization of 
(3) is now used, with the following design: 

design parameters 

S, = K;‘, 
n(s) = s + 10, 

fr(s) = (s + 7)(s + 9) 
L,(s) = II(s) = s + 8, 

F(m) = (& + 1 1 *; 

augmented signal and auxiliary errors 

Yaw = fr(s) LLL(s)z( -VI + &) Zbl)(O9 

h(t) = 4) - YaWt 

ea2(t) = -bllav + $pl~'): 
1 

controller 

ui(t) = - sgn hi(t)1 [h(t) Ili(t)l 

+ Pi2(t) + Pi3(t)m(t)], i = 1~29 

u(t) = u*(t), 

h(t) = -O.lm(t) + O.Ol[lu(t)l + 11, m(0) = 0.2; 

adaptation law 

Pil(t) = gil ledt)l Ili(t)L 

A*(t) = gi2 letdt)l, 
&3(t) = gi3 IGi( m(t); 

reference model and reference input 

M(s)=3z= 63 

fr(s) (s + 7)(s + 9) l 
r,,,(t) = [sin t 2 -3 cos tlT, r(t) = 63r,(t). 

Three simulation cases are studied extensively in 
this example in order to verify all the theoretical 
results and corresponding comments. All the 
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(i) In the first case, we arbitrarily choose the 
initial control parameters P;j(O) as 

P,,(O) = 3, /312(O) = 3, @13(O) = 0.5, 

&1(O) = 1, P**(O) = 1, &3(O) = 0.5, 

and set all the adaptation gains g, = 1. As 
shown in Figs l(a-c) (the time trajectories 
of 9, and y,), the global stability, robustness 
and asymptotic tracking performance are 
achieved, but some undesirable transient 
behaviors between 9, and y, are also 
observed. However, as shown in Figs l(d, e) 
(the time trajectories of the control 
parameters), the large tracking errors in the 
transient period result in rapid increases in 
the magnitudes of the control parameters 

P ,,, and after the transient period the 
tracking performance is then satisfied. 

(ii) In the second case, we want to demonstrate 
the effectiveness of a proper choice of 
p,(O), and we repeat the previous simula- 
tion case by increasing the values of Pii 
to 

L%,(O) = 10, P,*(O) = 10, P13(0) = 1, 

&1(O) = 5, P22(0) = 5, P&O) = 1. 

The nice transient and tracking perfor- 
mance between 9, and y,,, can be observed 
in Figs 2(a-c). 

(iii) As noted in Remark 3.2, if there is no easy 
way to estimate suitable initial control 
parameters p,(O) like those in the second 
simulation case, it is suggested that one use 
large adaptation gains in order to increase 

cases will assume that there are initial output 
perturbations p,(O) - y,,,(O) = [ - 1.6 1.1 4.51T. 

the adaptation rate of the control para- 
meters Pij such that the nice transient and 
tracking performance as described in case 
(ii) can be retained to some extent. Hence, 
in this case, we use the initial control 
parameters as in case (i) but set all the 
adaptation gains to g;j = 5. The expected 
results are shown in Fig. 3, where rapid 
increases in the control parameters do lead 
to satisfactory transient and tracking 
performance. 

5.2. Simulations of AIRC model using MRAC 
with switching u modification 

In order to make a comparison with the 
traditional MRAC scheme, we repeat the 
simulations by using the MRAC scheme with 
switching v modification (Tao and Ioannou, 
1988). This control scheme is now briefly 
described as follows: 

l controller 

u(t) = Oo(t)r(t) + @(t)w,(t) 

+ @(t)&(t) + @,(t)fp(t) 

= @(f)@(f), 

1 
U,(t) = fr(s> WsNbl(t)9 

where o(t) and G(t) are defined as in (7) and 

(8); 

l adaptation law 

oT(t) = -K; T ‘&)lT@) 

m*(t) 
- ajOT( 

%(f)STW 
k(t) = --K2 m2ttj - ~2W>, 

0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10 

(a) time (set) (b) time (set) (c) time (set) 

0 2 4 6 8 10 0 2 4 6 8 10 

(d) time (set) (e) time (set) 

Fig. 1. Tracking performances with small initial control parameters and small adaptation gains. 
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(a) time (set) 

2 4 6 8 10 0 2 4 6 8 10 
(b) time (set) (c) time (set) 

2 4 6 8 10 0 2 4 6 8 10 

(d) time (set) (e) time (set) 

Fig. 2. Tracking performances with large initial control parameters and small adaptation gains. 

where K, and K2 are positive-definite 
matrices, m(t) is the normalization signal (15), 
u1 and u2 are the switching o- modification 
parameters, q(f) is the measured estimation 
error, and l(t) and t(t) are some regressor 
signals (for details, see Tao and Ioannou, 
1988). 

All the necessary design parameters are the 
same as those in Section 5.1, except for the 
initial control parameters 0(O) = 0 and &o(O) = 0. 
The output tracking performances are shown in 
Fig. 4. Note that in order to achieve an 
acceptable tracking accuracy, the time interval 
shown in Fig. 4 is [0, lOO]. 

Discussion. 

(i) In Section 5.1, we have studied the effects 

of the proper choice of the initial control 
parameters and the adaptation gains on the 
tracking performances. Theoretically, the 
larger the flii(O) (especially Bij(O) 2 Sit>, the 
better are the tracking performances. But 
large pii (i.e. high gain) would likely 
cause input saturation, which is a common 
problem in MRAC systems, especially using 
variable structure design. However, in our 
simulations, we have found that there often 
exist some levels of magnitude of the 
control parameters that yield satisfactory 
performances, and these levels are often 
less than the theoretically required bounds 
/3J in most cases. In other words, the upper 
bounds on the control parameters J3J 
derived in this paper are in general too 
conservative. Hence an intelligent approach 

0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10 

(a) time (set) (b) time (set) (c) time (set) 

0. 
0 2 4 6 8’ 10 

(d) time (set) 

&l (--), &z (- - -), &s(. * .) 
_______________________________----------____-_--. 

2 4 6 8 10 

(e) time (set) 

Fig. 3. Tracking performances with small initial control parameters and large adaptation gains. 



846 Chiang-Ju Chien et al. 

(a) time (set) (b) time (set) 

Fig. 4. Tracking performances of traditional MRAC. 

(c) time (set) 

(ii) 

to get both satisfactory performances and 
reasonable values of control parameters is 
the idea presented in the third simulation 
case, where a combination of small initial 
control parameters and high adaptation 
gains is used. The reasonable values of the 
control parameters will now be determined 
by the adaptation process. In the second 
and third simulation cases, we find that the 
tracking performances are almost the same, 
although the initial control parameters 
pii in case (ii) are much larger than those 
in case (iii). It is interesting to note that 
with the aid of high adaptation gains, the 
control parameters in case (iii) reach some 
levels of magnitude quickly in order to 
guarantee the desired tracking performance. 
Despite this, from Figs 2(d, e) and 3(d, e), 
we have found that the levels of magnitude 
reached by the adaptation process in case 
(iii) are smaller than those in case (ii). 

In the proposed adaptive variable structure 
controller, the initial choice of control 
parameters Pii and the design of 
adaptation gains g;j really reflect the 
improvement in tracking performances. In 
this scheme, in spite of the systematic 
design procedure, an easy rule of thumb for 
a guaranteed performance is to set the 
@ii(O) or adaptation gains g,, as large as 
possible (especially Pii 2 @). In tradi- 
tional MRAC schemes, it is expected that 
the tracking perforances might be improved 
when the initial choices of control para- 
meters O(0) and tiO(0) are closer to O* and 
$2. However, it is hard to accurately 
estimate these true control parameters O* 

and $:, especially in the MIMO case. So 
there is no easy way to choose O(0) and 
(cl,,(O) before controller design, and this is 
why we have simply set O(0) = 0 and 
t&,(O) = 0 in the above simulation. Another 
approach to improve the tracking perfor- 

mances in traditional MRAC schemes is 
persistent excitation of the input signal, 
which is not practical in most control cases 
and is not necessary in our proposed 
scheme. 

(iii) It is interesting to note that the total 
number of control parameters updated in 
the proposed adaptive variable structure 
scheme is 3p for a GRD-p plant, which is 
far less than in traditional MRAC scheme. 
Taking the simulation case in this section 
for example, we have n (the input/output 
numbers) = 3, Y (the upper bound on 
observability index) = 2 and p (the general- 
ized relative degree) = 2, so that the total 
numbers of control parameters used are 
3p =6 in our scheme and (2Xn X Y) X 

(n) + n X II = 4.5 in the traditional scheme. 

(iv) For this example, we have used other 
possible type of unmodeled dynamics 
APU(s) different from (28) for simulation, 
and have found that the tracking perfor- 
mances remained unchanged so long as 
A&(s) satisfies assumption (S6). But, as 
indicated in the proof in the Appendix and 
Part II of Theorem 4.1, closed-loop stability 
will depend on the strength of the 
unmodeled dynamics, i.e. the value of p. 
Taking this application for example, we 
have found that the tracking performances 
can still be retained when p < 0.1, but 
closed-loop stability is gradually lost as p 
increases, and the system even becomes 
unstable when k > 1.4. A possible reason 
is that the plant, including modeled 
and unmodeled dynamics, becomes 
nonminimum-phase when p is large, so that 
the required growth rate condition (A.l) 
cannot be achieved. However, it is hard to 
estimate the allowed bound p* given in the 
Appendix In this paper, we only guaran- 
tee that the proposed adaptive variable 
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structure controller is robust to a class of 
unmodeled dynamics up to some strength. 

6. CONCLUSIONS 

A new adaptive variable structure scheme has 
been proposed for MRAC problems for 
uncertain multivariable plants. The main con- 
tribution of this paper is the complete version of 
adaptive variable structure design for solving the 
robustness and performance of multivariable 
MRAC problems. A detailed analysis of the 
closed-loop stability and tracking performance 
has been given. It has been shown that without 
any persistent excitation the output tracking 
errors can be driven to zero for GRD-one 
systems and driven asymptotically to a small 
residual set for systems with any higher GRD. 
Furthermore, under a suitable choice of initial 
conditions on the control parameters, the 
tracking performances can be improved, which is 
hardly achievable with traditional MRAC 
schemes, especially for multivariable plants with 
uncertainties. 
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APPENDIX 

Lemma A.l. Consider the controller design in Theorem 3.1 
or 4.1. If the control parameters /zIj or ZIij, i = 1, . . . , p, j = 
1,2,3, are uniformly bounded then’there exists p* > 0 such 
that v(t) satisfies 

I1(u),tI,sK I@,)&+ a (A.l) 

for all p E [0, p*], t 20, where K is used here and below to 
denote any suitably defined positive constant. 

Proof Since y,(t) = P,(s)[Z + u AP.,(s)][v](t), the following 
equation will hold without considering the exponentially 
decaying signals from initial conditions: 

y,(t) = P,(slf,(sYV + CL ~LOlf&W). 64.2) 

Note that f,(s)Z is the MRI matrix of P,(s), so that P,(s)f,(s)Z 
is a proper rational transfer matrix and has stable zeros. 
Hence, let r+(t) = [l/fi(s)]Z[v](t). Then (A.2) is in fact 
equivalent to 

which, by the small-gain theorem (Desoer and Vidyasagar, 
1975), implies that there exists p * > 0 such that 

/I(ur)rllr~ K II( + K 

s K Il(c,),llr + K (A.4) 

for all p E [0, CL*]. However, one can easily observe that 

Vfjzf&[Vj]? j=l,2,...,n, 
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where vrj and vi denote the jth elements of vr and v 
respectively. It is clear that if we can show that vi is bounded 
by Ufj then (A.l) is achieved. 

By using Lemma 2.8 of Narendra and Annaswamy (1988) 
the key point to show the boundedness between vrj and V, 
from (AS) is the growing behavior of the signal vj. The 
above statement can be expressed more precisely as follows: 
if vi satisfies 

Ivj(tl)l B CZ IUj(fl + T)I > (A.6) 

where t, and r1 + 7’ are the time instants defined as 

[tl~ f1 + T] ‘fi=It:Ivj(r)l = Il(“j)~llco1~ (A.7) 

[xz 13: wT ml’. Then, using the augmented system 

:[;I=[$ ; ; !J;] 

4 0 

+ B 0 [I [I 0 
v+ o (I”1 + 1x 

0 61 

we can show from the definition of v in (16) or (20) that 

IZI 5 a Ilm,ll~ + K. 

and c2 is a constant E (0, l), then v, will be bounded by vr,. 
Now, in order to establish (A.6) and (A.7) let (A,,, B,,, C,) 
and (A, B) be the state-space realizations of P,(s)[l+ 
p APUr( and A(s)/n(s) respectively. Also define Z = 

This means that Z is regular (Sastry and Bodson, 1989), so 
that $, m and yP will grow at most exponentially fast (if 
unbounded), which in turn guarantees (A.6) and (A.7). This 
completes our proof. 0 


