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A new scheme that involves Fourier transformation to determine a correlation function of
the first derivative of an electronic-density profile is proposed to improve the groove-tracking
method. Tests of application of this scheme on simulated data demonstrate that this scheme
is helpful in analysis of reflectivity data to retrieve profiles of electronic density that are not
completely smooth, and operates with little or no prior information about unknown profiles.
The mathematical basis of the new scheme is discussed.

PACS. 61.19.-i – x-ray diffraction and scattering.

I. Introduction

Specular reflection of both xrays and neutrons from a plane surface can yield information
about the profile of the surface, i.e., its electronic structure in a perpendicular direction [1-3].
Procedures to analyse xray reflectivity data either depend on some models or are independent
thereof [4, 5]. Because reflectivity data lack phase information and because the range of qz over
which reflectivity can be measured is limited, neither approach can yield an inherently unique
profile of electronic density [6, 7]; this phase problem will be solved if various theoretical [8, 9]
and experimental considerations [10-12] yield a method to determine the phase of reflectivity
data. The effect of a limited range of qz is discussed theoretically in our previous paper [13]. In
practice a model-independent scheme for analysis of reflectivity data has an advantage that such
a method can retrieve a profile of electronic density directly from reflectivity data with little or no
prior information about an unknown profile. Therefore a model-independent method is helpful in
revealing from experimental data physical phenomena of surface structures that might be neglected
or undiscovered in related theories and speculations.

According to the groove-tracking method (GTM) [14-16] originated by Zhou and Chen,
which works independently of a model, the density profile is first approximated with a few steps
of equal width and independent height. The reflectivity for this model interface is computed,
compared with experimental data, with a cost function defined in Ref. [16]; the density of each
step is then independently varied to minimize the cost function. Successive approximations are
made on subdividing each step and repeating the process while allowing subsequent amplitudes
for narrower steps to vary. The procedure is complete when the calculated cost function attains
an acceptable value and reveals a step-like profile to resemble the smooth unknown profile of the
particular sample.

Improving the original GTM, which has proved applicable to many samples, we developed
a smoothed groove-tracking method (SGTM) [17], by imposing a requirement that a profile of
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electronic density be smooth. According to this method, the surface region of a sample is divided
into thin layers; then the reflectivity is calculated more precisely by using Parratt’s formula. The
fitting procedure in the original GTM, which sometimes encounters problems with local minima,
is also modified for mathematical reasons [13]. A combination of improved GTM and successive
smoothing procedures enables a reasonable extrapolation of reflectivity data beyond qz;m ax . Hence
providing more physically reasonable profiles than typically jagged and discontinuous profiles
generated with the original GTM, the SGTM makes the original GTM significantly more practical
especially in cases in which experimental data are measured within a limited range of qz . In this
way the SGTM provides an undiscovered but meaningful profile [18].

With this perspective in mind, the SGTM is applicable also to neutron reflectivity data and
can serve to analyze reflectance with phase information after the phase problem becomes solved
in the future with the help of mature techniques for measurements of the phase.

In applying SGTM to reflectivity of a sample with a non-smooth profile there remains a
problem, even though GTM inherently yields a step-like retrieved profile. The disadvantage arises
because precise positions of sharp edges of an unknown non-smooth profile can not be determined
in advance. Here we present a new scheme based on Fourier transformation of reflectivity data
divided by Fresnel reflectivity of bulk density that serves to reconstruct such an unknown profile.

II. Theory of x-ray reflectivity and a new schemeIntroduction

The quantity generally measured is the reflectivity, which is obtained theoretically according
to Parratt’s formula [19]. The region of a surface of interest is divided into N equal slices, each
of thickness ¢ such that N¢ = d. The depth d of the surface region must be large enough to
ensure that all features of a profile of electronic density are distributed within this depth. N can
be as large as duration of computation allows so that the profile of electronic density within each
slice can be regarded as constant. The real profile of electronic density ½(z) is then replaced
without loss with a discrete ½N = [½1; ½2; ½3; :::½N ]. As a function of the free-space wave number
ko = (2¼=¸) sin µ, in which µ denotes grazing angle and ¸ the length of the wave in free space,
the theoretical reflectance of N uniform slices is given in terms of profile ½N through a recurrence
relation [19],

ri =
Ri+1 + ri+1 exp(2iki+1¢ Zi+1)

1 + Ri+1 + ri+1 exp(2iki+1¢ Zi+1)
(1)

in which ¢ Zi+1 = ¢ is the thickness of layer i+1, and i=N-1, N-2, ...2,1,0.

ki+1 =
q

(k2
0 ¡ 4¼½i+1) (2)

is the wave number in layer i+1, Ri+1 = (ki ¡ ki+1)=(ki + ki+1) is the Fresnel reflectance of the
interface between layers i and i+1, and rN = (kN ¡ k1)=(kN +k1) is the Fresnel reflectance of
the interface between layer N and the bulk. For given ½N , the reflectance of the entire assembly
of N layers is ro(ko) and the reflectivity is expressed as jro(ko)j2

According to the Born approximation, Ri ¿ 1, and the Fresnel reflectance is expressed as

Ri+1 ¼ 4¼(½i+1 ¡ ½i)

(2k0)2
(3)
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Therefore, Eq. (1) becomes

ri ¼ Ri+1 + ri+1 exp(2iki+1¢ Zi+1) (4)

Assuming that variation of ki+1 in separate slices, of which the electron density varies, can be
neglected, i.e., ki+1 ¼ ko for all i, and denoting ki+1 as ko, we obtain the reflectance

r(qz) =
4¼

q2
z

Z
d½(z)

dz
eiqzzdz; (5)

with qz = 2ko. Integrating Eq. (5) by parts, one can also express the reflectance as

r(qz) =
¡ 4¼i

qz

Z
½(z)eiqzzdz (6)

for convenience. Following Eq. (5), the reflectivity is given by

R(qz) = j4¼

q2
z

Z
d½(z)

dz
eiqzzdzj2: (7)

According to Eq. (3), the Fresnel reflectivity of the bulk density is

RF (qz) = j4¼½1
q2
z

j2: (8)

Hence,

R(qz)

RF (qz)
= j 1

½1

Z 1

¡ 1

d½(z)

dz
eiqzzdzj2 (9)

In the following the factor 1=½1 is neglected; hence a profile of electronic density ½(z) has units
of ½1 for numerical simplicity; we also let d½(z)=dz = f (z). It follows that

R(qz)

RF (qz)
= j

Z 1

¡ 1
f(z)eiqzzdzj2 (10)

= (

Z 1

¡ 1
f(z)eiqzzdz) £ (

Z 1

¡ 1
f(z0)e¡ iqzz0dz0) (11)

=

Z 1

¡ 1

Z 1

¡ 1
f(z)f(z0)eiqz(z¡ z0)dzdz0: (12)

Setting z ¡ z0 = x; z = x + z0 and dz = dx, we obtain from the above equation

R(qz)

RF (qz)
=

Z 1

¡ 1

Z 1

¡ 1
f(x + z0)f(z0)eiqxxdxdz0 (13)

=

Z 1

¡ 1
eiqxxdx[

Z 1

¡ 1
f(x + z0)f(z0)dz0] (14)
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=

Z 1

¡ 1
P (x)eiqxxdx; (15)

in which

P (x) =

Z 1

¡ 1
f(x + z0)f(z0)dz0 (16)

=

Z 1

¡ 1

d½(z0)
dz0

d½(x + z0)
dz0 dz0: (17)

The correlation function P(x) is a convolution integral of the derivative of a profile of electronic
density. In practice, if the derivative of such a profile is not complex, P(x) reveals the positions
of sharp edges of a profile. For example, for a profile of a sample either a thin film or a wetting
film, there are generally only two sharp edges of which the positions are readily obtained from the
correlation function. In applying the GTM to reflectivity data of such samples, we thus divided
the surface region according to information about edge positions indicated by correlation function
P(x).

The task then becomes to derive a correlation function P(x) from experimental or simulated
data. Defining R(qz)=RF (qz) = F (qz), we rewrite Eq. (15) as

F (qz) =

Z 1

¡ 1
P (x)eiqxxdx; (18)

and obtain

P (x) =
1

2¼

Z 1

¡ 1
F (qz0)e¡ iqz0xdqz0: (19)

Because F (qz0) is an even function,

P (x) =
1

2¼

Z 1

¡ 1
F (qz0) cos(qz0x)dqz0 (20)

=
1

¼

Z 1

0

F (qz0) cos(qz0x)dqz0 (21)

which is used to obtain numerically P(x) from experimental or simulated data R(qz) divided by
Fresnel reflectivity RF (qz) depending on bulk density.

III. New scheme and its application

We proceed to use reflectivity data for two simulated profiles for electronic density, which
are not completely smooth, to illustrate the new scheme and to demonstrate that this scheme
provides profiles faithfully reproducing the original ones. We employ simulated data so that the
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correctness of the retrieved profile is verified directly against the originally simulated profiles to
confirm the reliability of the new scheme.

The first simulated profile, depicted as a solid curve in Fig. 1(a), resembles that of a thin
film on a substrate. The corresponding reflectivity data of this profile appear in Fig. 1(b). With an
aim to derive a correlation function P(x), we apply GTM to only two data points near the critical
qz for total external reflectivity to determine the bulk density ½1. Then it is easy to obtain the
Fresnel reflectivity of the bulk density, shown as a dashed curve in Fig. 2(a), and R(qz)=RF (qz),
shown as a solid curve in Fig. 2(a). Employing Eq. (21), we obtain correlation function P(x)
shown in Fig. 2(b). Because P(x) is the convolution integral of the derivative of the pertinent
profile of electronic density, the inversive peak of function P(x) at 79Å reveals that the distance
between two sharp edges of the profile along the perpendicular direction is about 79Å. Therefore,
instead of being divided into layers arbitrarily but inflexibly in the original GTM [15] , the surface
region of the sample is divided into layers of thickness D = 79, 39.5, 19.75, 9.875, 4.938 Å,
respectively at separate stages of the refined GTM. At various stages the data points distributed
within qz;m ax = ¼=D are taken into consideration for fitting [13]. The vertical bars, shown in

FIG. 1. (a) An original profile of electronic den-
sity, and (b) reflectivity data for this pro-
file.

FIG. 2. (a) Reflectivity data (circles) shown in
Fig.1(b)with Fresnel reflectivity RF (qz)
(dashed curve) and R(qz)=RF (qz)
(solid curve). (b) Function P(x) obtained
through Fourier transformation.
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Fig. 3(a), indicate the boundary at which qz;m ax = ¼=D for values of D. The evolution of
profiles retrieved at consecutive stages of the GTM is illustrated in Fig. 3(b). If layers of thickness
D = 4:938 Å are further divided into thinner layers of thickness D ¼ 2:5 Å, data points distributed
within qz;m ax = 1:2 Å¡ 1 are needed for reasonable fitting, but such data points in this case are
distributed only within the cutoff qz ¼ 0:74 Å¡ 1. In the final stage of the refined GTM only
data points within qz;m ax = 0:62 Å¡ 1 are thus fitted to construct the resultant GTM profile
with resolution D about 4.938 Å. In order to minimize the cost function between simulated and
fitted reflectivity data, the whole GTM procedure, including all the stages, is undertaken in three
iterations. A step-like profile, denoted “third iteration” in Fig. 3(b), is eventually obtained on
fitting data within qz;m ax = 0:62 Å¡ 1. This step-like profile is successively smoothed. While
the SGTM is applied to the smoothed profile, the smoothed profile is re-divided into layers of
thickness 4.245 Å. A relation between the thickness of divided layers and the boundary qz;m ax

of data considered for fitting is satisfied, i.e., 0.74 Å¡ 1 = ¼=4:245 Å, and all simulated (or
experimental) data within a cutoff qz = 0:74 Å¡ 1 are fitted to obtain the best resolution of
the retrieved profile. The computed reflectivity from the resultant SGTM profile is compared
with simulated reflectivity data in Fig. 4(b). Satisfactory agreement is demonstrated between the
simulated reflectivity data and the the computed reflectivity. Furthermore, the resultant SGTM
profile and the original profile, shown in Fig. 4(a), are so similar that the dashed curve is scarcely
distinguishable from the solid curve.

Another simulated profile, shown in an inset of Fig. 5(a), is inspired by x ray measurements
on films of liquid hexane adsorbed on a rough silicon wafer [20]. The corresponding reflectivity
R(qz) of this profile, the Fresnel reflectivity RF (qz) and R(qz)=RF (qz) are shown in Fig. 5(b).
According to Eq. (21), we obtain correlation function P(x) shown in Fig. 5(a). A large maximum
of P(x) located at 84 Å indicates that the distance between two sharp edges of the profile in this
example is about 84 Å. Using the refined GTM procedure, we divide the surface region into layers
of thickness D = 84, 42, 21, 10.5 and 5.3 Å respectively at various stages. The qz;m ax , within
which data points are used for fitting, is determined as ¼=D for each value of D at each stage
of the refined GTM and is indicated with vertical bars in Fig. 6(a). Related details of the GTM
procedure are shown in Table I. The evolution of profiles, which are retrieved at successive stages

TABLE I. Data points for fitting at each stage in GTM.

stage 1 2 3 4 5

No. of Data points for fitting 5 16 39 86 179
thickness of divided layers 84 Å 42 Å 21 Å 10.5 Å 5.3 Å
qz;m ax 0.0375 Å ¡ 1 0.075 Å ¡ 1 0.15 Å ¡ 1 0.3 Å ¡ 1 0.6 Å ¡ 1
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FIG. 3. (a) Vertical bars indicate the bound-
ary within which reflectivity data points,
shown in Fig. 1(b), are taken into con-
sideration in fitting at various stages of
the refined GTM. (b) Profiles obtained
at various stages of GTM with thickness
of divided layers D = 79 Å, 39.5 Å,
19.75 Å 9.875 Å, and 4.938 Å, WIth
profiles obtained after the first, second
iteration and third iterations of GTM.

FIG. 4. (a) The resultant profile (dashed curve),
retrieved from SGTM, compared with
the original profile (solid curve). (b)
Reflectivity data, shown in Fig. 1(b),
compared with fitted reflectivity of the
resultant SGTM profile in (a).

of the GTM and refined on operating the following GTM iteration, is illustrated in Fig. 6(b).
In this case, we iterate the GTM procedure ten times to minimize the cost function between
simulated and fitted reflectivity data. The resultant profile, denoted as “tenth iteration” in Fig.
6(b), is constructed, and, still being step-like, is smoothed. The SGTM is used to retrieve the
resultant profile, shown in Fig. 7(a), while the smoothed profile is re-divided into layers of
thickness ¼=(0:79 Å¡ 1).
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FIG. 5. (a) The function P(x) obtained accord-
ing to Eq. (21). The inset shows
the original prome. (b) Simulated re-
flectivity data for the original prome
in the inset of (a) along with Fresnel
reflectivity RF (qz) (dashed curve) and
R(qz)=RF (qz) (solid curve).

FIG. 6. (a) Vertical bars indicate a boundary
within which data points are taken into
consideration for fitting at various stages
of GTM. (b) Profiles of electronic den-
sity, obtained at various stages of the
GTM, with thickness of divided lay-
ers in a range 84 -5.3 Å. The pro-
file obtained after GTM is iterated ten
times, denoted as ”tenth iteration”, and
the smoothed profile. ”CS” refers to
a smoothing operation based on cubic-
spline interpolation.

The retrieved profile reveals faithfully all features of the wetting-film region, whereas these
are generally unknown in realistic cases. The reflectivity is fitted satisfactorily. Because we do
not generate enough data points near the critical qz to define precisely the critical value of qz ,
the bulk density, related to this critical value, can not be determined precisely and differs slightly
from that of the original profile. The minute discrepancy arises as there is a small bump in the
retrieved profile appearing at -80 Å (see Fig. 7(a)). For this reason minor deviations of fitted
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FIG. 7. (a) The resultant profile (dashed curve), obtained from SGTM, compared with the original profile
(solid curve). (b) Simulated reflectivity data compared with fitted reflectivity of the resultant
SGTM profile in (a).

reflectivity spectra from simulated data are discernible beyond qz ¼ 0:7 Å¡ 1 in Fig. 7(b). In an experiment,
if good data near the critical qz can be obtained, the density of data points in this region becomes sufficiently
increased to determine precisely the accurate value of the critical qz and then to determine precisely the
value of the bulk density. In cases in which data near the critical qz are poor, the bulk (substrate) density
should be determined in advance. The electron density of a substrate is generally known before preparation
of the wetting samples.

IV. Conclusion

A new scheme for smoothed groove tracking is applicable to reflectivity data for samples for which
profiles of electronic density are not completely smooth, whereas previous methods serve for reconstruction
of only smooth profiles; in this way applications of SGTM are expanded. This scheme consists of a
preliminary process, based on Fourier transformation, a refined GTM and the SGTM. In outline of the
method, the surface region of the sample in question is divided into layers according to information on
positions of sharp edges of the probed profile, which is obtained from the preliminary process. Then
a refined GTM is used to retrieve efficiently the step-Iike profile of electronic density revealing basic
features of sharp edges of the probed profile. Finally the SGTM is employed to reconstruct the resultant
profile resembling the true profile and exhibiting details of minute features of the profile. The SGTM
complemented with the preliminary process is applicable to simulated reflectivity data of samples as a thin
film or a wetting film with little or no prior information.

A relation between thickness D of divided layers and qz;m ax over which data points are taken into
consideration for fitting is qz;m ax = ¼=D. This rule must be rigorously satisfied whether in the refined
GTM with the preliminary process or in the SGTM. To violate the rule might cause a serious problem of
a local minimum or make fitting futile.
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In realistic cases measurement of reflectivity data near the critical qz , at which total external re-
flectance occurs, can be difficult, so that it becomes impossible to determine the bulk density based on
experimental data, but the electronic density of a bulk or substrate is typically well known. Any accessory
information, which is necessary and reliable for preparation of a sample or is provided by related theoretical
work, is helpful in implementing efficiently the new scheme and in avoiding non-uniqueness of results. In
this work using the new scheme with the refined GTM, we obtain quickly a step-like profile that resembles
the real profile and serves as an estimated profile for the successive SGTM. A profile for the probed sample
obtained by any other method dependent or independent of a model can serve as that estimated profile for
the SGTM. During the iterative procedure of the SGTM, an estimated profile becomes further refined to
approach the real profile in question as the computed reflectivity agrees satisfactorily with experimental or
simulated data.
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