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ORIGINAL ARTICLE

Designing an optimal multivariate
geostatistical groundwater quality monitoring
network using factorial kriging and genetic

algorithms

Abstract The optimal selection of
monitoring wells is a major task in
designing an information-effective
groundwater quality monitoring
network which can provide sufficient
and not redundant information of
monitoring variables for delineating
spatial distribution or variations of
monitoring variables. This study
develops a design approach for an
optimal multivariate geostatistical
groundwater quality network by
proposing a network system to
identify groundwater quality spatial
variations by using factorial kriging
with genetic algorithm. The pro-
posed approach is applied in
designing a groundwater quality
monitoring network for nine vari-
ables (EC, TDS, CI~, Na, Ca, Mg,
SO3~, Mn and Fe) in the Pingtung
Plain in Taiwan. The spatial struc-
ture results show that the vario-
grams and cross-variograms of the
nine variables can be modeled in two
spatial structures: a Gaussian model
with ranges 28.5 km and a spherical

model with 40 km for short and long
spatial scale variations, respectively.
Moreover, the nine variables can be
grouped into two major components
for both short and long scales. The
proposed optimal monitoring design
model successfully obtains different
optimal network systems for delin-
eating spatial variations of the nine
groundwater quality variables by
using 20, 25 and 30 monitoring wells
in both short scale (28.5 km) and
long scale (40 km). Finally, the
study confirms that the proposed
model can design an optimal
groundwater monitoring network
that not only considers multiple
groundwater quality variables but
also monitors variations of moni-
toring variables at various spatial
scales in the study area.

Keywords Groundwater quality -
Monitoring network design -
Factorial kriging - Optimization -
Spatial Variation - Pingtung plain -
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Introduction

In environmental monitoring such as groundwater
quality investigations, the collected data may harbor
significant uncertainty, including complex or extremely
complicated variations in the observed values of mea-
surable characteristics of the investigated medium or
pollution sources in time and space. Given the high cost
and risks associated with such investigations, develop-

ment of efficient procedures for designing and adjusting
information-effective monitoring networks is an essen-
tial task for more accurately understanding the spatial
distribution or variations of monitoring variables.
Therefore, the information generated by such optimal
monitoring networks should provide sufficient, but not
redundant information to fully understand the spatial
phenomena of monitoring variables or their variations.
These networks can be used to characterize natural re-
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sources for the management of resources or to delineate
polluted area and variation for remediation and risk
assessment.

Geostatistics, a spatial statistical technique used in
environmental monitoring, is widely applied to analyze
and map distributions of concentrations and variations
in space and time. Geostatistics uses variograms to
characterize and quantify spatial variability, perform
rational interpolation, and estimate the variance in the
interpolated values. A variogram quantifies the com-
monly observed relationship between the values of data,
pertaining to the samples, and the samples‘ proximity.
Kriging, a geostatistical method, is a linear interpolation
procedure that provides a best linear unbiased estimator
(BLUE) for quantities that vary spatially. Recently,
kriging has been widely used to analyze and map the
spatial variability and distribution of investigated data
in many fields. Multivariate geostatistical methods, such
as factorial kriging, combine the advantages of geosta-
tistical techniques and multivariate analysis, while
incorporating spatial or temporal correlations and
multivariate relationships to detect and map different
sources of spatial variation on different scales (Lin
2002). Factorial kriging is a variant of kriging which
aims at estimating and mapping the different sources of
spatial variability identified on the experimental vario-
gram (Goovaerts 1992 and 1998). Examples of factorial
kriging studies include Goovaerts (1994), Goovaerts and
Webster (1994), Dobermann and others (1995), Einax
and Soldt (1998), Jiménez-Espinosa and Chica-Olmo
(1999), Bocchi et al. (2000), Castrignano et al. (2000a,
b), Batista and others (2001) and Lin (2002).

In monitoring network design studies, many
researchers have considered geostatistical approaches to
designing or adjusting environmental monitoring sys-
tems and quantifying the informational value of moni-
toring data and their variations, for example, Rouhani
(1985), Rouhani and Hall (1988), Christakos and Olea
(1988), Loaiciga (1989), Hudak and Loaiciga (1993),
Benjemaa et al. (1994), Pesti et al. (1994) and Wang and
Qi (1998). Recently, Brus et al. (1999) used a geostatis-
tical sampling scheme to discuss sampling size and points
for estimating the mean extractable phosphorus con-
centration of fields. Van Groenigen et al. (1999) extended
spatial simulated annealing with the kriging method to
optimize spatial sampling schemes for obtaining the
minimal kriging estimation variance. Lark (2000) used
fuzzy and kriging methods to define a sampling scheme
for designing sampling grids from imprecise information
of soil variability. Prakash and Singh (2000) applied
kriging variance reduction to design a groundwater
monitoring network, as well as locations of additional
wells from predefined locations. Based on the variance
reduction method, Lin and Rouhani (2001) have devel-
oped a multiple-point variance analysis (MPV), which
utilizes both the multiple-point variance reduction

analysis and the multiple-point variance increase analy-
sis. This process expands on foregoing studies by pro-
viding automatic procedures for simultaneously
identifying groups of sampling sites without any need for
spatial discretization or sequential selection. The goal of
MPYV (Lin and Rouhani 2001) is to develop a framework
for the optimal simultaneous selection of additional or
redundant sampling locations. Lark (2002) used the
maximum likelihood method to optimize and discuss the
spatial sampling of soil for the estimation of variograms.
Cameron and Hunter (2002) selected redundant
groundwater monitoring wells that did not change the
plume interpolation, the kriging estimation variance in
the plume section, nor the averaging global kriging var-
iance. Ferreyra et al. (2002) used the scaled variogram
technique with spatial simulated annealing algorithms
along with kriging methods to reduce the number of
locations from a regular grid system to describe water
content in an 8-ha study area. Passarella et al. (2003)
used the cokriging estimation variance with the fuzzy
method to assess the loss of information produced by the
elimination of the selected well in a groundwater net-
work. All of these approaches have only focused on one
monitoring variable and its spatial distribution.

The genetic algorithms (GAs) are robust methods
used to search for the optimum solution of a complex
problem and can compute the near global optimal
solutions. GAs have been widely used in solving opti-
mization problems and have found applications in
monitoring network design. Cieniawski et al. (1995)
addressed the problem of how to select a system of
monitoring wells with a GA and the method of opti-
mization using GA which could consider the two
objectives of (1) maximizing reliability and (2) mini-
mizing the contaminated area at the time of first detec-
tion. Reed and others (2000) combined a fate-and-
transport model, plume interpolation, and a GA to
identify cost-effective sampling plans that accurately
quantify the total mass of the dissolved contaminant.
Al-Zahrani and Moied (2003) used a GA for optimizing
monitoring stations for water quality in a water distri-
bution network to select sampling locations which were
representative of the whole network system.

Genetic algorithms in other hydrological and water
resources management applications include McKinney
and Lin (1994), Hsiao and Chang (2002), Chang and
Hsiao (2002), Rogers and Dowla (1994), Wardlaw and
Sharif (1999), Wang (1991) and Mohan (1997).

In fact, groundwater quality monitoring networks
may not only consider multiple variables, but also
delineate their major variations in space. Therefore, this
study develops a multivariate geostatistical groundwater
quality network design model to propose a network
system to identify groundwater quality spatial variations
by using factorial kriging with GAs. The proposed
model can optimally design a groundwater monitoring
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network that not only considers multiple groundwater
quality variables but also monitors their spatial varia-
tions at various spatial scales. The developed model also
has been applied in a real groundwater quality moni-
toring case in Taiwan.

Materials and methods
Factorial kriging

Multivariate analysis provides techniques, such as prin-
ciple component analysis (PCA) and factor analysis, for
classifying the inter-relationship of measured variables.
Multivariate geostatistical methods combine the advan-
tages of geostatistical techniques and multivariate anal-
ysis while incorporating spatial or temporal correlations
and multivariate relationships to detect and map different
sources of spatial variation on different scales. Textbooks
(Deutsch and Journel 1992; Wackernagel 1995; Goova-
erts 1997) and papers (Goovaerts 1992; Wackernagel
1994) have further detailed multivariate geostatistical
methods. Therefore, only a brief description of multi-
variate geostatistical methods is provided here.

Geostatistics provide a variogram of data within a
statistical framework, including spatial and temporal
covariance functions. As expected, these variogram
models are termed spatial or temporal structures, and
are defined in terms of the correlation between any two
points separated either spatially or temporally. The
variograms provide a means of quantifying the com-
monly observed relationship between the values of the
samples and the samples’ proximity (Lin et al. 2002).

The variogram y(h) of second-order stationary
regionalized variables, Z(x), is defined as

7(h) = (1/2) Var [Z(x) = Z(x + h)] (1)

where /1 denotes the lag distance that separates pairs of
points; Var represents the variance of the argument;
Z(x) is the value of the regionalized variable of interest
at location x, and Z(x + /) denotes the value at location
x+h. An experimental variogram for the interval lag
distance class £, y(h), is given by

n(h)

LS 20+ 1) - ()

2n(h)

7(h) = (2)

i=1

where n(h) represents the number of pairs separated by
the lag distance, /. Similarly, the spatial correlations or
cross-variograms (y , g (1)) between two variables can be
defined as

h) = 3 E[Za(xs ) — Zuc)) 2+ ) — Zy()]
()

where o f§ represent the different regionalized variables.
The experimental cross-variogram 7, (/) can be written
as:

1 n(h)

?aﬁ(h) = 2n(h) Z] [Zot(xi +h) — Za(xi)}

X [Z/;(xi + h) — Z[;(X,’)].

(4)

Multivariate regionalization of a set of random func-
tions can be represented with a spatial, multivariate linear
model which allows easy manipulation of multivariate
data (Wackernagel 1995). The nested direct and cross-
variogram can thus be modeled as linear combinations:

S S
Pap(h) =Y 7aplh) = > blgg" (h) (5)
u=1 u=1

where S is the number of the spatial scale, b,; are
coefficients, and g“(h) are elementary variogram func-
tions for the spatial scale u.

A set of second-order stationary regionalized vari-
ables, {Z;(x); i=1,..., N}, can be decomposed into sets
of spatial components, {Z{(x); i=1, ..., Nu=1, ..., S}:

S

Zi(x) = ZZ,-”(X) + my,

u=1

(6)

where 7 represents the different regionalized variables, N
is the number of regionalized variables, u represents the
different spatial scale, and S the number of spatial scales.
m; is E[Zx)]. Then, the set of spatial components Z7(x)
can be decomposed into sets of spatially uncorrelated
factors (Goovaerts 1992; Rouhani and Wackernagel
1990; Wackernagel 1995),

Zi(x) = dp¥y(x)

p=1

(7)

where Y)(x) are the regionalized factors in which p de-
notes different factors at a given spatial scale u.
According to Egs. 6 and 7

S N

Zi(x) = ap, Y3 (x) + m.

(3)

u=1 p=1

At a given spatial scale u, each uncorrelated factor Y,(x)
is assigned the same elementary variogram function,
g"(h). Because each factor is uncorrelated

%E[{Yv“(x) e ) - v e )]
g"(h) o= ®)
0 otherwise

. !
ffu=wu and
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According to Eqgs. 8 and 9, the direct and cross-
variograms, between two variables, 7y,5(h), can be
represented by g“(h) and aj,

= Zp(xi +h)]]
1 ! !
XEEHY;()C) - Y;(x—i-h)}{Y; (x) =7 (x+h)}]
(10)
Then, according to Eqgs. 5 and 10

S
yaﬁ<h) = Zb’;ﬁg“(h) =
u=1

The matrix form of Eq. 11 can be written as

N

N
Z Z aapa/qu

u=1 p

(11)

S S
D) = DB () = >0 44 ¢ () (12)
u=1 u=1
Then,
Bu — AuAuT (]3)

where B" is called the coregionalization matrix for a
given spatial scale u, and B" must be a positive semi-
definite matrix. Matrix A is the transformation coeffi-
cient between regionalized factors, Yj(x), and spatial
components, Z7(x). Based on the above nested model,
PCA can be applied to analyze the N x N coregional-
ization matrix of the coefficients b,z as a covariance
matrix of N regionalized variables on a spatial scale
that can be decomposed and written as (Wackernagel
1995)

B — AT <(Qu\/p> (Q,,W)T>

where Q" is the matrix of eigenvectors for spatial scale u,
A"is the diagonal matrix of eigenvalues for spatial scale
u, and the relative eigenvalues are 1, 4,,...,Ay. The
variance explanation of B* by Y}, (x), i.e., proportion,
can be represented as 4, />4 .

Based on the above, when g“(h) and «j, have been
obtained, the cokriging estimator of the regionalized
factors, Y),(xo), at a given point x, is

p xO :ng:/bmzz

i=1 a=1

(14)

(15)

where Z;(x,) is the observed value of the regionalized
variable, Z;, at the data point x,; m is the number of

observed value data of the regionalized variable, Z;; N is
the number of regionalized variables; and A; is the
estimation weight of the observed value of the region-
alized variable, Z;, at the point x,.

The cokriging system can be solved as

N m
3= Ajgviy (X = xp) =ty
j=1p=
:angu(xafxo) fori=1,....N; a=1,....m
m
> Aip=0 fori=1,....N
p=1
(16)
where p ; is the ith Lagrange multiplier, g* (x, — X¢) is

the value taken by the uth elementary variogram func-
tion, g“ (h), between the o th observed point and x.

Genetic algorithms

The concept of GAs has been derived from Darwin’s
theory of natural selection, and was first proposed in
1975 by John Holland (1992). In the 1960s and 1970s,
several evolutionary computing models were simulta-
neously developed. GAs are becoming the most popular
innovative methods of computing due to their ability to
solve complex problems, simple interface, and their
ability to be hybridized with existing simulation models.
GAs are inspired by the mechanism of natural section, in
which stronger individuals are likely to survive in a
competing environment. GAs are computing procedures
embodying important mechanisms of the adaptive pro-
cess in natural systems.

Genetic algorithms are heuristic programming
methods capable of locating near global optimal solu-
tions for complex problems (Goldberg 1989). The basic
principle of the GA is to simulate biological evolution.
This process has been successfully applied to many sit-
uations. A single GA cycle, known as a ‘“‘generation”,
includes three genetic operators: reproduction, cross-
over, and mutation, and can be considered to consist of
the following steps (Mitchell 1998).

1. Start with a randomly generated population of n
chromosomes (candidate solutions to a problem).

2. Calculate the fitness of each chromosome in the
population.

3. Repeat the following steps until n offsprings have
been created.

(a) Select a pair of parent chromosomes from the
current population, the probability of selection
being an increasing function of fitness.

(b) With the crossover probability, cross over the pair
at a randomly chosen point to form two offsprings.
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(c) Mutate the two offsprings at each locus with the
mutation probability, and place the resulting
chromosomes in the new population.

4. Replace the current population with the new popu-
lation.

5. Go to step 2 until the required number of genera-
tions. For detailed procedures of GAs, refer to
Mitchell (1998). In this study, the simple GA com-
bines factorial kriging and GAs to develop a multi-
variate  geostatistical groundwater monitoring
network design model.

Multivariate geostatistical groundwater quality
monitoring network design model

Definition of optimal problem

The aim of the optimal model is to minimize the esti-
mation variance of a single-factor or multi-factors
composed of groundwater quality variables for the
purpose of establishing a monitoring network to moni-
tor spatial variations. Factorial kriging can solve a
multi-variable problem by applying regionalized factors
as representative variables of multi-scale geostatistical
structures. PCA, one of the components of factorial
kriging, can address the proportion of each regionalized
factor of multi-scale geostatistical structures. In this
study a groundwater quality monitoring network design
approach is developed by considering total variances of
the regionalized factors composed by monitoring vari-
ables at various spatial scales.

The objective function of the optimal problem is to
minimize the total variances involved when estimating
regionalized factors of a study region under cost con-
straints. Factorial kriging is employed to estimate vari-
ances of regionalized factors in a study region. The
optimal model can be formulated as

objective function

: _ d
ICQ,lst[glnCNuJ(I) B Z Z Z wys oy (1) (17)
ucs pen deD

subject to

NI S Nmax (18)

where

1 a subset of Q and is a possible alternative
network design

Q an index set that defines all of the candidate
well locations in the study region

S an index set of all the spatial scales

K a subset of S and represents the set of spatial

scales considering the network design

an index set that represented all of the
regionalized factors of a given spatial scale u
n a subset of N, and represents the set of
regionalized factors considering the network
design of a given spatial scale u

YZ regionalized factor

wyy the weighting of Y,

D the set of all grids in the study region domain

d an element of D

ot the variance of the estimation of Y, at a given

g grid d

Ny the number of a possible alternative network
design, 7

Nmax the maximum limited number of monitoring
wells.

In Eq. 17, the objective function represents the total
variances of estimating the regionalized factors, Y,
which are chosen under the value of the proportion of
Y, of the concerned spatial scale, s (s < S). The
weighting of Yy, @y, can be assigned based on the
proportion of each Y. In Eq. 18, the constraint repre-
sents the cost limit of the monitoring network.

The optimal problem defined by Eqgs. 17 and 18 has
three key characteristics which are different from tradi-
tional network design problems.

First, the objective function is to minimize the total
variances of not the regional variables themselves, but
the chosen regionalized factors.

Second, an optimal network can be designed con-
sidering only one regionalized factor for a specific spatial
scale, or the optimal network can be designed consid-
ering several main regionalized factors for more than
one spatial scale.

Third, the weighting of Y, Wy, can be assigned
objectively based on the proportion of each Y. This
differs from the kriging and cokriging methods, which
use the subjective weight of regional variables.

Solution procedure: Integration of factorial kriging
and GAs

To solve the optimal problem defined by Egs. 17 and 18,
factorial kriging is combined with GA to develop a
groundwater monitoring network design model that
considers multi-variables (Fig. 1). The algorithm is a
simple GA with factorial kriging embedded in the total
variance of the chosen regionalized factors. The FAC-
TOR2D (Pardo-Iguzquiza and Dowd 2002) Fortran
program was modified for factorial kriging analysis in
this study. The program has two main features in this
study. First, the GA accommodates the discreteness of
the search for alternative optimal well locations among
the candidate well sites. Second, factorial kriging is used
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to calculate the total variances of the chosen latent
factors associated with each network alternative (chro-
mosomes). These features are clarified in the following
steps of the developed optimal model.

Step 1. standardizing monitoring variables

Solving the dimension of differing groundwater quality
requires standardizing the monitoring variables before
multivariate analysis.

~ Zoyj — ,Lﬁ

i = L, 19
Za, 5 (19)
where

Zyi is the standardized variable value of the ith

groundwater quality item of the «th moni-
toring well;

Zoi are the data of the ith groundwater quality
item of the ath monitoring well;

1.Standardize the groundwater
quality data

v

2.Modeling the coregionalization
of standardized variables

i

3.PCA of coregionalization
matrices

y

4. Initialization chromosomes
(generate network designs )

y

5.Evaluate the fitness of each 7.Reproduce
< Crossover
chromosome .
Mutation

A

6. Is stopping
criterion is
satisfied?

NO

Fig. 1 Flow chart of the proposal model

wr is the mean of the data of the ith groundwater
quality item; and
S; is the standard deviation of the data of the ith

groundwater quality item.

After standardizing groundwater quality data, a
successive analysis can be conducted using the stan-
dardized variables.

Step 2. modeling the coregionalization of standardized
variables

In this study, VARIOWIN2.2 (Pannatier 1996) is used
to calculate and fit initial direct variograms and cross-
variograms of the standardized variables. After calcu-
lations the experimental direct and cross-variograms of
standardized variables are modeled as linear combina-
tions of elementary variogram functions, g"(%), for each
spatial scale u. Then, the variogram type and range of
the elementary variogram functions g“(h) must be
determined for each spatial scale u. Some studies (Go-
ovaerts 1992; Pardo-Iguzquiza and Dowd 2002) offer
more detail for modeling regionalization procedures.
The procedures are simply described as follows.

1. All direct variograms and cross-variograms are esti-
mated by using VARIOWIN 2.2 for the same number
of lags and the same lag distances /.

2. The number and types of elementary variogram
functions and their ranges are postulated.

3. The sills (coregionalization matrix) are fitted by re-
peat (1) and (2) to ensure the positive semi-definite-
ness of all coregionalization matrices.

Step 3: PCA of the coregionalization matrices

Based on the above, PCA can be applied to the coregi-
onalization matrix of each spatial scale. In this study, the
statistics software SPSS is employed in PCA and each
coregionalization matrix is treated as a covariance ma-
trix, making it possible to obtain the proportion and
factor loading of each factor. The GA procedures are
described in the subsequent paragraphs.

Step 4: initialization chromosomes

The network alternatives are encoded as chromosomes
into the GA and randomly generate an initial popula-
tion. The GA is widely known for using binary coding to
represent a variable. This study uses a binary indicator
to represent the status of a well installation at a candi-
date site. Accordingly, a chromosome, represented by a
binary string, defines a network alternative. Each bit in a
chromosome is associated with a candidate well, and the
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length of the chromosome equals the total number of
candidate sites available for installation. If the value of a
bit equals one, then a well will be installed at the asso-
ciated candidate site; otherwise, the value of a bit is zero
and no well will be installed at the associated candidate
site. The selection of wells is binary, so the encoding and
decoding of the chromosome are straightforward.

Step 5: evaluate the fitness of each chromosome

The objective function of the optimal problem is to
minimize the total variances of latent factors of the grids
for a study region under cost constraints. Therefore, the
total variances can clearly represent the fitness of each
chromosome. It should also be mentioned that the
objective function of Eq. 17 can consider multi-spatial
scales and multi-factors.

Some chromosomes may violate the maximum lim-
ited number of monitoring wells (Eq. 18). In this situa-
tion, the penalty function method is employed to modify
the total variancesJ(/) as fitness to avoid reducing the
diversity of chromosomes. This is done because only a
minority of the chromosomes can continue propagating
if those chromosomes which violate the maximum lim-
ited number of monitoring wells are abandoned.

The modification of fitness by the penalty function
method is performed as follows:

B J(0)
P = {Ja) % (IN; — Noas )

In Eq. 20, the modified fitness is equal to the total
variances, J(I), multiplied by a penalty factor |N;/=N.«|
if the well number of the chromosome does not equal the
maximum limited number of monitoring wells (Npay)-
The fitness modified by the penalty function in Eq. 20
allows the chromosomes which violate the maximum
limited number of monitoring wells to maintain a lower
probability of reproduction instead of being abandoned.

if N; = Nmax

if NI 7é Nmax (20)

Step 6: termination

The new population requires evaluating the total vari-
ances as in Step 5, which is employed to evaluate the
stopping criterion. The stopping criterion is based on the
change of either the value of the objective function or
the optimized parameters. If the user-defined stopping
criterion is satisfied or the maximum allowed number of
generations is reached, the procedure terminates;
otherwise, it performs Step 7 for another cycle. The
success and performance of GAs depend on various
parameters—population size, number of generations
and the probabilities of crossover and mutation
(Mckinney and Lin 1994). Goldberg (1989) has asserted
that how well GAs perform depends on the choice of
high-crossover and low-mutation probabilities and a

moderate population size. Therefore, solutions obtained
using a GA cannot be guaranteed to be optimal.

The stopping criterion requires two conditions be
satisfied in the algorithm. The conditions are no further
change of the value of the object function for 15 suc-
cessive generations, and the population propagating for
more than 50 generations.

Step 7: reproduce the best chromosomes, perform
crossover and implement mutation

If the stopping criterion is not satisfied, one should
reproduce the best strings, perform crossovers and
implement mutations for a general new population, and
then go back to Step 5. In this study, a uniform crossover
using the tournament selection method is chosen; cross-
over probability (pc;oss) €quals 0.8, mutation probability
(Pmutar) €quals 0.1, and the population size equals 50.

Model application

The proposed model is utilized in designing the
groundwater quality monitoring network for the second
aquifer (Aquifer 2) of Pingtung Plain, Taiwan. The
Pingtung Plain is located in southern Taiwan, and is
the largest alluvial plain in the region. To the east lie the
central mountains of Taiwan, to the north and west the
low hills of the quaternary sediments, and to the south
the Taiwan Strait. The area of the Pingtung Plain is
about 1,140 km?, approximately 60 km from north to
south and 20 km from east to west (Fig. 2). The
groundwater of the Pingtung Plain is an important water
source in southern Taiwan. There are four major com-
ponents of the aquifer system: Aquitard 1, Aquifer 2,
Aquifer 3-1 and Aquifer 3-2 (Fig. 3).

In the Pingtung Plain, the intended monitoring pro-
gram should produce information representative of the
long-term water quality variations of the major aquifers.
The current groundwater monitoring network established
and operated by the Water Resources Agency has suc-
cessfully provided valuable information on the major
aquifers in the Pingtung Plain. The 34 existing monitoring
wells system for the second aquifer is shown in Fig. 2.

Nine water quality variables, including EC, TDS, CI~,
Na, Ca, Mg, SO3Z~, Fe and Mn, have been selected as
regionalized variables to assess the monitoring network
design in the follow-up analysis procedures. The
groundwater quality data used in this study were sampled
in 2001 from a total of 34 wells in the regional monitoring
network built by the Water Resources Agency. However,
the cost of maintaining extensive monitoring of both the
water level and the quality of groundwater is very
expensive. Developing a cost-effective program for
monitoring the quality of groundwater which involves
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Fig. 2 Location of the ground-

water monitoring wells in the N
second aquifer in Pingtung
Plain
5000
C———Jmeter
Legend

A WellNo.

TAI¥AN STRAIT

sampling from only a fraction of the existing monitoring
wells is important. To produce a cost-effective monitor-
ing system, the existing monitoring system has been re-
evaluated and designed into 20-well, 25-well and 30-well
monitoring systems using the proposed model.

Multivariate geostatistical analysis

This study calculates experimental direct variograms
and cross-variograms for the standardized (zero mean
and unit variance) EC, TDS, CI™, Na, Ca, Mg, SO7, Fe
and Mn. A relatively consistent set of best-fit models was
obtained to fit these variograms using VARIOWIN 2.2

(Pannatier 1996). The best-fit variogram models of these
nine variables were specified as the sum of two structures
by a Gaussian type model with an effective range of
28.5 km and a spherical type with an effective range of
40 km. The coregionalization matrix of spatial scales for
28.5 and 40 km are shown in Table. 1 and 2, respec-
tively. After the PCA of the coregionalization matrix,
the eigenvalues and the variance proportion of each
factor are shown in Table 3. The factor loadings of the
two spatial scales are shown in Table. 4 and 5, respec-
tively.

In the 28.5 km scale, the first two factors explained
80.2% of the total variance for the nine variables as
listed in Table 3. The first factor explained 69.1% of the
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Table 1 Coregionalization matrix of spatial scale 28.5 km for the standardized variables

EC TDS Cl Na Ca Mg SOz~ Fe Mn
EC 0.4 - - - - - - - -
TDS 0.36 0.4 - - - - - -
ClI™ 0.36 0.36 0.39 - - - - -
Na 0.36 0.36 0.36 0.41 - - - -
Ca 0.261 0.243 0.328 0.224 0.48 - - -
Mg 0.36 0.36 0.38 0.37 0.328 0.4 - - -
SOz~ 0.32 0.32 0.32 0.288 0.238 0.312 0.49 -
Fe 0.114 0.185 0.175 0.124 0.203 0.145 0.072 0.42
Mn 0.272 0.264 0.264 0.28 0.208 0.272 0.182 0.156 0.46
Table 2 Coregionalization matrix of spatial scale 40 km for the standardized variables
EC TDS Cl Na Ca Mg SO~ Fe Mn
EC 1.0 - - - - - - - -
TDS 0.9 1.0 - - - - - -
ClI” 0.9 0.9 1.0 - - - -
Na 0.9 0.9 0.9 1.0 - - - -
Ca 0.9 0.9 0.8 0.8 0.97 - - -
Mg 0.9 0.9 0.9 0.9 0.8 1.0 - - -
SO;~ 0.8 0.8 0.8 0.8 0.7 0.8 1.0 -
Fe 0.6 0.5 0.5 0.4 0.7 0.5 0.4 1.0
Mn 0.8 0.8 0.8 0.8 0.8 0.8 0.7 0.6 1.0
Table 3 Eigenvalues of coregionalization matrix of spatial scale 28.5 and 40 km
Factor 28.5 km 40 km
Eigenvalues Proportion (%) Accumulated Eigenvalues Proportion (%) Accumulated
proportion (%) proportion (%)
Factor 1 2.66 69.1 69.1 7.211 80.394 80.394
Factor 2 0.427 11.091 80.191 0.796 8.874 89.267
Factor 3 0.298 7.734 87.925 0.27 3.016 92.283
Factor 4 0.217 5.637 93.562 0.242 2.694 94.977
Factor 5 0.155 4.021 97.583 0.167 1.86 96.837
Factor 6 0.04382 1.138 98.721 0.1 1.115 97.951
Factor 7 0.02849 0.74 99.461 0.1 1.115 99.066
Factor 8 0.01169 0.304 99.764 0.0658 0.734 99.8
Factor 9 0.00907 0.236 100 0.0179 0.2 100
Table 4 Factor loading of spatial scale 28.5 km
Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 Factor 7 Factor 8 Factor 9
EC 0.934 —-0.189 0.067 0.015 —-0.102 0.250 0.120 0.029 —-0.006
TDS 0.938 —-0.059 0.072 0.230 —-0.093 0.079 -0.202 —-0.007 0.049
CI™ 0.979 —-0.005 —-0.081 —-0.017 —-0.103 —-0.025 0.017 -0.144 —-0.054
Na 0.912 —-0.168 0.194 0.077 —-0.231 -0.172 0.095 0.014 0.071
Ca 0.740 0.322 —-0.423 —-0.409 0.016 0.011 —-0.008 0.009 0.048
Mg 0.968 -0.059 —-0.046 —-0.093 —-0.145 —-0.086 -0.057 0.086 -0.097
SO;~ 0.767 -0.373 —-0.284 0.202 0.387 —-0.043 0.023 0.009 0.003
Fe 0.457 0.800 —-0.029 0.381 0.052 —-0.007 0.047 0.016 —-0.011
Mn 0.710 0.160 0.570 -0.250 0.288 —-0.006 -0.012 —-0.005 —-0.001
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Table 5 Factor loading of spatial scale 40 km

Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 Factor 7 Factor 8 Factor 9
EC 0.963 0.007 —-0.003 -0.138 0.018 0.148 0.081 —0.150 -0.054
TDS 0.954 -0.103 -0.077 -0.129 —-0.141 -0.148 -0.081 0.055 -0.076
ClI- 0.941 -0.133 -0.035 -0.022 0.191 -0.182 0.155 -0.031 0.028
Na 0.932 -0.242 -0.109 -0.013 0.032 0.148 0.081 0.175 0.006
Ca 0.930 0.217 -0.073 -0.154 -0.225 0.000 0.000 -0.030 0.086
Mg 0.941 -0.133 -0.035 -0.022 0.191 0.033 -0.237 -0.031 0.028
SO;~ 0.852 -0.236 0.447 0.107 —-0.081 0.000 0.000 0.006 0.008
Fe 0.625 0.760 0.127 -0.013 0.106 0.000 0.000 0.070 -0.018
Mn 0.884 0.113 -0.171 0.413 -0.074 0.000 0.000 —0.041 -0.010

total variance, and was highly positively correlated with
EC, TDS, CI", Na, Ca, Mg, SO3™ and Mn. The second
factor explained 11.1% of the total variance, and was
only highly positively correlated with Fe. In spatial
scales of 40 km, the first factor explained 80.4% of the
total variance, and had a highly positive loading on EC,
TDS, CI7, Na, Ca, Mg, SO3 and Mn. The second factor
exhibited highly positive loading only on Fe. Figures Sa,
and 8a show the spatial maps of the first two factors in
28.5 and 40 km scales. Figures 5a and 6a show that in
both the spatial scales of 28.5 and 40 km, the sites with
the high positive score of the first factor are almost lo-
cated in coastal areas.

In both spatial scales of 28.5 and 40 km, the second
factors have a positive correlation with Ca, Mn, and
especially Fe. Since umber loam is the composition of
the east gravel tableland of the Pingtung Plain, the
aquifer should be abundant in iron oxide. Confined
aquifers in the Pingtung Plain were created from
alternating layers of permeable gravel and sand, and
impermeable silts and clays that deposited in inter-
montane basins. The grain-size also becomes finer
further towards the southwest. The components of the
sediments include the mineral of MgCO; in a car-
bonate formation. Mn and Fe dissolve in the
groundwater by dissolution and ion exchange; there is
higher ion concentration of Fe around the aquitard. In
this study, for both spatial scales of 28.5 and 40 km,
the sites located further north have a lower score in
the second factor. This phenomenon is primarily af-
fected by the alluvium of the main river of Pingtung
Plain, the Kaoping River.

Optimal multivariate geostatistical groundwater quality
monitoring network

Based on the above multivariate geostatistical analysis,
the existing 34 groundwater level monitoring wells in the
second aquifer are treated as candidate wells for a
groundwater quality monitoring network design in the
optimization problem. The study area is divided into

1x1 km grids for calculating the total variances for the
estimated regionalized factors.

Based on the PCA results, the nine groundwater
quality variables in the second aquifer in the Pingtung
Plain have 28.5 and 40 km spatial scales, respectively.
The optimization of the monitoring network performed
according to the following cases with different propos-
als.

Case 1: considering the first factors in the two spatial
scales

In Case 1, the first factors in both 28.5 and 40 km
spatial scales are considered, Y;’i{ and Y}ﬁi%, simulta-
neously. Therefore, both the estimated variances of
each first factor in 28.5 and 40 km scales should be
minimized to obtain an accurate estimation of the
factors by using the proposed optimal monitoring well
system. To refer to the optimal problem defined by
Eqgs. 17 and 18, the problem definition of Case 1 is as
follows:

Object function

MinJ (1) = %:4 {0.691% (1) +0.804%; (1)} (21)
Subject to
Ni < Ninax. (22)

According to the proportion of the total variance in
Table 3, the weights of Y1 and Y7 are 0.691 and 0.804,
respectively. The maximum number of monitoring wells
is set to 20, 25 and 30, respectively.

Case 2: considering the first factor in the short spatial
scale

In Case 2, only the first factor of the 28.5 km spatial
scale is considered, Y;i% The estimated variance of
the first factor in the 28.5 km scale should be mini-
mized to obtain an accurate estimation of the factor
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by using the proposed optimal monitoring well system.
In Case 2, the optimization problem can be defined as
follows:

Object function

Case 3: considering multi-factors in the short spatial
scale

In Case 3, two of the first factors in the 28.5 km spatial
scales are considered, YZi{ and Y”pié, simultaneously.

1}@5{”(’) _ Z O_r)r/z]] (I) (23) The problem definition of Case 3 is as follows:
meM Object function
Subject to Min/(1) = Y {0.6910';'11 (1) +0.1110}, (1)} (25)
N; < 25. (24) meM
The maximum number of monitoring wells is set Subject to
to 25. N; < 25. (26)
Fig. 4 Optimal network design
of the 20, 25, 30 wells of case 1 N
5,000
[ Imeter
Legend
= CASEl 20wells
®  CASEl 2wells ™
[ CASEl 30wels
/-

TAIWAN STRAIT
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Fig. 5 Mappings of regional-
ized factors of factor 1 at the
28.5 km scale a by 34 well, b by
Case 1, 20 well, ¢ by Case 1, 25
well, d by Case 1, 30 well

(a)

-0.75

'
o

—-0.5
—-0.75
I -1
—-1.25 1.25
According to the proportion column in Table 3, the Considering the variations of monitoring variables in

weights of Y} and Y3 are 0.691 and 0.111, respectively. both short (28.5 km) and long (40 km) range scales, the
The maximum number of monitoring wells is set to 25. sum of the estimation variances with weightings of both
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Fig. 6 Mappings of regional-
ized factors of factor 1 at the (a)
40 km scale a by 34 well, b by
Case 1, 20 well, ¢ by Case 1, 25
well, d by Case 1, 30 well

first regionalized factors in the two scales is to be mini-
mized using GA for selecting 20, 25 and 30 monitoring
wells. The optimal 20, 25 and 30 selected monitor-
ing wells are mapped in Fig. 4. These three monitoring

(b)

(&3]

NN
~N 0N
o

systems focus on the spatial variations in both the local
scale (28.5 km) and regional scale (40 km). In the
20-well monitoring system, most of the selected wells are
located at the south and north parts of the study area,
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Fig. 7 Mappings of regional-
ized factors of factor 2 at the
28.5 km scale a by 34 well, b by
Case 1, 20 well, ¢ by Case 1, 25
well, d by Case 1, 30 well

and fewer wells are located at the eastern parts of the
area because of improving estimations of the first factors
in both 28.5 and 40 km scales (Figs. 5b, 6b). In the

-0.5

-0.5

-0.75

0.25

-0.25

-0.5

-0.5

25-well and 30-well monitoring systems the wells are
distributed more uniformly over the study area (Fig. 4).
There are 18 identical monitoring wells appearing in all
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Fig. 8 Mappings of regional-
ized factors of factor 2 at the (a) - (b)

40 km scale a by 34 well, b by
1
: 0.75
: 0.5
: 0.25
-
|
|
-0.5
m

Case 1, 20 well, ¢ by Case 1, 25
0

well, d by Case 1, 30 well
’
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20-well, 25-well and 30-well monitoring systems, and the basic wells to delineate spatial variations in both short
same 24 wells appear in both the 25-well and 30-well and long range scales.

systems (Fig. 4). These optimal selection results dem- Both the first factor scores in 28.5 and 40 km scales
onstrate that the 18 wells should be defined as minimum are mapped by using 34, 20, 25 and 30 wells with the
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Fig. 9 Optimal network designs
of 25 wells of Cases 1, 2 and 3 N

A

5,000
C——meter

Legend

®  CASEl 25wells
Op  CASE? Z5wells
X CASE3 25wells

TAIWAN STRAIT

factor score (Figs. 5, 6, 7, 8). These factor score maps
confirm that the more monitoring wells are installed, the
more reliable factor score maps can be performed. To
delineate spatial variations of the monitoring variables
in the regional and local scales, the 30-well system is the
best compared to the 25-well and 20-well systems.
However, the proposed optimal monitoring design ap-
proach selected the monitoring systems which well cap-
ture spatial variations of monitoring variables in both
scales (Figs. 5, 6, 7, 8).

After considering various purposes for the multi-
factors in 28.5 and 40 km scales (Case 1), single factor
in 28.5 km (Case 2) and multi-factor in 28.5 km (Case
3), there are 17 identical monitoring wells selected in

25-well systems for these three cases (Fig. 9). The 17
selected wells are likely to be homogeneously distrib-
uted in the study area except in the western part. These
optimal well selection results imply that the 17 identical
monitoring wells could be the baseline monitoring
network system to provide information of the total
spatial variations of monitoring variables for multi-
purpose. The remaining eight monitoring wells are se-
lected for monitoring spatial variations in various scales
and purposes (Fig. 9).

Maps of factors mapped by 25-well systems in Cases
2 and 3 are shown in Figs. 10, 11, 12. Comparing Fig. 10
and Fig. 5a, ¢ the 25-well system of Case 2 captures
spatial variations of factor 1 in the 28.5 km scale slightly
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Fig. 10 Mappings of regional-
ized factors of factor 1 at the
28.5 km scale a by Case 2, 25
well, b by Case 3, 25 well

better than the systems of Cases 1 and 3. Figures 5a, ¢, and 2. However, the purposed approach obtains the
7a, ¢, 10 and 12 illustrate that the 25-well system of Case monitoring system that does not only consider grouped
3 captures the patterns of both factors 1 and 2 in the monitoring variables but also delineate spatial variation
28.5 km scale slightly better than the systems of Cases 1 of the grouped monitoring variables. Therefore, unlike

Fig. 11 Mappings of regional-
ized factors of factor 1 at the (a)
40 km scale a by Case 2, 25
well, b by Case 3, 25 well

(b)
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Fig. 12 Mappings of regional- @) )
a

ized factors of factor 2 at the
28.5 km scale a by Case 2, 25
well, b by Case 3, 25 well

previous related studies different optimal systems are
obtained by the purposed approach based on various
factors to reach the monitoring purposes in different
scales. For example, the monitoring well system based
on the second factor is different to that based on the first
factor or single monitoring variable. The monitoring
well system based on the second factor will provide
useful information of the monitoring variables included
in the second factor for identifying the variations of the
variables. The more the factors considered in the opti-
mal monitoring system design, the more is the infor-
mation provided by the designed monitoring system.
Moreover, the purposed approach can obtain different
monitoring systems that provide varied information of
the monitoring variables in space. The maps and optimal
results also confirmed that the proposed model can de-
sign an optimal groundwater monitoring network that
not only considers various factors grouped by multiple
groundwater quality variables but also monitors varia-
tions of monitoring variables at various spatial scales in
the study area.

Conclusion

In the past groundwater quality monitoring design
studies, a groundwater item was considered as a

(b)

0
—-0.25
—-0.25
—-0.5
|
N
—-0.75 —-0.5

monitoring design variable for designing a system to
monitor multiple items in real practice. This study
develops a novel approach to design an optimal mul-
tivariate geostatistical groundwater quality monitoring
network using factorial kriging with GAs. The pro-
posed approach designs a monitoring system which not
only considers multi-variables, but also monitors spa-
tial variations of the variables in various scales. In the
approach, a multivariate geostatistical analysis is used
to decompose multiple variables into small sets of
spatial factors in various spatial scales. Based on the
multivariate geostatistical analysis the proposed opti-
mization model minimizes the estimation variance of
the spatial factor, needed to design a groundwater
quality monitoring network considering one or multi-
spatial scales in accordance with the different moni-
toring goals. GAs are suitable for use with factorial
kriging to obtain optimal results. The designed moni-
toring system can be used to delineate spatial variation
patterns and sources of multiple groundwater quality
items. The proposed approach was also successfully
applied in a real case in Taiwan to design optimal
monitoring systems for various purposes in order to
delineate spatial variations in various scales. In future
studies, the developed model could also be modified
and applied to design a monitoring system for multi-
aquifer cases.
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