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The coordinate and transverse field dependence of the domain wall (DW) mag-
netization structure across the wall proper and the corresponding dependence of the
effective DW width of both the polar and azimuthal angle distribution has been in-
vestigated. The effective width of the azimuthal angle distribution is found to vary
with the orientation and strength of the transverse field and is much broader than the
conventional wall width due to the polar angle distribution. On dynamics, the analysis
of the DW motion in the presence of the transverse field normal to the anisotropy axis
taking into account the nonconservation of the magnetization modulus has uncovered
two types of the magnetization damping parameters. One is that of the Landau-Lifihitz
damping constant, XPMR,  which characterizes the homogeneous magnetization mani-
fested in the ferromagnetic resonance line width. The other, X,, is associated with
the inhomogeneous magnetization such as the DW which gives rise to an extra vis-
cous damping. Numerically, X, can be of the same order or several factors greater
than XPMR.  Our formulation establishes the existence of two distinctly different damp-
ing processes associated with a ferromagnet sample which the Landau-Lifshitz-Gilbert
equation fails inherently..

PACS. 75.60.Ch - Domain walls and domain structure.
PACS. 75.70.K~ - Domain structure.
PACS. 76.60.E~  - Relaxation effects.

I. Introduction

The structure of 180î DW in a uniaxial ferromagnet under the influence of an external
field normal to the anisotropy axis (the transverse field) has already been analyzed in a
number of papers [l-6].  As a rule, one describes the structure of the one-dimensional DW
based on the assumption that the azimuthal angle of the magnetization does not depend on
the coordinate normal to the DW plane [2]. The only successful attempt which has taken
into account the coordinate dependence of the azimuthal angle of magnetization was given
in Ref. [7]. The latter treated the case of the one-dimensional DW moving at a low velocity.

Recently it was shown that a new one-dimensional solution to the system of equations
for the polar and azimuthal angles of the magnetization M = M{sin 19 cos ëp,  sin 19 sin p, cos 19}
which describes the distribution of magnetic moment inside the DW can be obtained in the
case when the transverse field is arbitrarily oriented with respect to the DW plane [6].  This
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new solution for the magnetization azimuthal angle p is a function of both the transverse
field and the coordinate normal to the DW plane. The solution yields a lower value of the
DW energy in comparison with the one in which 9 is assumed to maintain constant across
the DW [6].

Our purpose is to analyze the coordinate dependence of the solution of both the polar
and azimuthal angle of the magnetization across the one-dimensional DW. The transverse
field dependence of the Bloch to Níeel wall transition, and the DW energy variation versus
the transverse field normal to the anisotropy axis arbitrarily oriented with respect to the
DW plane will also be expounded.

II. Method of solution

Consider a uniaxial ferromagnet with the anisotropy axis oriented along the z axis
of the coordinate frame. For convenience the DW is assumed to be pinned throughout the
investigation and the .wall plane is chosen to coincide with the z - z plane. The orientation
of the external field normal to the anisotropy axis is described by the azimuthal angle $H of
the field with respect to the x axis H = H(cos  +H,sin +H, 0). In the frames of the uniaxial
ferromagnet model we shall consider the so called uncharged domain walls. The last means
that the demagnetization part of the DW energy density can be written as follows [2]

W - 27rM2A~  (sin 13 sin v - /.L)~ .m - (1)

Here 47rlM  is the saturation magnetization; AB = m is the Bloch wall width parameter;
K is the uniaxial anisotropy constant, A is the exchange stiffness constant, the parameter
p in (1) is determined by the value of the normal component of the magnetization which
exists inside domains in the presence of the transverse field, that is, /.J = sin 19u  sin +H, where
190  is the magnetization polar angIe inside the domain.

The dimensionless energy density for the DW in a uniaxial ferromagnet may be
written as follows [1,2]:

WDW
wow=--

&a?- J dJ{tif2  + v/2 sin 229  + sin 29f

s(sin 19 sin 9 - p)2 - 2h sin d cos(p - $H)}

w h e r e  [ = yfA~;  ti’  EE dlS/dJ, C,CJ’ 3 dp/dt;  E = Q-l;  the material quality factor Q =
H~/47rM  (HK = 2KfM);  h = H/Hx  is the reduced transverse field.

The system of equations from which the distribution of the magnetization inside the
DW may be obtained has the form [l-3]

ti” - S i n  ti C O S  ti( 1 -j- pí2  i- & S i n  2p) f &p COS ti S i n  9 + S i n  &I  COS ti COS(q  - ë$H)  = 0, ( 3 )

(sin 219ví)’  - E(sin 19 sin v - j.~) sin r9 cos p - sin 60 sin 19 sin(y - $H) = 0. (4)

The polar angle of the magnetization inside domain is determined by the relation sin 790  = h,
a condition which has been properly taken care of in writing down Eqs. (3) and (4). The
boundary conditions for the solutions describing the variation of the angles inside the DW
have been chosen as follows
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The system of Eqs. (3) and (4) along with the boundary conditions (5) have been solved
numerically using the adaptive Runge-Kutta-Fehlberg method [9]. The interval of vari-
ation of the coordinate t was chosen to be equal to -15 5 t 5 15. The step of the
[ variation was adjusted automatically. We have obtained the set of dependences for

%!) and q(t) for several orientation values of the azimuthal angle of the external field
$JíH  = 30î,  35í,  40î,  45î,  50î,  60î,  70î,  80î, and 90î and for several values of the reduced
transverse field h = 0.01,0.05,0.1,0,2,  and 0.25. The characteristic value of the material
quality factor Q was chosen to be equal be Q = 2.0 for easy convenience of making compar-
ison with the results obtained in Ref. [6,7] where a slightly different method of numerical
solution of the system of Eqs. (3) and (4) has been used.

III. The domain wall structure

The dependence of the azimuthal angle of magnetization upon the coordinate normal
to the DW, I, has the following form : p(t;  h, $H) = ë$ff  - $(t;  h, ë$H),  where $([;  h, $H) -+
0 at [ + fco. Such fa orm of dependence may be understood as follows. The external
magnetic field applied at an angle +H with respect to the DW plane produces a deviation
in the orientation of the magnetization inside the DW which in turn leads to an increase
of the demagnetization energy. The type of solution for the azimuthal angle p(<; h, $JH) =
+H - 5%;  h, +H) Provides, first, the fulfillment of the condition that the DW is uncharged
and, second, it reduces the increase of the DW energy. This is the reason why the DW energy
with the coordinate dependent azimuthal angle is always lower than when the azimuthal
angle is held constant at 9 = ë$H  [6]. The dependence of y([;  h, +H)  for the case of $H = 30”
for several values of transverse field h is given in Fig. 1. Clearly, the maximum deviation of
the magnetization inside the DW from the orientation of the transverse field decreases with
increasing transverse field. The dependences of p(E) for other orientations of the transverse
field ë$H  are similar to the ones given in Fig. 1. The only difference is that at $H = 90î the
function $I([; h, $H) becomes identically equal to zero at h = 0.225 [6].  This is a reflection
of the fact that a phase transition from the quasi-Bloch wall to the Nkel one has taken place
at the value of the reduced field h = 0.225 when the latter is oriented along the normal to
the DW [2,6].

Using the definition of the effective DW width of the distribution of the magnetization
angle inside the DW as given in Ref. [lo], we analyzed the transverse field dependences of
the effective DW width of the distributions of both the polar and azimuthal angles of the
magnetization for our solutions to the system of Eqs. (3) and (4). The effective DW width
(in unit of AB) of the distribution of the azimuthal angle of the magnetization, A,( h, $J,H),
was found to decrease with increasing transverse field in the region of the reduced fields
0 < h < 0.4 G 0.5 and then it increases, tending to infinity as h -+ 1 when the sample
becomes homogeneously remagnetized. The transverse field dependence of the effective
DW width of the azimuthal angle of magnetization distribution, A,(h,$H), for several
orientations of the transverse field are given in Fig. 2. Note that the curve for $!IH  = 90î is
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FIG. 1. Dependence of the azimuthal angle of

magnetization cp({; h, $H) upon the
coordinate < normal to the DW plane
for $J,H  = 7r/4  a n d  f o r  s e v e r a l  v a l u e s
of the transverse field 

0.0 0.2 0.4 0.6 0.8 1.0

Reduced Field h

FIG. 2. The transverse field dependence of
the effective DW width of the az-
imuthal angle of the magnetiza-
tion distribution A,(h) for several
orientations of the transverse field
$H = 45í,  60î,  and 90î.

truncated at h = 0.225 as remarked above.
Traditionally, the effective DW width is defined in term of the polar angle of magne-

tization distribution As(h).  It is of interest to compare the behavior of Ad(h) versus that of

A+& +H). Analy sis of As(h)  distributions inside the DW for different orientations of the
transverse field showed that this distribution is insensitive to the variation in the transverse
field orientation [7]. Furthermore, the numerical solutions of the system of Eqs. (3) and
(4) for the polar magnetization angle do not deviate much from the dependence of

sin 19(r)  = sin 60 +
cos  2790

cash u + sin 190  ’

Note that the above expression represents the analytical solution of the system
obtained under the approximation v = $H inside the DW [2]. In this expression
u = [cos29uJl+  &sin2$H.  According to Ref. [lo], the effective DW width Ati of the
polar angle of the magnetization distribution can be expressed as

As(h)  = nAB[costiOJYLZ+? (6)

It is easy to see from (6) that As(h) increases monotonically with increasing transverse field
and tends to infinity as h approaches unity. Figure 3 shows comparison of the transverse
field dependence of the numerically obtained effective width Ad(h) versus that obtained
directly from (6). Clearly, the difference between the two sets of curves are practically
negligible except when the values of the transverse field is small.
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Reduced Field h

FIG. 3. Comparison of the dependence of thk
effective widths of the distribution of
the polar angles, Ad(h),  on the trans-
verse  f i e ld  h at $H = 45í.  S o l i d
line: numerical result. obtained from
solving the system of Eqs. (3) and
(4); dashed line: analytical result ob-

tained directly from (6).

h=HtíHk

FIG. 4. The variation of the azimuthal angle
of magnetization at the mid-point of
the DW, G(o), for several values of
the transverse field orientations $H.
A Bloch wall makes an abrupt phase
transition to a Níeel wall at h=0.ë225
when $H = 90í.

From the transveres field dependence shown in Figs. 2, and 3, it is clear that the
effective DW width due to the azimuthal angle distribution A,(h) is significantly different
from that of polar angle As(h), and that the absolute value of the effective width A,(h) is
always greater than that of the polar angle.

Armed with the fomulation described above it becomes relatively easy to investigate
the Bloch-to-Níeel wall transition as a function of (h, $H). Figure 4 shows the variation of
the azimuthal angle at the mid-point of the DW, $(o),  for several values of the transverse
field orientations $!JH. Clearly, a Bloch wall will make an abrupt phase transition to the
Níeel wall at some value of h (I~0.225)  provided if the transverse field is oriented normal
to the anisotropy axis with $H = 90í.

IV. On dynamics

The motion of the magnetization vector in spin waves and domain wall dynamics
is largely characterized by the relaxation processes, hence by the corresponding relaxation
(damping) constant. However, the functional dependence of the relaxation constants for
either the spin waves or domain wall (DW) dynamics is completely unclear up to the present
time. Two empirical ways of measuring the relaxation constants (in garnets) are known.
First is by means of measurements of the ferromagnetic resonance (FMR) line width to

_
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obtain XFMR. Secondly, one may deduce from linear mobility of the domain wall motion to
obtain X,. It has long been an intriguing and well known fact that the numerical value of the
damping constant measured by FMR could be substantially different from the one obtained
from the DW mobility measurements. The ratio between these two constants X, and XFMR
may range from < 10-r to > 10’  (e.g. in pure YIG) [3,12].  Another open question is that
the presence of a transverse field may increase the DW mobility substantially [la] while
the FMR line width is practically insensitive to it. All of these questions have not neen
properly addressed up to the present date.

More often than not the Landau-Lifshits-Gilbert (L-L-G) equation is used to analyze
the relaxation constant related to both the FMR line width and DW mobolity. However,
the L-L-G equation is known to conserve the value of magnetization modulus. On the
other hand, it was shown [2] that the presence of the static DW may cause the change
in the magnetization modulus. It follows that the L-L-G equation is inherently incapable
of delineating the distinction between these two constants since two distinctly different
relaxation processes or mechanisms were involved.

Recently, a generalized dynamic equation taking into account the nonconservation
of magnetization modulus has been introduced into the Landau-Lifshits (L-L) Eq. [13]  to
study the domain wall dynamics [14].  Numerical analysis based on this generalized L-L
equation indicates that the two constants AP and XFMR, that is the relaxation constant
related to the DW mobility and the original L-L damping constant, are two distinctly
different constants [15].  Furthermore, X, is shown manifestly field dependent.

Hereunder we report the use of this generalized L-L equation to derive the new
Slonzewski-like equation for the DW dynamics [3] and to deduce from it a field-dependent
linear DW mobility and the important relation between the two constants X, and XFMR.
Based on this relation the value of longitudinal susceptibility xl1 compatible with spin wave
theory can also be suscessfully  estimated.

V. The analysis

The generalized L-L equation for magnetization dynamics can be expressed as [13]

ti = -y[M x F] + yMliF - yMX,V2F,

where the tensor A is determined by crystal symmetry: A = XFMRbij  for a cubic crystal,
A = XFMR[~;~  - n;nj]  [n is the unit vector along the anisotropy axis] for a uniaxial one;
X, is the spatial dispersion of relaxation constant; F= Sa/GM.  (In the present context the
L-L damping constant X, is being identified as equal to XFMR).  Eenergy density w of a
uniaxial ferromagnet with a Bloch wall is

a = +VM)2  +
(M2 - M,2)2

M,2 8XIIM,2
+2rQM2{Ai29’ +(1+&sin2v)sinfl}

Linear mobility of the DW is frequently used to characterize magnetic thin films [3] and is
defined by the relation

Pmv(Ht) = lim
wq, Ht)

HII +O dHll . (7)
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In steady-state the DW velocity can be expressed as [15,16]

Jqq, a) =
YABf$/GJ

AFMRa (6 $> R (00, +)
(8)

which is obtained by means of the consideration of the dissipative function

where FM is the longitudinal component of effective field. Detail of the derivation can be
found in Ref. [16].

Substituting Eq. (8) into Eq. (7) yields

TAB 4
PLDW(Ht) = XFMR cos 00 [v?T(&J)  + 4Rrn(Bo)]’

where v, = X~~~/47rQxll  and

2 17
-3 cos B. sin 60 -3-  sin 00 cos 80

+;(n - 200)(2 + ~0~280) +6sinOuln ,

in the absence of the transverse field, it becomes

/mW(& = 0) =
7AB

AFMR[l + $$.
*

(9)

(10)

(11)

Expression (11) is compatible with that obtained in the original Landau-Lifshitzís paper
in the case when the modulus of the magnetization was considered to be conserved. The
transverse-field dependent relaxation parameter A,, (Ht) deduced from the DW mobility
data in the linear regime becomes

A,@&) = AFMRcí=eO  [@o)  + $RIo(~o)] . (12)
3

In the absence of Ht we have

A,(& = 6) = AFMR I+
[

w47;QXjj)2
3x2 1 - WI

F M R

Note that the v, term in Eq. (12) is due to the nonconservation of magnetization modulus.
It is to be noted that, to our knowledge, Eq. (13) is first such relation by which A, and
XFMR are related. In the absence of transverse field and for the materials with large value
of v,, i.e. vz > 16/3,  the two damping constants may be treated as identical.
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VI. Discussions

Let us first survey the relevant experimental data available. The longitudinal sus-
ceptibility xl1 data for typical iron garnets are rather skimpy. One theoretical estimate
based on spin-wave theory [18,19],  gives, xl1  = 3  7 . 7 5  x 10e4. TWO sets of experimen-
tal data [20,21] ( see also Table 2 in Ref. [13]) for (Euu.ssGai.2)YIG  are available. They
are (A,, XFMR,Q) = (0.14,0.023,3.3) and (0.13,0.025,2.1) [21].  Substituting these data
into Eq. (13) yields xl1 = 5.4 x 10m4 and xl1  = 8.2 x 10e4 respectively. These numerical
values are fairly close to the ones estimated by spin-wave theory. Data obtained in the
presence of transverse field Ht = 1OOOe  gives: (XP,X~~~,Q)  = (0.022,0.03,8.9)  [20].  On
the other hand we may use Eq. (13) to estimate the DW mobility damping. For example
let xl1  21 5 X 10 -4 we have A, = 0.031 which is comparable to the data.

Since the values of xl1  deduced from Eq. (13) is consistent with that estimated by spin-
wave theory, this put our equations on a sound basis to be further applied to iron garnet
films. In Fig. 5 we show the variation of the transverse-field dependent DW mobility
damping constants. The material parameters used in the calculation are taken directly
from Ref. [20,21].  Solid (dashed) curve corresponds to the sample with material parameters

[x11, AFMR, Q, ffh-(Oe)] = [5.4x lo- 4, 0.023, 3.3, 5171  ([8.2~10-~,  0.025, 2.1,337]),  (HH. =
2K/1M,  is anisotropy field, K : anisotropy constant, n/r, : saturation of magnetization). We
see from Fig. 5 that: (1) in the absence of transverse field, A, is always larger than XFMR;
(2) if transverse field Ht is large enough, one finds that A, < XFMR; (3) when Ht approaches
to HK, A, becomes vanishingly small. The latter situation is understandable since the DW
broaden rapidly into homogeneous magnetization.

Q=2.1

100 200 300 400 500
Transverse Field (Oe)

FIG. 5. Variation of the calculated DW damping constant X, versus the transverse field. The inset
x FIMR values are taken from Ref. [11,12].
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For a sample homogeneously magnetized, one sees that precessional motion of the
spins  inside such a sample may suffer from ferromagnetic relaxation characterized by a
constant XFMR. For an inhomogeneous sample with domain structures one sees the damping
characterized not only by XFMR but also the drag force due to inhomogeneous magnetization
and nonconservation of magnetization modulus characterized by X, which hinders the DW
from moving any faster. Consequently, the experimental value in the absence of a transverse
field observed for the DW mobility damping X, is larger than XFMR. Almost all empirical
data exhibit this common characteristic feature.

A planar DW may exhibit a fairly high DW mobility in the presence of a transverse
field. For example, the damping constant observed for XFMR and X, in EuGaYIG  sample
is nearly identical [12].  Our analysis shows that this is the case as exemplified in Fig. 5 in
which X, N XFMR for the solid (dashed) curve when the transverse field is Ht N 185 Oe

(& N 115 Oe). Since the mechanism responsible for the DW damping differs distinctly
from that for XFMR it appears that there is no basis for anyone to believe that a sample
may exhibit X, N XFMR. It turns out that there is no ambiguity answer to this question.
As described by Eq. (12) and by the fact that a DW may broaden into a homogeneous
magnetization in the presence of a strong transverse field, as remarked above [3,22],  cases
for X, N AFMR and that for X, < XFMR may happen and have actually been observed as
compiled in table 2 in Ref. [12].

When the strength of transverse field approaches that of anisotropy field Ht + HK
the magnetization inside the DW structure will be forced to rotate toward the direction of
the field. As a consequence, the DW becomes only faintly detectable. The DW mobility
damping becomes vanishingly small and meaningless.

The formulation described above is based on the assumption that quality factor Q
of the sample concerned being Q > 1. We are however greatly encouraged to note that Eq.
(13) works properly for pure YIG [13]. For example, according to Table III in Ref. [12],  for
pure YIG, it gives X,M,/y  = 0.52 x 10m7  and XFMRM~/Y  = 0.006 x 10v7  0e2.sec.rad-i.
If the material parameters of for pure YIG 7 = 1.8 x 107secV10e-r, 4rM, = 1750G,
A, N 8 x 10m6cm,  and A = 4.15 x 10m7erg/cm [13] etc., are used, we then obtain the
quality factor of YIG being Q = 0.0532. Substituting the above parameters into Eq. (13),
one obtains xl1  21 4.65 x 10m4  which is well within the bound estimated using spin-wave
theory. Consistency of our calculation with the spin-wave theory indeed throws strong
support to our formulation, in particular, in support of our claim that the disagreement
between X, and XFMR is due to nonconservation of magnetization modulus which in turn
is induced by the inhomogeneous magnetization structure of the sample..

VII. Conclusions

New characteristics of the coordinate and transverse field dependence of the do-
main wall (DW) magnetization structure and the corresponding dependence of the effective
DW width of both the polar and azimuthal angles of magnetization distribution has been
obtained. The effective width due to the azimuthal angle distribution is found to vary
sensitively with the orientation and strength of the transverse field and is much broader
than the conventional wall width due to the polar angle distribution.

Analysis of the DW dynamic equation based on the new generalized Landau Lifshitz
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Gilbert equation taking into account the nonconsevation of magnetization modulus has led
us to two types of the magnetization damping parameters. One is ascribed to the homo-
geneous magnetization manifested in the ferromagnetic resonance line width characterized
by the Landau-Lifshitz damping constant XF,MR. The other is associated with the inhomo-
geneous magnetization localized within the DW proper characterized by the DW mobility
damping constant X,. Our formulation points out that the two constants are distinctly dif-
ferent but interrelated. In the absence of transverse field X, is always greater than XFMR.
In the presence of transverse field, however, the ratio between the two constants X, and
XFMR varies, ranging from < 10-r to > lo2 as has been observed. Our formulation also
allows us to estimate correctly the longitudinal susceptibility. The calculated results are
consistent with the available data found in garnet samples.
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