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We describe the method of QCD sum rules, using calculation of the couplings of the nucleon

to axial fields as an illustrative example. Our interest is centered about the behavior of a system

of quarks, antiquarks, and gluons under the influence of an external field, leading to a modified

version of the method of QCD sum rules. In particular, the isovector axial coupling constant go

is determined from a QCD sum rule for (gA - l), and it is shown that, with standard values of the

quarkcondensates,@  = 1.26 zh 0.08. A sum rule is also obtained for the ìisoscalarî axial coupling

constant gAS,  which is found to be 0.13 if the isovector values of susceptibilities are used.

I .  INTRODUCTION

It is believed that quantum chromodynamics (QCD), an SU(3) gauge theory constructed

out of the exact color SU(3) symmetry, describes strong interactions among quarks, antiquarks,

and gluons. At high energies, i.e., large Q2 (> > 1 GeV2)  or very high resolution < r >, the

asymptotically free nature of QCD allows for perturbative treatments of physical processes in-

volving hadrons. At low energies (I 1 GeV2),  the nonperturbative physics dominates such that

the physical ground state (vacuum) differs from the trivial ground state (vacuum) while chiral

symmetry is spontaneously broken in the physical vacuum (leading to identification of lowlying

pseudoscalar mesons as Goldstone bosons). Indeed, it is seen that hadrons, including baryons,

mesons, and glueballs all of which are color singlet objects consisting of quarks, antiquarks, and

gluons, act as the efiective degrees of freedom in hadron physics (strong interaction physics).

It is clear that the study of hadron physics (strong interaction physics) is essential for

progresses in research areas such as nuclear physics, particle physics, collapse of heavy stars,

and the hadron era or nucleo-synthesis in the early universe. The nonperturbative feature of

QCD defies our attempts for finding the solutions to most strong interaction problems. The lat-

tice simulation requires an incredible amount of computing time in order to achieve a desired
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accuracy. Modeling QCD via quark models, on the other hand, always faces the critique of
ìgiving up too soon in trying to solve QCDî. Therefore, the method of QCD sum rules, as

originally proposed by Shifman, Vainshtein, and Zakharov,l  may well be the only efficient

method, available to date, for extracting or analyzing consequences of QCD. In short, the

method of QCD sum rules is based on the idea of finding a Q2 region (= 1 GeV2)  where one

may incorporate nonperturbative physics, through Wilsonís operator product expansion, into the

perturbative QCD treatment of physical processes involving hadrons.

The purpose of this talk is to explain in a concise manner the method of QCD sum rules,

using calculation of the couplings of the nucleon to axial fields as an illustrative example. Our

interest is centered about the behavior of a system of quarks, antiquarks, and gluons under the

influence of an external field, leading to a modified version2-5 of the method of QCD sum rules.

In particular, the isovector axial coupling constant go is determined from a QCD sum rule for

(go - l), and it is shown that, with standard values of the quark condensates, gA = 1.26 2 0.08.

A sum rule is also obtained for the ìisoscalarî axial coupling constant gA, which is found to be

0.13 if the isovector values of susceptibilities are used.

II. METHOD OF QCD SUM RULES

We shall attempt to divide our presentation into several key steps (subsections), so that

each major ingredient associated with the method of QCD sum rules may be elucidated to some

extent.

11-l. How do quarks (or gluons) propagate in a nonperturbative physical vacuum?

As indicated earlier, the asymptotically free nature of QCD at large Q2 allows for pertur-

bative treatments of physical processes involving hadrons while the nonperturbative physics

dominates at low Q2 such that the physical vacuum IO > differs from the trivial vacuum and

chiral symmetry is spontaneously broken in the physical vacuum (leading to identification of

lowlying pseudoscalar mesons as Goldstone bosons). At intermediate energies (Q2 = 1 GeV2),

therefore, we need to examine how propagation of quarks (or gluons) gets modified by the

presence of nonzero condensates, < 44 > f 0 and < GPyuGaPv  > z 0. To this end, we con-

sider

(1)
= iS$(z)+ < 01 : q;(izgq;(o)  : IO >,

with a, b the color indices and i, j the indices of Dirac spinors. The quantity iSgab  is the stand-

ard Greenís function (or propagator) which we encounter in the perturbative field theory:
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iSfjb(x) = J 2ke-iP.~icq*(p)
(W4

=  weJ d4p -ip.zba* i(j  + m)ij

p2 - m2 + if

i6î*  (7  ’  X)ij

+--

2x2 x4 ’
with m = 0 and x,, + 0.
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(2)

Note that we adopt a z y-a G ~~2.  On the other hand, we may expand the second term in

Eq. (1) as a Taylor series:

< 01 : qp(x)$(o)  : IO >

=< 01 : qp(x)$(o)  : IO > + xp < 01 : (v~qp(o))q~(o))  : IO >

+;xpxv < 01 : (v~vîq~(o))q~(o)  : IO > +. ,

with VP = a” + &AUp Aa/2  the gauge-invariant derivative.

To see what is really in Eq. (3), we may write

<  01 1 qp(O)$(O)  1 IO >= KSî*Sij.

Contracting both sides by ZZC~~~&~,  we find

r.h.s. = 12K,

1.h.s. = - c < 01 : ~(o)qq(o)  : lo >G - < cjq > .

a,i

(3)

(4

Or, we find

< 01 1 q~(O)$(O)  1 IO >=  -~babbij <  qq  > (5)

Similar consideration may be applied to the remaining terms in Eq. (3), leading to the expres-

sion:

ab
iS -ab _ 6

- i i  +
i

27$x4
s~c+G;.j~~ìy + uPîi)

-$Sab < qq > (1-k $z2ma) + ...l
(6)
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with

< Olqg,cT. GqlO >E -m.; <  qq > (7)

To obtain gauge-invariant results, it is convenient to adopt the ìfixed-point gaugeî for the gluon

fields:

q,Aîì(z)  = 0 , @a>
so that

J
1

A,(4 = daz"G,,(az)
0

= ;sYG,,(O) + ; z"zV,G,~(O)  + . .
W

Note that, in Eq. (7), we have used u* G = #ìG Pvî(0)  la/2.  Note also that, in Eq. (6), the
second term refers to the perturbative contribution in which a quark emits a gluon while

propagating, and GPv” is the same as the GPvî( 0 of Eq. (8b). The four terms in Eq. (6) may)

be represented, respectively, by Figs. l(a), l(c), l(d), and l(e). The remaining diagrams in Fig.

1 are explained immediately below.

i’  I”
a b C

d e

FIG. 1. Diagrams included in the quark propagator of Eq. (11).
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11-2. How do quarks (or gluons) propagate in a nonperturbative physical vacuum which is

under the influence of an external field, say, the axial field Zp?

In the presence of an external axial field,

Z,(x) = 2:”  + fz&x” +. . . , (9)

there may be induced changes on the physical vacuum so that propagation of quarks is modified.

For example, we expect that

< 01 : Q(0)ypy5q(O)  : 10 >E gxz; < 0) : f(O)q(O)  : 10 >, (10)

may differ from zero, leading to a non-zero susceptibility X. Subsequently, we may write

< 01 : qf(o)g;(o)  : 10 >z= aSab(y,ys)ij.

Contracting both sides by ZGub(~V~&,  we find

Q = ; < 01 : q(0)yPy5q(0)  : IO > .

The consideration may again be applied to the remaining terms in Eq. (3), yielding results on

the changes induced by the presence of the external axial field.

The final result on the quark propagator is given by

6 ab
iS _a6 _

2*2+4@ - 92:. ziy5) + &g.~G;v(i~p’  + c+ìs)

1 5
+zgK( 2x22 - 2 . .zz)y5}  + . . . .

The first three terms in Eq. (11) are the perturbative free quark propagator, and the quark

propagator with a Z and a gluon, depicted in Figs. l(a-c). The next five nonperturbative terms,

proportional to c 44 >, are the quark condensate and this same condensate in the presence

of gluonic and external Z fields, depicted in the five diagrams of Fig. l(d-h). The other quan-

tities appearing in Eq. (11) are the Z-quark coupling constant (which already enters Eq. (10);

g = g, = -gd for the isovector axial coupling a or g = g,, = gd for the isoscalar axial coupling

as) and the condensate parameters defined by Eqs. (7), (lo), and

<  0lqg,G,,yîql0  >= gKZ, < gq > (12)

Our definition of K differs in sign from that of Ref. 4. Although the last term in the quark
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propagator (11) differs in sign and by a factor of 3 with that of Ref. 4, the sign is due to the dif-

ference in definition and the factor of 3 is absorbed in the definition of K in Ref. 4. In addition

to the quark and gluon condensates, one has the parameter me2 and the two susceptibilities K

and X.

1X-3.  Evaluation of the Correlation Function II@)

Consider the correlation operator, II(p), which is defined as2-5

II(p) E i
J

d%eipíz < we(~c>ii(0)>I0  >> (13)

where for the nucleon current we may use a standard (but not unique) form6

r)(z) = ~ì*ì{~ì(z)~Cy~u*(~)}7î7îdî(Z), (144

< Wlww >- XNvN(P), WI

with C the charge conjugation operator, a, b, c color indices, and v&r)  the nucleon spinor  nor-

malized such that GV = NN. Embedding the system in au external ZP field and introducing

intermediate states we can express the polarization operator in the limit of a constant external

field, 2$(x)  = ZP, as4”

WP) = 4XN12.$ _ëM,
-IXN12 l L7A 275

1

rj-M~ @-MN
l t . .ë,

where we have adopted the on-shell definition of the nucleon axial form factor:

< WA wJ,5(0)pqp,  A) >

= iidPí)b&2)7p75  + gP(Q2)Qp7~}ì&ë),

(15)

(16)

with qP =pP' -pp. The term shown in Eq. (15) corresponds to nucleon intermediate states;

continuum contributions to II are shown simply by ë... ’  in that equation. The axial coupling con-

stant &t in Eq. (15) is defined at q2 = 0. Eq. (15) is the expression for the phenomenological

form, in which II(p) is evaluated at the hadron level.

The correlation function II(p) may also be evaluated at the quark level:

al(p) =
J

&&X&abcCaíbíc

(17)
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Substituting the quark propagator (11) into Eq. (17), we obtain the processes shown in Figs. 2

(a-h), which enter the sum rule calculation for the couplings of the nucleon to the axial fields.

Note that Figs. 2(b) and 2(h) may be evaluated with the aid of the identity for the gluon

condensate:

< g;G;,G;p > =
6-$wgap - gppgoa) < g,2G2 > .

On the other hand, Figs. 2(f) are evaluated using the relation:

(18)

c3
ëL

d - 2

9ïf
e-2

FIG. 2. Processes included in the polarization function leading to the sum rules when the coefficients  of

p -.Zj$s  and &JS are compared.
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wi th  zîB  E l/2 eappa GPO” n12 /2. Note that, in Eqs. (18) and (19),  all the field operators are

evaluated at x = 0.

In addition to terms included in Refs. 3, 4, 7, and 8, we have added Fig. 2(h) and others

so that contributions are included consistently up to dimension eight (d = 8).

When evaluating the polarization operator II(p) at the quark level and comparing it with

Eq. (l5), one is led to three QCD sum rules involving go, which’  may not be consistent among

themselves although there is indeed one sum rule which seems most appropriate for a. Note

that Figs. 2 (a-h) enter the sum rules when the coefficients  of p*Z&,  and 27~ are compared.

Specifically, we obtain

SdP2 (14 -P2) + ;I - $u < g2G2 > $ - $,d~2+

-&‘  + dXab(-P2)  + ;] - ;( $7. + g&i+ + ;(g, + gd)na$

+ &g&a < g;G2  > _!_
P4

(20)

= 2&A (p2 - M; + 42 + . . ’

witha = -@c)~ < ;q > andj$v2 = (1/4)(27~)~  jAjvj2.  Note that the eight terms correspond, in

the alphabetic sequence, to the contributions from Figs. 2 (a-h), respectively. Eq. (20) is what

we call a ìQCD sum ruleî for go.

11-4. Additional Improvements

Consider the n-th moment of the correlation function:

MdQ;) = ~(--&)*ìtQZ)lpí=4:

1
=-

J

O3 ImII(s)ds

T 4,,,2 (s + Q;)*+l

o< (m2 pQ;,n+l +  (mr2  $-$+I + ìí

(21)
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Thus, we may suppress contributions from excited states by performing the Bore1 transformation

to both sides of Eq. (20):

(22)

withn+co,-p2-, *, and -p2/n = M2 defined for the limiting procedure.

As the next improvement, we note that the anomalous dimensions for the terms

(operators) in Eq. (20) are different, indicating slightly different QCD evolution behaviors of

the various terms. Specifically, some relevant anomalous dimensions are listed below:

q-a : +;: FrpYsQ  : 0, (23)

To remedy the situation, we introduce, with A the QCD scale,

LE
ln( %)

In($) ’
(24)

and insert powers ofL to the various terms in the QCD sum rule in order to describe the proper

QCD evolution in lrr(M~~/h~), thereby increasing the range of the validity of the derived QCD

sum rule.

After carrying out the Bore1 transformation and inserting powers of L, we obtain a sum

rule for&i,  with g,, = -& = 1:

M: Ez % G- -
8L4/9  + 32L4/9  < dG2 > Eo - 1f3Lw3’

KaEo  + La2 L41g
18

1
+-288L4/gXa  < s:G2 >

= Ps(sA + AM;)  exp(-MA/i@),

(25)

where L = 0.621 ln(lOM& corresponding to A@-D = 0.1 GeVwith the Bore1 mass, MB, in GeV.

The most important terms on the left hand side are the first term and that proportional to a2,

corresponding to Figs. 2(a) and 2(c) and 2(g), respectively. Note that only the standard quark

I_._. __
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and gluon condensates and the susceptibilities K and x enter, and that the term involving the lat-

ter is numerically small.

Note that, in obtaining Eq. (29,  the factors Eu = 1 - e-ë,  El = 1 - (1 + x)ebx,  and E2 =

1 - (1 + x + x2/2)eeX, with x = W2/M~2 = (2.3 GeV2)/M~2  (see Ref. 2) are used to correct the

sum rule to obtain consistent M82 dependence for contributions from excited states through per-

turbative QCD techniques.6í7 They also serve to restrict the range of the integration and in-

crease the weight given to the nucleon. We have thus made the usual assumption in Eq. (25).

The constantA  is introduced to represent the residual continuum contribution to the dispersion

integral.

On the same footing, we may obtain the sum rule for ~~~ (with gU = gd = 1)

M&Q M; Mi--
8Lë@

+-
32L419 1~LW31 rcaEo

_ 1a2L41g  + 1

18 288L4/9
Xa < gzG2  > (26)

= &(g: + AsMg) exp(-M&/M;),

This is the sum rule for the ìisoscalarî axial coupling constant as; it agrees with that of Ref. 8,

except that their K should be 43. It is assumed that the susceptibilities and W2 are identical to

those for the isovector case. This assumption can be investigated, but we may adopt it here for

simplicity. The most important terms on the left hand side are the first term and that propor-

tional to xaM~~, corresponding to Figs. 2(a) and 2 (d-l) and (d-2), respectively. Note that the

susceptibility x is very important in the sum rule for as but only makes a small correction to

III. COUPLINGS OF THE NUCLEON TO AXIAL FIELDS

As already indicated in Refs. 3 and 5, the sum rule for go can be combined with that for

the mass to obtain a sum rule for a - 1, which yields predictions relatively stable against

reasonable variations in the Bore1 mass MB. In particular, we make use of a Belyaev-Ioffe sum

rule6 for the determination of the nucleon mass:

M;E2 + Mi < gzG2  > Eo + ia2L4ig -
1

8L4J9 32L41g
-a2rn2
24M; ’ (27)

= @, exp(-Mk/Mi),

Note that the first two terms in the left-hand side of the two sum rules, Eqs. (25) and (27),
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are equal. By subtracting Eq. (27) from Eq. (25), one obtains a sum rule for (go - 1) involving

the condensates a, mu2, and the susceptibilities K andx. These parameters have been estimated
to b,1,2,ë%9

a M 0.55GeV3,

Ka x 0.140GeV4,

Xa x 0.70GeV2,

< gzG2 >x 0.47GeV4,

mo -2 N 0.8GeV2,

(28)

Because K is less well known than the other constants, we also consider KU = -0.140 Gep in

order to estimate (roughly) the error of the sum rule method. The parameter ~~~ has been

determined 2 through the mass sum rule to be /$v2 = 0.26 Gep. In Eq. (28) we use the standard

value3 of the quark condensate. Subtracting Eq. (27) from Eq. (W), we obtain a sum rule very

similar to the one obtained3 by Belyaev and Kogan:

1

288L4J9
Xa < gzG2 >

(29)

= P${(SA  - 1) + AMi}exp(--M&/M;).

This sum rule is only very weakly dependent on ~a; its dominant contribution on the left-hand

side is the first term; the second term is less important and the other ones are small.

Analogously, we obtain, by adding together Eqs. (25) and (26),

Mi 1 Mi
16L41g

< g;G2  > Eo + -
6L41g XaMiE1 - gL6î/81-KaEo

+2,2p/9  + 1
9 144L419W

Xa < gzG2 >
B

= PL(g_.t + gz + AíMj)  exp(-Mf&/Mi).

(30)

Eqs. (29) and (SO) are the main result for the axial couplings of the nucleon. It is clear from

Eqs. (28) and (29) that, for (9A - l), the quark condensate (represented by a) dominates and

that the induced condensates (proportional to the susceptibilities x and K) are not important.

This is not so for the ìisoscalarî (ëgAí>  sum rule, and it causes greater uncertainty in the results

for this quantity.

In the numerical analysis, after moving the factor exp(-M,v2/Mg3)  to the I.h.s., we may com-

i-. . . .
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pare the 1.h.s.  to a straight-line approximation C + DMB~. In practice, for a given Bore1 mass
MB, we may determine the straight line which go through the points MB 2 &V, (with, say, &f~

= 0.1 GeV) and then compare the values of the 1.h.s. and r.h.s. of the sum rule at MB. When

both sides agree with the desired accuracy, the sum rule is said to hold to that accuray and it

allows for extraction of the constants C and D.

We obtain solutions for the (gA - 1) sum rule, Eq. (29), for values of the Bore1 mass MB 1

1.8 Gel/.  It is worrisome that such large values of MB are present in our analysis, since it is ex-

pected that MB is of the same magnitude as the mass of the baryon of interest. I.e., one expects

solutions for MB in the range of 1 Gel/.  Larger values of MB might appear to indicate that our

a is distorted by coupling to baryon resonances and perhaps other states of higher energy.

However, in our analysis these continuum contributions to the sum rule for (9A - 1) are very

small. Continuum contributions show up at two places for (9A - 1): (1) the term proportional

to A and (2) the deviation of Eo from unity in Eq. (29). The former is very small, and we obtain

almost identical solutions to Eq. (29) if we let Eo = 1. Therefore, we conclude that the con-

. tinuum contributions are small and are handled reasonably well in our calculation, even though

MB is larger than expected. The large values of MB are still puzzling, and may be a consequence

of the fact that in the sum rule for (9A - 1) the continuum contributions of the gA sum rule and

of the mass sum rule almost cancel.

For the& + us sum rule, Eq. (30), we also obtain solutions for values of the Bore1 mass

MB 1 1.8 GeV. The situation here, however, is quite different: the continuum corrections

provided by Eo, El, and E2 are quite important for our final results. For this reason we have

examined the dependence of ~~~ on the value of MB. We seek solutions to Eq. (30) for go +

us simultaneously with the mass sum rule, Eq. (27), by fixing the value of the nucleon mass at

its physical value and adjusting /?jv2  accordingly. We can obtain solutions of the as sum rule

for MB = 1.2 Gel/, but with about a 35% increase in the value of the parameter /$v2. The result-

ing ~~~ is not significantly changed. In other words, the value of as is quite insensitive to the

value of MB for MB L 1.2 GeV. Numerically, we obtain (with MB 1 1.8 GeVí)

gA = 1.26 A 0.08, @la)

g; = 0.13 zt 0.08. W)

A most satisfactory aspect of the result is that we obtain a value of a consistent with ex-

periment with a value of the quark condensate parameter a which gives rise to the correct mag-

netic moments of nucleons.%  On the other hand, the value for goí,  which is very sensitive to the

susceptibility 2, is not very different from the EMC data.î The EMC data, together with an

analysis of strange baryon decays, yieldsí01”

g3;  = Au + Ad = 0.28 f 0.08,
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a value slightly larger than, but compatible with, ours. (Note that Au and Ad extracted from the

EMC data contains contributions from antiquarks, which have been neglected in the above con-

sideration.)

IV. SUMMARY AND OUTLOOK

To sum up, we have described the method of QCD sum rules, using calculation of the cou-

plings of the nucleon to axial fields as an illustrative example. Our interest is centered about

the behavior of a system of quarks, antiquarks, and gluons under the influence of an external

field, leading to a modified version of the method of QCD sum rules. In particular, the isovector

axial coupling constant & is determined from a QCD sum rule for (9A - l), and it is shown that,

with standard values of the quark condensates, gA = 1.26 + 0.08. A sum rule is also obtained

for the ìisoscalar”  axial coupling constant as which is found to be 0.13 if the isovector values

of susceptibilities are used.

It is the goal of the present authors to apply the method of QCD sum rules for the studies

of weak interactions of free hadrons and for those in nuclei. Of particular current interest are

. the values of a, as, and gp, the induced pseudoscalar coupling constant, for the free nucleon

and for the nucleon embedded in a nuclear medium. In addition, work is in progressI for study-

ing baryon mass differences, with emphasis on isospin symmetry breakings and flavor SU(3) sym-

metry breakings.
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