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We investigate in a specific and systematic manner the possibility of understanding
some of the principal QCD condensates (&Jn), which are traditionally associated with
QCD sum rules, directly in terms of their definition, viz., - JdîpTr{S;?(p)O}  where the
quark propagator j;F” (p) is so defined that the perturbative part is suitably subtracted.
To this end, we relate the mass function m(p2)  to the pion-quark vertex function in the
chiral limit. This last aspect provides a concrete handle for its determination through
the vehicle of the Bethe-Salpeter  equation (BSE) for qq hadrons. Since the latter is
directly adaptable to spectroscopic studies, the method provides a clear linkage between
the high-energy and low-energy descriptions of hadrons in &CD. The gluon condensate
which is related to the same qq interaction in the confining region (the infrared domain
of the gluon propagator) may also be calculated in a similar fashion. The results for
most condensates are in good overlap with the values employed in the method of QCD
sum rules.

PACS. ll.lO.St  - Bound and unstable states; Bethe-Salpeter  equations.
PACS. 12.38.Lg  - Other nonperturbative calculations.
PACS. 12.38.A~ - General properties of QCD (dynamics, confinement, etc.)

I. S T A T E M E N T  O F  T H E  P R O B L E M

It is believed that quantum chromodynamics (&CD),  an SU(3) gauge theory con-

structed out of the exact color SU(3)  symmetry, describes strong interactions among quarks,

antiquarks, and gluons. At high energies (i.e., large momentum transfer squared, Q2 >> 1

GeV2), QCD is asymptotically free, allowing perturbative treatment of physical processes

involving hadrons. At low energies (i.e. Q2 N 1 GeV2),  however, the nonperturbative

physics dominates such that the physical ground state (i.e., the physical vacuum) differs

in general from the trivial ground state (i.e., the trivial vacuum in which all field variables

vanish identically). Indeed, hadrons, including baryons, mesons, and glueballs all of which
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are color-singlet objects consisting of quarks, antiquarks, and gluons, act as the effective

degrees of freedom in hadron physics (strong interaction physics).

The study of hadron physics is essential for progresses in many research areas, ranging

from nuclear physics, to particle physics, to collapse of heavy stars, or even to the hadron era

or nucleo-synthesis in the early universe. Our understanding of the structure of a nucleon,

a proton or neutron, is still not very adequate as compared to the structure of a hydrogen

atom in atomic physics (where the nucleus can be treated to a very good approximation as a

pointlike object). Yet, the behavior of a nucleon may vary from one environment to another.

The diverse nonperturbative aspects of QCD have by and large defied many attempts to find

universally acceptable solutions to strong interaction problems, including the problem of

the nucleon structure. The QCD condensates are among the most fundamental parameters

of this strong-interaction theory designed to bridge the huge gap between its perturbative

and non-perturbative regimes through the powerful analytical tool of the operator product

expansions (OPE) [1,2]. The method of QCD sum rules represented the first practical

attempt [3] in this direction by employing a duality principle between the quark-gluon

language and the meson-baryon picture.

To recapitulate, the method of QCD sum rules is based on the idea of finding a Q2

region (Z 1 GeV2)  hw ere one may incorporate nonperturbative physics, through Wilsonís

short-distance operator product expansion, into the perturbative QCD treatment of physical

processes involving hadrons. The ansatz is, on the one hand, to replace, in the evaluation

of a certain correlation function (or Greenís function) II(p), the free quark (or gluon)

propagator by the one suitable in the case of the nontrivial vacuum while, on the other

hand, to express, via dispersion relations, the same correlation function in terms of the

variables in the meson-baryon picture. The result at the quark level is then equated with

that obtained in the meson-baryon picture, yielding sum rules which allow for determination

of the variables adopted in the meson-baryon picture.

At the hands of the Russian School [4,5], the method was considerably developed

and applied to a large class of observable (hadronic) amplitudes with great success, and is

now regarded as one of the most efficient methods available for strong interaction theory,

whose inputs are the condensates themselves. In the language of field theory, the quark

condensates are formally defined as

(1)

where 0; is an operator representing the nature of condensate, the index A represents the

effect of a background field, and s;(p)  is the quark propagator with the perturbative part

suitably subtracted.
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At this stage, it is useful to distinguish between the gluonic background field and other

external ones such as electromagnetic, axial, etc. The latter can be treated perturbatively,

but the former, with its characteristic problem of color gauge invariance, must be addressed

in a more substantial manner. While it is not the purpose of this paper to go into the

technical details of this subject (on which there already exists a vast literature [S]), it

is nevertheless possible to incorporate in practice a major fraction of this effect through

the simple expedient of changing the variable of integration in Eq. (1) from p, to II, =

p, - ig,XîGz  with Gi the gluon field. [In an abelian gauge theory such as QED, the

procedure has been referred to as the principle of ìminimum substitutionî - a substitution

principle which has been used for amplitudes at different levels and which generates proper

gauge invariant results.] This ìminimum-substitutionî procedure would in general not be

possible if one were to evaluate more complicated integrals involving more propagators

and vertex functions, but since the integral in Eq. (1) ìseesî only one such quantity, the

substitution should give rise to proper color-gauge invariant results, especially because we

are primarily interested in a constant background G,,-field, i.e. GE(s) = -ixpGL,.  Note

that this is basically a non-abelian adaptation of the celebrated Schwinger method [7] to the

present situation but the details of the available methods [6] are not necessary for justifying
the above step. With this understanding, we shall not use any additional subscript or

superscript in Eq. (1) to specify the gluonic background, but rather regard the integration

variable p, to represent II, = p, - ~gJîG~.
Clearly there are a large variety of condensates depending on the choice of the operator

(3; and/or the external field A,, the principal one being the main quark condensate (q(r)0
(i.e. with U; = 1 in the absence of an external field). The corresponding gluon condensate

may be formally defined in coordinate space as

(gzG2)u  = Tr{(V,V,  - S,UV2)g~~,U(0)17 (2)

where V, is the gauge covaria;;t  derivative and O,,u(z) is the infrared (non-perturbative)

part of the gluon propagator. In principle, this quantity can be accessed from the infrared

part of the qQ potential, though this requires some careful treatment of its heavy flavor

content since an extrapolation to the small z regime is involved - but see Sec. II for more

discussions together with an explicit calculation.

Now if the strong interaction problem of QCD were fully soluble, the condensates in

Eqs. (1) and (2) would also be calculable to any desired accuracy and therefore devoid of any

special significance. In the absence of such a facility, however, these quantities (which are

often regarded as free parameters in the QCD sum rule treatments) are the only concrete

handles available for a ëglimpseí into the (low energy) non-perturbative domain of QCD

from its (high energy) perturbative end. On the other hand, except for the two principal

condensates (ijq)o  and (gZG2)e,  the self-consistency of whose determination is fairly well
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established through cross checks against a large variety of data, the same cannot be said of

the higher order ones whose determinations often leave much ambiguities. A partial list is

141

In the method of QCD sum rules [3-51,  there is no intrinsic mechanism to evaluate them

from first principles but only an extrinsic ëmatchingí between the two sides of the duality

relation with the help of suitable parameters. And for condensates of still higher dimen-

sions, additional assumptions, such as factorization, are also introduced. Clearly, additional

principles (not just ad hoc parameters) are needed to give more teeth to the method of QCD

sum rules.

In this paper, we propose a new principle which enables us to calculate all the

condensates  (l)-(3)  dan many more, through the linkage to the spectroscopy sector which is

perhaps the weakest link in the method of QCD sum rules, except for the ground states of

the principal hadrons [3,4]. Of course, the spectroscopy sector has its own language showing

up through the qij potential, or in a better term the kernel of the Bethe-Salpeter  equation

(BSE), within a Bethe-Salpeter  equation and Schwinger-Dyson equation (BSE-cum-SDE)

framework which may be regarded as a description complementary to the method of QCD

sum rules, and it should be of sufficient physical interest to show its links with the vacuum

amplitudes Eqs. (1) and (2).

At this juncture, it is essential to reflect upon the paradoxical situation which we are

facing. All the condensate parameters, as employed in the method of QCD sum rules, are

characteristics of the nonperturbative aspect of QCD and are therefore not calculable in

any perturbative manner. On the other hand, the spectroscopy sector via, e.g., the BSE-
cum-SDE framework must, to some extent, incorporate nonperturbative physics properly,

especially if it yields successful spectroscopic predictions. Unless the condensate parameters

are determined via lattice simulations of &CD, therefore, we should try our best to exploit

any possible connection between the QCD sum rule method and the spectroscopy. Indeed

the connection between the two methods comes about from the naturalness with which the

condensates can be calculated from the BSE-cum-SDE premises of field theory which main-

tains the links with spectroscopy. A partial attempt was recently made in this direction [S],

using the chiral property of the effective qfj interaction kernel (vector-like) which provides,

among other things, a concrete structure for the quark mass function, the ìkey ingredient”

of the SF-function in Eq. (l), through its complete equivalence with the pion-quark vertex

function in the chiral limit (M, - 0) brought about via the Ward-Takahashi identity for
axial currents [9].

Specifically we shall make a systematic attempt to calculate several quark condensates

in Eq. (3), as well as the gluon condensate. The central ingredient for the former is the

L_-_
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quark mass function deduced as the chiral  limit of the pion-quark vertex function [8],  and

that for the latter is the kernel of the corresponding BSE which is vector-like and hence

serves as the effective gluonic propagator in the infrared regime. Its 3D support also provides

an exact interconnection [lo] between the 4D and 3D forms of the BSE, the latter being

the right vehicle for making contact with spectroscopy [ll]. Its agreement with the data

for both qij [12] and qqq [13] hadrons with just three basic constants provides the rationale

for this exercise. In Sec. II we shall collect the main ingredients of the BSE-formalism and

also work out the gluon condensate which stands out from the other (quark) condensates

in terms of its mode of evaluation. In Sec. III we first develop a systematic method for

the evaluation of the quark condensates and then use it for determining the various quark

condensates listed in Eqs. (1) and (3). In Sec. IV we discuss the significance of our results

vis-a-vis  their QCD sum rule counterparts.

I I .  FORMALISM

As noted previously in Sec. I, the proposed procedure to determine the various

condensates is related to the spectroscopic studies of hadrons through the Bethe-Salpeter

equation (BSE) so that the method provides a linkage between the high and low energy

descriptions of hadrons via &CD. To that end we recall a specific BSE treatment of the

qij [12] and qqq [13] spectra within a unified framework based on the ansatz of covariant

instantaneity [lo] which can also be motivated on several other grounds [14],  as summa-

rized in a recent paper [15]. The covariant instantaneity ansatz (CIA) is expressed by the

statement that the kernel K(q,qí)  of the 4D BSE representing the internal dynamics of a

qq system, where q and qí are the internal 4-momenta, has a 3D support [lo],

where Pp is the total 4-momentum related to the individual momenta (pr,z,~i,~)  for equal

mass kinematics by

PY.;, = 2ëPP  f qp; p& = +Pp f 4î. (5)

Note that i. P = 0. The CIA provides an interconnection between the 4D and 3D forms

of the BSE [lo], and gives a concrete structure for the hadron-quark vertex function rH in

the form [lo]

ti2 = rni + G2, (7)
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where B(i) is a (covariantly expressed) 3D denominator function and d(Q) the correspond-

ing wave function. These two quantities appear in the 3D BSE structure as & = JKd,

with li’  given by Eq. (4), so that a 3D Schroedinger-like equation (albeit fully covariant)

which is appropriate for making contact with the hadronic spectra in view of their known

3D character [ll]. The fact that the CIA treatment [lo] of the spectroscopy yields both

QQ [la] and qqq [13] spectra in good agreement with the data [ll], with a common set of

(three) parameters, constitutes our assertion on the spectroscopic link of the SDE-BSE

framework via the 3D CIA description. To see this link more quantitatively, we first recall

the Schwinger-Dyson equation (SDE) for the mass operator C(p) and the Bethe-Salpeter

equation (BSE) for the vertex function FH(~), especially the structure of such SDE-cum-

BSE framework as adapted to the 3D CIA treatment:

(8)

where the hat notation signifies perpendicularity to the hadron momentum Pw. At this

stage, we shall simultaneously specialize to the pion in the chiral limit (Pp -+ 0), for which

it can easily be checked [8,9]  that Eqs. (8) and (9) become identical. In this limit, the

vertex function becomes ys times a scalar m(g2), while the mass operator is expressible in

terms of the same quantity as:

where we have adopted the Landau gauge which permits setting the overall normalization

to unity, A(p2) = 1 [16] ( no renormalization of the vector current: or CVC), and also

emphasized its dependence on p2, in the sense of Eq. (4).

It is clear that the days of the ënaiveí constituent quark model are long over and

that any serious investigation at the quark level today must work with standard, current,

quarks of &CD. On the other hand, it is also true that a solution to QCD in the nonper-

turbative regime is not yet in sight. It is this fact that provides a sort of locus standin,

hence legitimacy, however temporary, to eflective QCD motivated approaches in which the

starting Lagrangian is still defined in terms of current quarks (almost zero mass m,) but the

propagators of the latter in their nonperturbative form contain the dynamically generated

mass function m(F2). The mass function m(j~~), which is supposed to arise as the ìdynam-
ically brokenî solution of the SDE corresponding to the original chirally  symmetric QCD
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Lagrangian with (almost zero mass) (u, d) quarks, is the key to a proper understanding

of the constituent mass m, via the Politzer relation [2] m7 = m, f m(0) which for u or d
quarks amounts essentially to m, = m(0). It is this interpretation that has been behind our

approach so that the ëconstituentí mass m, for the u/d quarks (m, = 0) is automatically

accounted for as the low momentum limit (3’  = 0) of the mass function m(j2),  without the

need to employ, e.g., a constituent quark field of fixed mass mp.

Since in the chiral limit (M, = 0) the BSE for the QQ pion reduces exactly to the

SDE [9, 81 for a single quark, we are able to derive [8] the mass function in terms of pionís

BS wave function in the chiral limit M, = 0. Admittedly, the function m(lj2) does have an

empirical content, but the empiricity lies in the infrared part of the gluon propagator and

not in any other ad hoc definition of the quark field.

Analogously, the gluon propagator in the Landau gauge has the form

where a, b are the color indices in the adjoint  representation.

At this stage, we are in a position to explicitly state the connection between Eqs. (8)-

(11) and our spectroscopy-oriented BSE formalism [ll-131  under CIA [lo], whose fermionic

kernel K(q, qí) is expressible in terms of DD,,(k)  as

WC?,  4í) @ YP%&?  - QI)YVf (12)

The scalar part D(i) in Eq. (11) in the infrared region may be identified with the confining

part of the K-function as [8,17]:

V(l) = ~(27r)3w~2mqcr,(4m~)  [ (13)

Here we have employed the full q - 4 potential which fits the spectroscopy for all flavors

(light and heavy) [17], but specialized to the equal mass (mq) case. The constants Co, we,

A0 are given by [12, 171:

Co = 0.27, wu = 158MeV, Ao = 0.0283, (14)

while the (ëconstituentí) values of mq for different flavors are [la]:

mud = 265 MeV, m, = 415 MeV, m, = 1530MeV,
(15)

mb = 49OOMeV.

The QCD coupling constant CX, is given by [la, 171:

1
a,(Q2) = 47r . -.

ll-ZNf ln$ ’
A, = 200 MeV.

c
(16)
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The coordinate representation D(i) of the gluon propagator (13) is

D(k) = +; * 2m,a,(Q2)
[
co -

iii’ 14 4-O
(17)

Note the, in the .l? -+ 00 limit, D(i) is linear in g as well as flavor independent (the

m,-factor cancels out), except for the o,(Q2) effect. Thus the structure (17), despite its

empiricity, respects the standard QCD expectation, but only in the strict confining region.

On the other hand, the smallness of A0 (= 0.0283) ensures that for light flavors its structure

is dominated by the harmonic form, which amounts to setting A0 = 0. This is an excellent

approximation for the pion-vertex function in the chiral limit (M, = 0), and hence for the

quark mass function m(j2) = m(e2),  which, according to Eqs. (6)-(7), has the form [18]

rn(G2) = m,2LJ3qqcj)  ) (18)

in this limit, 4(t)  being the 3D wave function for the pion [lo]. Here we have normalized

the mass function to m(0) = m, and identified this dynamical quantity as the constituent

mass for the &-quarks only (ignoring their small ëcurrentí values). The 3D wave function

I$(@) may be given by [8]

(19)

p = 0.060 GeV2  ; mq = mud = 265 MeV .

We shall make use of this mass function (18)-(20) in Sec. III for the evaluation of the

various quark condensates.

Before closing this section we indicate briefly a derivation of the gluon condensate,

Eq. (a), by inserting the gluon propagator (17) in its definition. First, we may remark that

the evaluation of the gluon condensate may be obtained in principle by averaging over the
ëbackgroundí gluon field Gezl, but here the problem should be viewed in another way since

our parametrization of the infrared part of the gluon propagator was designed to incorporate

this background effect explicitly. Indeed as is known from the work of M. Shifman [19] and

M. Voloshin [20], the small distance behaviour of the infrared part of the gluon propagator,

due to the presence of background fields, must go like fi2, which is explicitly seen in our

gluon propagator structure, Eq. (17), with a detailed QCD check described elsewhere [21].

In other words, we have conciously  attempted to make up for the empirical structure of the

infrared part of the gluon propagator, Eq. (17), by making it conform to as many general

principles as possible (Voloshin, Shifman-like), so as not to violate the QCD constraints at

long and short distances.
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We proceed to insert the gluon propagator (17) into Eq. (2) in order to obtain an

estimate of the gluon condensate. The Co-term may be dropped as it will not survive the

subsequent differentiations in Eq. (2). For the main term, the following integral represen-

tation is employed:

where R2 = k2 - Ri (Lorentz-invariant). The 4D expression D(R) may now be inferred

from its definition in terms of the 3D quantity D(k).

V(R) =
a,(Q2)  2rn$i&k2

IT 1+ Aom2R2  ’Q
(22)

This is as far as one may go if we adopt the 30 form (17) for ZJ(&).  However, it is

sufficiently suggestive of the extrapolation needed to make it fully covariant, viz. k2 -+ R2

in the numerator of Eq. (22). We adopt this ënaturalí extrapolation in what follows [22].

The full propagator in the Landau gauge is already given in Eq. (11) where Ic, should be

read as k, = -ia,ì.  To evaluate the gluon condensate we first note the result:

and obtain by straightforward differentiation

(gZG2)  = ~4x~c(4m~)(6mqwo)2/lr2. (24)

The remaining question concerns what value of the quark mass m,, i.e. what flavor, should

be employed for evaluating the gluon condensate. The structure (17) does exhibit the

desired features of linear confinement and flavor independence, but the extrapolation of

these features in the opposite limit ( R + 0), as demanded by Eq. (23), brings in an
ìeffective flavor dependence” of the final formula (24). The heavier the flavor, the more

important is the corresponding mass (m,), vis-a-vis the Au-term in the qtj potential (17).

Since, on the other hand, the full potential (17) fits all the flavor sectors rather well [17,12],

we have chosen to employ a simple ìweightingî procedure involving only the three flavor

sectors with a nontrivial flavor mass, viz. sS, CC,  and bb with equal weights (in the sense

of a geometric mean), taking account of the m,-dependence m~cr,(4m~)  of Eq. (24). This

gives the result

(m~cx,(4m~)) = 13.91{m~o,(4m~)}, (25)

in units of its value in the (ud)-region,  and its substitution in (24) yields the final estimate

(gzG2) = 0.502 GeV"  , cm

--..-_ ._
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which is compared well with the value of 0.47 GeV2 adopted in the QCD sum rule literature

[4]. [Note that, should we incorporated the recent discovery of the top quark, the factor

13.91 in Eq. (25) may be replaced naively by 24.4, yielding a somewhat larger value of

(g:Gí)  at 0.88 GeV4. Nevertheless, it is expected that the simple ìweightingî procedure

should be modified when one of the quarks, the top, is unusually heavy - the top mass is

179 GeV, far above the ordinary hadronic mass scale.]

III. (QOiq) C O N D E N S A T E S

In this section we shall substitute the mass function rn(~?~),  obtained in Sec. II, Eqs.

(IS-20), viz.,

m(g2) = n-~,;~(rni + $2)3/2exp -g ,
( >

(27)

into the general formula (l), to derive the various condensates for different choices of 0;.

As already noted in Sec. I (in light of color gauge invariance), the quantity p, in Eq. (27)

and everywhere else in the following, must be read as III, [i], with appropriate non-abelian

corrections. The formula (1) now reads as

(28)

in the absence of external fields. Note that the subtracted part with m(l?)=O  in Eq. (1)

gives no effect on tracing in the absence of external fields.

Some general remarks may be in order concerning the use of the integration variable

II, instead of p,. Note that we are following closely the method of Schwingerís celebrated

paper [7] by using explicitly gauge-invariant quantities during the integration process itself,

but now with the added the complexities associated with the non-abelian colour  matrices.

In particular, one must exercise caution in regard to the non-commutativity of the III,

variables, even in the presence of a constant background field, and indeed many important

terms might be missed without proper precaution of this aspect. Nevertheless the correct

procedure needs only a few standard tricks, most of which have been already indicated by

[e.g. Eqs. (29)-(33)] g’lven immediately below. For example, the gauge invariant measure

d411  can be expressed in terms of commuting longitudinal and transverse variables IIt

and fi2 plus the (largely passive) angular variables. The further observation that most

of the non-commuting terms in the integrand involve odd angular functions which do not

survive their integration is enough to ensure a straightforward evaluation along the lines

outlined immediately below. (The only nontrivial problem of commutation involves the

composite operator C, for whose square we have adopted an obvious ìcolour-averaging

approximationî, Eq. (33), a lu standard methods.)
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We first express the denominator in the alternative form:

m2(~)ë+(y.~)2=Lj2--Cg--IIT_A-,9, (29)

Lj2 = m2(l?) + f12 ; l-p = fp - l-III;2 ) (30)

where III is the longitudinal component of II,, d411=d31?dII~,  and the integration must first

be carried out over Ill. Because of the presence of the X,-term in Eq. (29), however, a

further ìrationalizationî of Eq. (28) is necessary according to the identity

1 1
A-E, =

A t C,
L? - II; - c, = A2 _ C; ’

At this stage it is probably adequate to replace Ci in the denominator of Eq. (32) by its

spin-color-averaged value (Cj):

c; + (C,ë)  = &zGG)  =_ /.L~(=  8.48m;). (33)

after the necessary substitutions have been made from Eqs. (26) and (15). Thus (Xi)

contains a strong signature of the gluon condensate whose large value introduces some bad

analyticity properties in the denominator of the integrand in Eq. (28) or (32), for purposes

of III-integration, since the Lj2-term  is numerically much smaller than p2. We should like

to emphasize that this feature has nothing to do with our 3D BSE treatment, since we

have not yet passed the barrier of the orthodox 4D quark propagator in the background of

the gluon field. It is rather a very general manifestation of the strong spin-color effect of

the quark-quark interaction via the color magnetic field. The problem is not so serious in

QED [7] where the smallness of the coupling constant leaves the counterpart of the p2 term

well below the positivity limit (i.e., Lj2 - p2 > 0), but the large value of p2 in the present

(QCD) case tends to invalidate the standard analyticity structure of Eq. (28) for purposes
L

of further integration with respect to d311.  We have not been able to solve this problem here

but it seems to deserve more serious attention from a wider community. (Taken literally,

it would imply the introduction of a complex phase in the condensates!) In the meantime

we take a conservative view that the maximum allowed value of (Xi) (consistent with the

positivity of the denominator after III-integration) should not exceed G4  for all values of

IIí,  i.e.

(Xi) = fr2 5 rni . (34

Thus we shall understand Eq. (32) as
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1 A t C,
A - C, =+ A2 _ o2 ’

A E Lj2  - ii;.

For the numerator of Eq. (35) which still carries the spin-dependent quantity C,, Eq.

(31), there is no restriction of magnitude for one X,-factor only, since it contributes to

condensates only after contracting with another C-factor in Eq. (36). [However, other

factors which come from the rationalization of the denominator with higher powers of C,

must be subject to the same restriction.] With this precaution, Eq. (28) serves to define

two condensates simultaneously, viz, these with, c?;=l and 0; = gC(Xa/2)GivcPv,  where

the latter is expressible in the notation of Ref. [4] as

To evaluate the integral over dIIl, we have

1
- drI/J A;U
2xi A2 - u2 = 0); J(g)],

where

(37)

After collecting the necessary trace factors the final result for the two condensates is ex-

pressible as a simple quadrature (q = u or d):

(Qq)o[l; m;] = -5 JW fi2drI m(Q) [I(u); =J(u)] .
0 u (39)

On insertion of the structure Eq. (27) for the mass function, and putting the ìmaximum

allowed valueî of cr, viz, mi, Eq. (34), the results are [23]

(cjq)o  = -(266MeV)3; (c.J - (240 f 25MeV)3;  see [4]); (40)

m2 = 0 130GeV2.0 . , (c.f. 0.8 GeV2; see [4]). (41)

We next calculate three induced condensates X, K, and J, due to a constant external e.m.

field F,,, which are defined as [4]:

(424

(42b)
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In these equations the relative phases of the induced condensates are defined with respect

to the main condensate (Qq)o,  in accordance with our formula (28), and we keep systematic

track of this feature. Like the two condensates Eq. (39), the quantities X and K are in

a sense dual to each other, and are best described together. The e.m. field is introduced

through the substitution

[7jl+ iy . II]-’  -+ [ti + iy,(II,  - eA,)]-’ (43)

in the propagator Eq. (1) and keeping only the first order term in A,. Thus we have to

calculate

/Tr S&I.)(iey . A)S&I)  [gpV;  CADGE,,]  . (44)

This is facilitated, for a constant e.m. field, by the representation

A, = -+Fpu;
. d

Xp=aaII,* (45)

The substitution in Eq. (44) and subsequent trace evaluation is routine but lengthy. How-

ever certain precautions are necessary in the matter of extraction of two groups of terms,

proportional to up,, and G,, respectively, before the trace evaluation, which will survive

contraction with the external e.m. field F,,. Thus,

IIJI, * ;g&G;~  ; yp-yv * 2gpv  ’ (46)

In terms like i~,,,JI~IIIv, additional survivors come from the symmetrized product {IIA, III,}

for which we make the standard isotropy ansatz. In this respect, their association with

( p  -1k) g t í f f ts ace i e ma ne zc e ec s makes it more meaningful to do an effectively 3D averaging,

v i z .  II& * !jir2(S,,  - ep7jy) where 7jp is a unit vector whose direction need not be

specified too precisely. After this step, the tracing process is straightforward, and we omit

the details. A useful formula is

T r  ~XaG~,gJ,~,pF,p
{ 1

= +(g:G2)Ffiv. (47)

The results for the three quantities X, IE, and C are expressed as:

X(@) = - (2:)4
27?-líl?

3

--16rizI12
(Aî + 3Aa2)

(Aî - u2)3

+ (sF2>
3 (,2?;2,,

(48a)

+ (A2 - 02)3
7iz - 2ri227iz’  (3~2 + 303)]},
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which is closer to &$. Since this field is not a gauge-covariant insertion, unlike the axial

field A,, we refrain from making further comments here and refer the reader to [27] for

more details.

IV.  DISCUSSION

We are now in a position to compare and discuss our results given in Sec. III vis-a-

vis those normally assumed for the QCD sum rule analysis [4]. The comparison made in

Sec. III shows by and large a rather good overlap between our results and those obtained

in connection with the QCD sum rule studies, except for the case of m$ (see below). In

particular, the two main condensates (QQ) and (g:Gí)  leave little to be desired, in view of

the parameter-free nature of the entire calculation.

As regards the induced condensates only X seems to have been estimated in the QCD

sum rule literature with some degree of confidence while a corresponding determination of

the other two (K,<) remains quite tentative. Our value of X (-3.56) is somewhat smaller

than the ITEP result [4], but it seems to tally quite well with another determination (-3.3)

by Balitsky et al. [28], as quoted in Chiu et al. [29].  (The sign is of course negative.)

As regards K (-0.11) and < (+0.06), our values are admittedly small, but they are more

difficult to compare with the literature [4,28,29]  (both in magnitude and in sign) than in

the case of X which is somewhat sensitive to the magnetic moment determination of the

nucleon.

Our value for the axial condensate (A, = 0.021GeVí)  is also in good agreement with

the result of ref. 27, but the larger value than fz is probably not unwelcome since an

isoscalar axial condensate should stand a better comparison with fi which has higher value

[ll] than j:.

Since the agreement of our condensate values with those assumed for QCD sum

rule studies is quite good on the whole, it is qualitatively clear, even without a detailed

calculation, that our values used as input will equally well reproduce the results of QCD

sum rule analysis whether it is the proton magnetic moment [30], or the nucleon mass itself

[31]. A comparison of the work of [30,31]  vis-a-vis  [28,29] seems to indicate the possibility

of a wider variation in the input value of X.

The only visible discrepancy has to do with the (@ . GaXaq)  condensate rni (0.13

GeV')  which comes out a bit low compared to the value adopted earlier (0.8 GeV) [31].

Nevertheless, the (extrinsic) determination of this quantity from QCD sum rule analysis

is probably not as ìrigidî as those of the other condensates, as can be seen immediately

below. To this end, we may follow the analysis of [31] in search of the best values for

( MN, W2, P&), which enter the two Belyaev-Ioffe sum rules for the determination of the

nucleon mass, with the first one given by



E!

VOL. 33 W-Y. P. HWANG. A. N. MITRA, AND KWEI-CHOU YANG 413

ln(iWj$/h2)

L = 1n(p2/A2)  ’

where a = -(2~)~(&) with the Bore1 mass, MB, in GeV and ,0$ =_ (2~)ìXk/4.  I_L is the

renormalization point taken to be 0.5 GeV and A is the QCD scale parameter taken to be

0.2 GeV. The factors Eo = 1 - eST,  El = 1 - (1 + z)e-ì,  and E2 = 1 - (1 + z + $z2)e-2,

with 2 z Wî/$$  are used to correct the sum rule to obtain consistent Mi dependence for

contributions from excited states through perturbative QCD techniques [30,31].  They also

serve to restrict the range of the integration and increase the weight given to the nucleon.

The best values are given by

~%!!jv  = 918 MeV; l,V2  = 2.7 GeV2. (57)

Note that the observed nucleon mass is weIl reproduced and the value of the threshold is

only slightly higher (IV2 = 2.3 GeV2  in [31]),  despite the fact that the new value of rni

(and all the other calculated condensates) is used as the basic input.

Analogously, we recall the proton magnetic moment sum rule [30]:

2 1
e,=--,

3
cd=---;

3

where the constant A, is introduced to represent the residual continuum contribution to the

dispersion integral [30].  This formula serves to remind us of the role played by the various

induced condensates K, <, and X, which we have already calculated. Typical numerical

anaylysis  of this sum rule is displayed in Fig. 1, where we have adopted our calculated

condensates as the input. It is seen that the predicted proton magnetic moment is in the

vicinity of 2.2fiN for the higher Bore1 mass range, but its value drops if a lower Bore1 mass

range is used. We have also found that, by choosing a larger value for the threshold W2,

the predicted proton magnetic moment could easily be brought into agreement with the

observed value.

On the whole it appears that the model has reproduced the QCD sum rule values of

the condensates fairly well, despite some minor discrepancies. Of the two factors Lj3 and

4(g) of the mass function, the former is on more solid theoretical foundation since it can be

- .,
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FIG. 1. Linear analysis of the
parameters calculated

square  o f  Bore1  mass M2 (GeV2)

proton magnetic moment sum rule, Eq. (56),  using the condensate
in this paper.

traced to the structure of the propagators in the 4D BSE, when treated (covariantly) in the

instantaneous approximation [lo], but does not contain any parameters of the qq interaction

as such. Any change in this component would involve a major modification, such as a full-

fledged 4D form of parametrization of the mass function and the gluon propagator, within

an otherwise SDE-cum-BSE framework [32], were it not for its Q(4)-like  implications on

the hadron spectra [33].  As regards the other factor 4(G), any change in this component

would involve a different structure for the infrared part of the gluon propagator, viz. Eq.

(13), with its own ramifications on the entire hadronic spectra [12,13].  Observational checks

on the mass function m(fi2),  such as f?r or l?(~ --t  77), have provided satisfactory results

[lo], but clearly more are needed. A recent estimate of the pion electromagnetic form

factor F(Qí)  for large Q 2 indicates a value of about 0.7 GeV2 for Q2F(Q2), somewhat

larger than the experimental value of about 0.5 GeVí,  indicating scope for corrections such

as one-gluon-exchange effects.

V .  S U M M A R Y

To summarize, we have investigated in a specific and systematic manner the possibility

of understanding some of the principal QCD condensates (QOq),  which are traditionally

associated with QCD sum rules, directly in terms of their definition, viz., Eq. (1). To

this end, we have related the mass function m(p2) to the pion-quark vertex function in

the chiral  limit [8,9]. This last aspect provides a concrete handle for its determination

through the vehicle of the Bethe-Salpeter  equation (BSE) for qQ hadrons. Since the latter

--_. _
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is directly adaptable to spectroscopic studies, the method provides a clear linkage between

the high-energy and low-energy descriptions of hadrons in QCD. The gluon condensate

which is related to the same qq interaction in the confining region (the infrared domain of

the gluon propagator) have also been calculated in a similar fashion. The results for most

condensates are in good overlap with the values employed in the method of QCD sum rules.
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