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Abstract-8 types of maximally flat FIR fractional delay filters N
are proposed. They are designed by separately approximating H(z) = + + + hIzAV = Zhnz (l)
the real part and the imaginary part of the frequency response. whose frequency response is represented as
Among these 8 types of filters, two of them are equivalent to N
the existing design results in the open literature [6][9]. H(ej')=h + h +e-j* + hNe-JN c =Zhe-jn§P .(2)
Therefore, a more general closed-form design of the maximally n=O

flat FIR fractional delay filters is described in this paper and The fractional delay filter with desired delay D has the
some design examples of FIR fractional delay filters will be ideal frequency response of
illustrated. Hd (e' ) = ejD(D. (3)Hideal ( 3

We can writeD asD = K + d orD = K + I/2 + d and obtain the
I. INTRODUCTION fractional part d of the desired delay whereK is an integer

Application and design of digital fractional delay (FD) and 0 < d < 1 . Based on the separation of integer part and
filters have been widely studied in the open literature [1]. fractional part, the desired frequency response can be written
Standard techniques such as windowing method, equiripple, as
or maximally flat approximation can be applied to designing Hdel(e'j) = e-DD = e-iK6) e-id
FD filters [1][2]. In [1], the authors provide a comprehensive or
review about the FD filter performance of several design Hideal(ej= e-jDo =e-j(K+112)o-e-jdo
techniques. Accordingly, we will use

Maximally flat (MF) design of FD filters attracts many Hd(ej'v) = e-jd' (4)
investigations because of its close relation to the theory of as the desired frequency response in this article.
interpolation [1][4][5][6]. Several results on the closed-form
coefficients are derived [1] [3][6] [8]. These closed-form III. DESIGN OF MF FIR FD FILTERS
expressions are explicitly solved from linear equations
derived from the MF conditions. It is interesting that the In this section, we propose 8 types of FIR filters to
coefficients can be also derived from power series expansion implementing FD system based on the symmetry of the
of suitable basic functions [6] [7]. desired frequency response in (4), and solve its coefficients

by MF approximation. The desired frequency response can
In this article, we propose several types of finite impulse bewitnaHd(')=osd)-snd)whrteralpt

response (FIR) filters for approximating FD systems. The b w

impulse response of each type of filters are solved by MF is an even function and the imaginary part is an odd function.
approximation and expressed in closed form. Properties of A natural way to implement functions with such symmetry
each type of filters are investigated and lead to some by digital filters is to express the even function as cosine
conclusion on its performance. series and to express the odd function by sine series.

Let H(cw) be the target frequency response. Formally, the

II. FORMULATION cosine series and the sine series are expressed
as cos((Pi + a)w) and sin((Pi + b)wo) where P E {1, 2} and

The N th order FIR filter with its impulse response a, bsP{ 0.5} int senofP 1 b e{0, 1}it ase
Ih,, n =0,...I

NJcan e exressd bya, b E{O 0.5} in the case ofP =1I, a, b E lo,i}in the case
{h n 0O,1, ..., N} can be expressed by ofP =2. Therefore, we obtain 8 ways to representH()as

an approximation of the desired frequency response. In this
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article, we will focus on the derivation of the same number associated transfer functions are listed in Table 1. Moreover,
of coefficients on the approximation of real part and the impulse responses for the caseM = 5 are depicted in this
imaginary part. The 8 proposed frequency responses and table to illustrate their behavior of symmetry.

TABLE I. THE PROPOSED FREQUENCY RESPONSES AND THE ASSOCIATED CAUSAL TRANSFER FUNCTIONS

type Frequency Response and the associated causal order t Frequency Response and the associated causal order
transfer fUnction transfer fUnction

M-1 M-1 M-1 M-1
H1 (co) 3E a1) cos(2ico)- Ej11) sin[(2i +1±)] H4 (co) yE a, cos[(2i±+1)]-j M4 sin[(2i+±1)c]

I=0 I=0 i=O I=O
F-M-i 4)1 12 o 0 Ml4) _h-4

H (z) z 2M+1 XE (_ h,2iz2 +la:z2i) -h Z +ao H4 (z) zL ( bI a z2+1)+O

i=1 2 2 aI=O
f-i ~(i) _ ]M-1 (4)h(4

+ol Z( Z-2+h±1 Z~(2~+i)) E (a Z-(2,1l))2 2 2 ~~ ~~~~IV -= 2 j4M-2
I [6] 10.2 4M-2 0.8

0.1 0.6

05 0 t 0.4 Nonsymmetric impulse
O. 1 t X . @ -01I 0.2 response interleaved

0~~~~~~~~~Mm '-F ~~~~~~~~~~~~~~withi zeros
0 0 15 -2 510156 96 11P@Z theo
Interleaved even-symmetric 2 5 10 15
and odd-symmetric impulse Magnified version-1 -1
response Hf (w) 3H () cos(io) - j 3b/5) sin[(i + 1/ 2)co]

H2 (co) 'Ea,2 cos(2ico) - ji2h sin(2io) Mixture sums of full-samnple and half-sample delay
i systems, not realizable

H _ 2MhF 2M +

M-1{a2- $2 _Z) h-1 jZb

H2(z)~2~L- bhf z2 ±= 6o ZEa() cosQico) - jEh()sminco)2W()Z 2 I1 2 H6 (Co) L i O()j b sin(@
i=0 i=1

M_1_a_!_2 2) b- (6) M-1 ()
a(2) + +a hit/) 23 hM -2M H6(Z) =- h[-Z + a1(6 h Z )+ 6

2 2 I6 2 2

0.8 02052 2

0.6
@*+ 1*T.@-s@ -01 06

I 04... I . . . . I I |Nonsymmetric020 5 10 15 20 0 5 10 15 20

Nonsymmetric impulse 0.21 ,1e1o.
response interleaved Magnified version
with zeros 0 2 4

M-1 M H7(o) = ZaF cos[(i + l/2)o] - jib? sin(i)
H3(w) = 43) cos[(2i + 1)wt] - IZb3} sin(2ic) V1J
3 (C)=n=,

Vil

Mixture sums of fuill-sample and half-sample delay
M-i k(3) (3) systems, not realizable

H3() z-2MLZ(- + z1+2+aI 2z+12l±i)-1 ±-1i ±
L z=o 2 2 l~~~~~~~~~~~~~Hr(co) = a6 cos[(i + I/ 2)c] - j Eh8 ssin[(i + I / 2)oi=0 i=O

M-i a(3) M(1 a1) b+- .7h8 = a(8) +h(8)(aZ" z (21+i+) - 1+ ) H8(z) z- YI__ 7s+ ______I 7

III z=0 2 2 4M i=o 2 i=o 2
0.8 o.EL ~ ~~ ~~~~~~~~~~~~~~~~~~~~Ii I 2

I

Interleaved |-Ij 12M
0.4 evnsmmti 06 NonsymmetricI ~~~~~~~~even-symmetric 0.6 .I
0.2 and odd-symmetric 0.4- musersos

impulse response 02 I

1 1 -0.20 ~ ~~ ~~ ~~ ~~~~~~~~~~~~~~~~~2 4 6 a 1 0

-.05 10 15 20

We make a simple discussion before designing filters systems. One contributes the real part and another
having the frequency responses in Table 1. All the 8 types of contributes the imaginary part. Type I filter is equivalent to
frequency responses are the sums of two linear-phase the FIR FD filter proposed in section IV of [6]. Frequency
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responses of type-V and VII are sums of a full-sample and a M-1
half-sample delay systems where the complete design of Ybi11(2i+1)Q=d'd; Q=1,3,...,2M-1- (14)
filters with this mixture is not realizable in practice. The Comparing (13) and (14) with (5) and (6), we obtain a
transfer function of type-VIII is just another expression of closed-form solution ofa(1) =A (d) and b>) dB1 (d) 7(2i + 1).
the general transfer function in (1) for N = 2M -1. However, B o t s i w
the transfer function of type-VI is not identical to the general Base on thes8mylar dersva.on, we can obtain the coefficnents
transfer function in (1) for N = 2M. A simple observation of allthe8typesoffilters.ThesesolutonsarelistedinTable
about the fact is that the last impulse response ofz2M is
negative to the constant term in H6(z) . But the impulse
response of the general transfer function does not be limited IV. DESIGN EXAMPLES
by this constraint. However, the filters of type VI and VIII In this section, we will study the performance of the
are exactly equivalent to the filters proposed in [9]. proposed filters by 6 design examples. Figs. 1-6 show the

magnitude responses and group delays of the proposed filters
In the following, we will derive the coefficients of the of type-I, II, III, IV, VI, and VIII, respectively. For each

filters listed in Table 1. filter, the desired delay d =0.25 andM =2, 3, 4, 5. The filter

Let {A(d)I,= , .Mbe
, {B (d)

of
,1.M

3 sen orders can be calculated according to Table 1. For example,
{C (d)I= 1,2.M}be the solutions ofthe following 3 set the orders of type-I filters shown in Fig. 1 are
of linear equations: N = 4M -2 =6, 10, 14, 18. The group delays are normalized

M-1

ZA (d)(2i)2p = = 0, M -1, (5) by the filter orders. Specifically, the normalized group
i=O delay G(o) shown in figures is calculated from the original

ZBK(d)(2i+1)2P =d2p; p =0, M-1, (6) group delay g(c) by G(o)=g(o)-N/2 The type-I filter
i=OM exhibits a very flat magnitude response over the whole
E C, (d)(2i)2p = d 2P; p = 0, 1.M -1, (7) frequency band. In fact, this filter is equivalent to the FIR FD

respectivel i=IWe will showthatallthecoefficientsofthe
filter proposed in Section IV of [6] since the power series of

respectively. We will show that all the coefficients of the 8 sine functionZp, (-jsinc)' can be converted to the type I
types of filters can be expressed by these common frequency response in Table 1. Fig 2 shows the magnitude
factors A, (d) , B, (d) and C1 (d) . We first solve the above 3 -Z , Z Z ~~~~~~~~~~responseand group delay of type II filters. The magnitude
sets of linear equations by Cramer's rule. The closed-form responses drop from unity at o = 7 / 2 . The magnitude
solutions are responses of type III filters shown in Fig. 3 fall to zero

A4(d) I(-1)"l(d2 - 22)(d2 - 42) [d2 - (2M - 2)21 (8) ato = T /2 because Hl (w/2) = Ofor any order and delay. The
[(M -1)!]2 x 22M2 magnitude responses of type IV filters in Fig. 4 also drop

2(-1)M1-'i(d2 - 02)(d2 - 22).. [d2 - (2M - 2)2] atcg = r/2. The frequency responses of filters of type 1, 11,
[d2 - (2i)2]x (M -1- i)! x (M -1 + i)! x 22M-2 , (9) III, and IV are symmetry about co = wf/2.

i = 1,2 ... I M -1, The magnitude responses and group delays of type VI
(4i+2)(±1)A-1-(d2_12)(d2-32)....(.1V..(d..[d2 - (2M1)2] and VIII are shown in Figs. 5 and 6 respectively. Type VI1,(d) = Ld2- (2i + 1)2] x(M -1- i)! x (M + i)! x 22M-1 ( 0) and VIII filters are exactly equivalent to the filters proposed

[d2-(2I±1)2]x(M-1-i)!x(M±i)!x22 in [9], which are not symmetric abouto= w/2 and hence
i=O,l,1....,M-1 have better frequency responses over the frequency band

C (d) =8i2(-1)M- (d2 -22)x (d2 _42)X x [d2 - (2M)2] of[0, 7 /2] than the type III and IV. Note that the group delay
[d2 - (2i)2]x (M - i)! x (M + i)! x 22M aroundwo = oftype VIII is actually -0.25 rather than 0.25 as

i = 1,2, ...
,m specified. This is resulted from that we have shifted the

To find the coefficients ofHI (c), we set the MF condition impulse response half samples backward to implement the
at o = 0 and obtain a set of linear equations consisting of sum oftwo half-sample delay systems in H8 (z)
2M equations

d,.Q2 1(°') = dQ,2 Hd(ej@ (12) V. CONCLUSIONS
Hdo)Q dod(Q~ In this article, 8 types of FIR filters are proposed for

for =0,1 ... 2M -1 . These conditions can be further designing FD systems. By the MF approximation, we solve
simplified to two sets of linear equations with the coefficients in closed form. Two types of filters are

_ (1) mixedby a full-sample and half-sample systems. It iS notunknowns {aI1 1-=0,1,..........,M-1} and {bi i-0,1.M ,- 1} realizable in practice to design the filter with such mixture.
These two subsets of equations are The other 6 types of filters are given in examples and their

EaI1) (2i)Q = dQ; Q=0, 2.2M-2 (13) magnitude responses and group delays are shown in figures.
i=0 We find that type IV approximates the desired frequency

and response except the magnitude response drop from unity in
the mid-band, making these filters are not suitable for
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filtering within the mid-band range. Type I, II, III, VI, and 1 1 M__
M=4ViII, on the other nancd, approximate mhe desired magnitude 0.6 M=5

and group delay frequency responses well within the low- 052
band range. Our method obtains fractional delay closed form M5 -0.2 02
solution. Therefore it will have better flexibility and less 00 0&2 0.4 0&6( rads Normalized0 F 0equency(
design complexity than the conventional least-mean-square (a) (b)
(LMS) methods. Figure 6. (a) Magnitude responses and (b) normalized group delays of

type-VIJI filters with order 2M - 1, d =0.25.

M=2 02 <. M=2

1.012 M-4 M=4 TABLE II. CLOSED-FORM SOLUTIONS OF THE PROPOSED MF FIR FD
1.01 --M=5 0.1 M=5FITR
1008 0FITR

0.5 __ ~~~~~~M=21.006
3 1.-0

M=4 1.002
0 M=5 1 -0.25[ CoefficientsT__________ype Coefficients

0 0.5 1 0 0.5 1 0 0.5 1 1) A f7\(5)-M
Normalized Frequency(T rads) Normalized Frequency(7 rads) Normalized Frequency(7 rads) a(= Ai JAdI,a1 ~AitZ2d),

(a) (b) (c) I ~~~~~~~~~~~~~~~~~~~~~~~~~[6]b(1)= dB i (d)/(2i-i-1) b$(5)-2dB, (2d)/(2i ± 1)
Figure 1. (a) Magnitude responses, (b) magnified magnitude response, i

and (c) normalized group delays of type-I filters with ordera(2)=Aid)a(6) A 2)
4M -2, d =0.25. ai A c r a A 2)

1 025 b~~~~~~~~~~~~~~~~~~~~~2~~~~~ -dC~~~~~h(oi) 1(2i) [9] h =C.(2d)/i
0&99 0 K()
0.98 -0.2 a[3~
0.97 -.

0.5 __ 0.96 -/0 B d,6 2)
M_=2 M092_ -068 _III \/JJ0- M 53M=3 () dM_ 3 -_ M- -og b C d)/(2i) bi<7) dC (2d)/i.--M=4 M=4 --MI

00 0.5 --~~~~M= (4' (8) _
'O 5 1 0 0.5 1 0 0. 4 2 )Normalized Frequency(iT rads) Normalized Frequency(7 rads) Normalized Frequency(ff rads) a1 (i A, xqjj a- - B 2d

(a) (b) (c) -V
h 4 dBi (d) /(2i ± 1) 19 (8) -2dB1 (2d) /(2i + 1)

Figure 2. (a) Magnitude responses, (b) magnified magnitude response, [9
and (c) normalized group delays of type-I1 filters with order 4M , d = 0.25.
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