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Abstract—S8 types of maximally flat FIR fractional delay filters
are proposed. They are designed by separately approximating
the real part and the imaginary part of the frequency response.
Among these 8 types of filters, two of them are equivalent to
the existing design results in the open literature [6][9].
Therefore, a more general closed-form design of the maximally
flat FIR fractional delay filters is described in this paper and
some design examples of FIR fractional delay filters will be
illustrated.

L INTRODUCTION

Application and design of digital fractional delay (FD)
filters have been widely studied in the open literature [1].
Standard techniques such as windowing method, equiripple,
or maximally flat approximation can be applied to designing
FD filters [1][2]. In [1], the authors provide a comprehensive
review about the FD filter performance of several design
techniques.

Maximally flat (MF) design of FD filters attracts many
investigations because of its close relation to the theory of
interpolation [1][4][5][6]. Several results on the closed-form
coefficients are derived [1] [3][6] [8]. These closed-form
expressions are explicitly solved from linear equations
derived from the MF conditions. It is interesting that the
coefficients can be also derived from power series expansion
of suitable basic functions [6][7].

In this article, we propose several types of finite impulse
response (FIR) filters for approximating FD systems. The
impulse response of each type of filters are solved by MF
approximation and expressed in closed form. Properties of
each type of filters are investigated and lead to some
conclusion on its performance.

II.  FORMULATION

The N th order FIR filter with its impulse response
{h,|n=0,1,.., N}can be expressed by
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N
H(z)=hy+hz "+ +h,z" ZZhnz’" D
n=0
whose frequency response is represented as

H(e™)=h, +he” +---+h,e ™ = ﬁ:hne”“" -2
n=0
The fractional delay filter with desired delay D has the
ideal frequency response of
H,,(e)=e"". 3
We can writeDasD = K +dorD = K +1/2 + d and obtain the
fractional partd of the desired delay where K is an integer
and0< d <1. Based on the separation of integer part and
fractional part, the desired frequency response can be written
as
Ho (™) =™ = e
or
szzaz(ejm) =g IPP — g KHDe | e
Accordingly, we will use
H ()= @
as the desired frequency response in this article.

III.  DESIGN OoF MF FIR FD FILTERS

In this section, we propose 8 types of FIR filters to
implementing FD system based on the symmetry of the
desired frequency response in (4), and solve its coefficients
by MF approximation. The desired frequency response can
be written as #,(e’”) = cos(dw) - jsin(dw) where the real part
is an even function and the imaginary part is an odd function.
A natural way to implement functions with such symmetry
by digital filters is to express the even function as cosine
series and to express the odd function by sine series.
Let H(w) be the target frequency response. Formally, the

cosine series and the sine series are expressed
as cos((Pi +a)w) and sin((Pi +b)ew) where P e{l, 2} and
abe {0, 0_5} in the case of P=1, a,be {O, l} in the case
of P =2 . Therefore, we obtain 8 ways to represent [{ (@)as
an approximation of the desired frequency response. In this
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article, we will focus on the derivation of the same number associated transfer functions are listed in Table 1. Moreover,
of coefficients on the approximation of real part and  the impulse responses for the case A/ = 5are depicted in this
imaginary part. The 8 proposed frequency responses and  table to illustrate their behavior of symmetry.

TABLE L THE PROPOSED FREQUENCY RESPONSES AND THE ASSOCIATED CAUSAL TRANSFER FUNCTIONS
" Frequency Response and the associated causal der It Frequency Response and the associated causal d
ype transfer function Praer| ype transfer function Sraer
M1 M1 [ [
Hyw)= 3 a" cos2iw)- j Zb}” sin[(2f + Deo] Hy(w)= 3 a* cos[(2i+ D] - j 3 6™ sin[(2i + Do)
=0 =0 =0 =0
(1) (0 ( ) _ p(4)
Hy(z) = 772 Z( O 2 2y- bOTZ+GO Hy@) =z 2M+1|: D ( b 240
5" Sl Z( o = o -(2;+1))} . (alm) +o Z—(21+1)):|
B P 2 v = 2 402
Ifel| |, : " 4M-2 o
0.1 | 0.6
08 N 04 Nonsymmetric impulse
1 01 l 0.2 response interleaved
\ I 0 5 5 with zeros
[ 5 10 5 : 5 10 15 l l
Interleaved even-symmetric . ) o 5 G 15
and odd-symmetric impulse Magnified version
Tesponse

-1 M1
He(w)= Y a cosGio) - j 365 sinl(i +1/ 2]
A =0 =0
Mixture sums of full-sample and half-sample delay

M-1 M
H,(0) = Zai(l) cos(2iw) — ijI(Z) sin(2iw)

=0 =l @ i) systems, not realizable
2 bM LA = & 57 5 21 %
Hy(z)=z Z ) Hg(w)= Zal@ cos(iw) — iji@ sinio)
L =0 =1
-1 2 @ [ 6
@ bur ( ) M1 6) _ 6
+a62)+2(7‘ L Wl - ZM} He(z)=zM . +Z & =23 N+ {6
i=1 2 2
1 " M 6) i) 5O
i N 01 M + Z(¥z")+%z’M
0.05) VI 1= 2 2 2M
o ! .
04 * 1 1
02 005 0.8
. 1., 01 o6 .
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Nonsymmetric impulse . . ' I i
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Wlﬂ'[ ST 1] & 4 6 g 10
RSPe S
i . 7 ” Hi(w)= Y a;” cos[(i + 1/ D] - j 361" sinlie)
- . k P -0 =1
Hy(w)= FZO & oosl(2i+ o] - JEQ sin(Zie) . Mixture Isums of full-sample aII1d half-sample delay
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= i =: N L N
H3(z)=z ZO( 2 € + 7 g Hg(w) = Za(g) cos[(i + 1/ Dew] - Zb(g) sin[(i +1/2)g
i=
i=0 i=0
M-1 _(3) 3 ’M 1 (8) ) M-1 8 | p®)

N 4 1220 (HIT Sy %z—(mz)) " Ho(z)= M ;0 2y ; (%Zﬂ)}
08 VI | ! 2M
” Interleaved 08 NeriETiaEHE

evern-symmetric 08 . lym
o and odd-symmetric B impulse response
1 impulse response 0 I
1y L4 - ']
- T I T
ll l L 2 4+ [ [ 10
e 5 10 15 20

We make a simple discussion before designing filters systems. One contributes the real part and another
having the frequency responses in Table 1. All the 8 types of  contributes the imaginary part. Type I filter is equivalent to
frequency responses are the sums of two linear-phase the FIR FD filter proposed in section IV of [6]. Frequency
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responses of type-V and VII are sums of a full-sample and a
half-sample delay systems where the complete design of
filters with this mixture is not realizable in practice. The
transfer function of type-VIII is just another expression of
the general transfer function in (1) for ¥ = 207 —1. However,
the transfer function of type-VI is not identical to the general
transfer function in (1) for ¥ =2A7 . A simple observation
about the fact is that the last impulse response of z7 is
negative to the constant term in # (z) . But the impulse
response of the general transfer function does not be limited
by this constraint. However, the filters of type VI and VIII
are exactly equivalent to the filters proposed in [9].

In the following, we will derive the coefficients of the
filters listed in Table 1.
Let {4(d)|i=0,1,..M -1} , {B(d)|i=0,1,...M -1} and
{C.(d)]i=12, ..,M} be the solutions of the following 3 set
of linear equations:

M-1

YA =d” p=0.1..M-1, ©)]
M-1 =
Y B(d)2i+1)* =d”; p=0,L..M-1 ©)
i=0 .

YO (d)2i)* =d*; p=0,1,...,M~1: %

respectivelyl. 1We will show that all the coefficients of the 8
types of filters can be expressed by these common
factors A,(d) . B,(d) and C,(d). We first solve the above 3
sets of linear equations by Cramer’s rule. The closed-form
solutions are
M -1 2 2 2 2 2 2
P V.l o L A 3 I
[(M -DIF x2

_ 2D - 0%y - 2% [d” - (2M - 2)°]

A(d
D = P I M 1 =DM 130y x 22 > O
i=1,2,..,M-1,
By = GFDED (D) =3)Ad =@M D] g
[d® =21+ 17| x (M — 1= D) x (M +1)!x2
i=0,1,...,M-1
.2 M-1 2 2 2 2 2 2
€ (y = SECD A = 2 = 4o d” M) ]’ )

[d? = Qi) x(M =) x (M +7) x 22M
i=12,.., M
To find the coefficients of 77 (w), we set the MF condition

atw =0 and obtain a set of linear equations consisting of
2M equations

dQ Q
T H(o) =——H,(e" (12)
il b I
for 0=0,1,..,2A7 -1 . These conditions can be further
simplified to two sets of linear equations with

unknowns {a® |i=0,1,..,M -1} and {$® |i=0,1,...M -1} .
These two subsets of equations are

M-1
Y a2 =d% 0=0.2...2M -2

=0

13

and

M-1
YpPQi+)? =d% Q=13..2M-1- (14

Comparing (1:3) and (14) with (5) and (6), we obtain a
closed-form solution of ¢ = 4 (d)andp® = dB, (d) /(2i +1) .
Base on the similar derivation, we can obtain the coefficients

of all the 8 types of filters. These solutions are listed in Table
2.

IV.  DESIGN EXAMPLES

In this section, we will study the performance of the
proposed filters by 6 design examples. Figs. 1~6 show the
magnitude responses and group delays of the proposed filters
of type-I, IL, IIL, IV, VI, and VIII, respectively. For each
filter, the desired delay d =0.25andAs =2,3,4,5. The filter

orders can be calculated according to Table 1. For example,
the orders of type-I filters shown in Fig. 1 are
N =4M -2=6,10,14,18 . The group delays are normalized

by the filter orders. Specifically, the normalized group
delay G(w) shown in figures is calculated from the original
group delay g(w) by G(w) = g(w)-N/2 . The type-I filter
exhibits a very flat magnitude response over the whole
frequency band. In fact, this filter is equivalent to the FIR FD
filter proposed in Section IV of [6] since the power series of
sine function’ p (- jsinw)" can be converted to the type I

frequency response in Table 1. Fig 2 shows the magnitude
response and group delay of type II filters. The magnitude
responses drop from unity at @ =z/2 . The magnitude
responses of type III filters shown in Fig. 3 fall to zero
atw = z/2because H (z/2) = 0for any order and delay. The

magnitude responses of type IV filters in Fig. 4 also drop
atw = z/2. The frequency responses of filters of type L II,
111, and IV are symmetry aboutw =7z /2.

The magnitude responses and group delays of type VI
and VIII are shown in Figs. 5 and 6 respectively. Type VI
and VIII filters are exactly equivalent to the filters proposed
in [9], which are not symmetric about w =z /2 and hence
have better frequency responses over the frequency band
of[0,7/2]than the type III and IV. Note that the group delay

around @ = 0 of type VIII is actually -0.25 rather than 0.25 as
specified. This is resulted from that we have shifted the
impulse response half samples backward to implement the
sum of two half-sample delay systems in /¢ (z).

V. CONCLUSIONS

In this article, 8 types of FIR filters are proposed for
designing FD systems. By the MF approximation, we solve
the coefficients in closed form. Two types of filters are
mixed by a full-sample and half-sample systems. It is not
realizable in practice to design the filter with such mixture.
The other 6 types of filters are given in examples and their
magnitude responses and group delays are shown in figures.
We find that type IV approximates the desired frequency
response except the magnitude response drop from unity in
the mid-band, making these filters are not suitable for
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filtering within the mid-band range. Type I, II, III, VI, and
VIII, on the other hand, approximate the desired magnitude
and group delay frequency responses well within the low-
band range. Our method obtains fractional delay closed form
solution. Therefore it will have better flexibility and less

design complexity than the conventional least-mean-square
(LMS) methods.
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Figure 1. (a) Magnitude responses, (b) magnified magnitude response,

and (¢) normalized group delays of type-I filters with order

4M -2,d=0.25.
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Figure 2. (a) Magnitude responses, (b) magnified magnitude response,
and (¢) normalized group delays of type-II filters with order 4Af ,d = 0.25.
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Figure 3. (a) Magnitude responses and (b) normalized group delays of
type-III filters with order 44/, d =0.25.
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Figure 4. (a) Magnitude responses and (b) normalized group delays of
type-1V filters with order 40/ — 2.4 =0.25.
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Figure 5. (a) Magnitude responses and (b) normalized group delays of

type-VI filters with order 20/ ,d = 0.25.
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Figure 6.  (a) Magnitude responses and (b) normalized group delays of
type-VIII filters with order 20/ —1,d =0.25.
TABLE IL CLOSED-FORM SOLUTIONS OF THE PROPOSED MF FIR FD
FILTERS
Type Coefficients Type Coefficients
al = 4,(d), a” = 4,2d),
I[6 vV
[6] b® = dB ()2 +1) »®) = 24B (2d) /(21 + 1)
al(l) — AI (d): VI 611(6) = AI (2d),
N 2) (6
b = dC,(d) /(2) [9] |5 =dc,2d)/i
a? = B,(@), a” = B(2d),
1T ; VII (7)
8% = dC () (20 b7 = dc(2d) /i
a® = B(a), v | a® = B,(2d),
v 4 ®
b =g (yici+1) | 9] |8® = 248, (2d)/(2i+1)
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