
Fundamenta Informaticae 73 (2006) 133–152 133

IOS Press

On the Computational Power of 1-Deterministic and Sequential
P Systems

�

Oscar H. Ibarra
�

, Sara Woodworth

Department of Computer Science, University of California

Santa Barbara, CA 93106, USA

ibarra@cs.ucsb.edu; swood@cs.ucsb.edu

Hsu-Chun Yen
�

Department of Electrical Engineering, National Taiwan University

Taipei, Taiwan 106, R.O.C.

yen@cc.ee.ntu.edu.tw

Zhe Dang
�

School of Electrical Engineering and Computer Science

Washington State University

Pullman, WA 99164, USA

zdang@eecs.wsu.edu

Abstract. The original definition of P systems calls for rules to be applied in a maximally parallel
fashion. However, in some cases a sequential model may be a more reasonable assumption. Here
we study the computational power of different variants of sequential P systems. Initially we look
at cooperative systems operating on symbol objects and without prioritized rules, but which allow
membrane dissolution and bounded creation rules. We show that they are equivalent to vector addi-
tion systems and, hence, nonuniversal. When these systems are used as language acceptors, they are
equivalent to communicating P systems which, in turn, are equivalent to partially blind multicounter
machines. In contrast, if such cooperative systems are allowed to create an unbounded number of

�
A preliminary version of this paper was presented at the11th International Computing and Combinatorics Conference.�
Research supported in part by NSF Grants CCR-0208595, CCF-0430945, and CCF-0524136.�
Address for correspondence: Department of Computer Science, University of California, Santa Barbara, CA 93106, USA�
Research supported in part by NSC Grant 93-2213-E-002-003,Taiwan.�
Research supported in part by NSF Grant CCF-0430531.



134 O. H. Ibarra et al. / 1-Deterministic and Sequential P Systems

new membranes (i.e., with unbounded membrane creation rules) during the course of the compu-
tation, then they become universal. We then consider systems with prioritized rules operating on
symbol objects. We show two types of results: there are sequential P systems that are universal and
sequential P systems that are nonuniversal. In particular,both communicating and cooperative P sys-
tems are universal, even if restricted to 1-deterministic systems with one membrane. However, the
reachability problem for multi-membrane catalytic P systems with prioritized rules is NP-complete
and, hence, these systems are nonuniversal.

Keywords: Sequential P system, 1-deterministic P system, communicating P system, catalytic
system, vector addition system, partially blind counter machine.

1. Introduction

Initiated five years ago by Gheorghe Paun [16] as a branch of molecular computing,membrane computing
identifies an unconventional computing model, namely a P system, from natural phenomena of cell
evolutions and chemical reactions. A P system abstracts from the way the living cells process chemical
compounds in their compartmental structure. Thus, regionsdefined by a membrane structure contain
objects that evolve according to given rules. The objects can be described by symbols or by strings
of symbols, in such a way that multisets of objects are placedin regions of the membrane structure.
The membranes themselves are organized as a Venn diagram or atree structure where one membrane
may contain other membranes. By using the rules in a nondeterministic, maximally parallel manner,
transitions between the system configurations can be obtained. A sequence of transitions shows how
the system is evolving. Various ways of controlling the transfer of objects from a region to another and
applying the rules, as well as possibilities to dissolve, divide or create membranes have been studied.

Membrane computing has been quite successful: many models have been introduced, most of them
Turing complete and/or able to solve computationally intractable problems (NP-complete, PSPACE-
complete) in a feasible time (polynomial), by trading spacefor time. (See the P system website at���� �����������	
���
	������ 	�� for a large collection of papers in the area, and in particular the
monograph [17].) Due to the built-in nature of maximal parallelism inherent in the model, P systems have
a great potential for implementing massively concurrent systems in an efficient way that would allow us
to solve currently intractable problems (in much the same way as the promise of quantum and DNA
computing) once future bio-technology (or silicon-technology) gives way to a practical bio-realization
(or chip-realization). In fact, the Institute for Scientific Information (ISI) has recently selected membrane
computing as a fast “Emerging Research Front” in Computer Science (

���� ��������
����	�
��
erf/october2003.html).

In the standard definition of a P system, the computation is carried out in a maximally parallel and
nondeterministic manner [16, 17]. However, an interestingclass of P systems with symport/antiport rules
was studied in [3] where each system isdeterministicin the sense that the computation path of the system
is unique; i.e., at each step of the computation, the maximalmultiset of rules that is applicable is unique.
It was shown in [3] that any recursively enumerable unary language� � �� can be accepted by a de-
terministic 1-membrane symport/antiport system. Thus, for symport/antiport systems, the deterministic
and nondeterministic versions are equivalent.

The construction of the deterministic system in [3] is such that the size of the maximal multiset
of rules that is applicable at every step of the computation is either 1 or 2. We refer to this system



O. H. Ibarra et al. / 1-Deterministic and Sequential P Systems 135

as�-deterministic. In general, a�-deterministic system is one in which the maximal multiset of rules
applicable at each step is at most�. An interesting case is when� � �, i.e., the system is 1-deterministic.

A concept, which is more general than 1-determinism, is thatof sequential mode of computation
in P systems; i.e., at every step, only one nondeterministically chosen rule instance is applied. Clearly,
when a P system is 1-deterministic, then the system (which, by definition, is still maximally parallel) can
be treated as a sequential system. So if a class of systems is nonuniversal under the sequential mode,
then any 1-deterministic such system in the class is also nonuniversal. Sequential P systems (also called
asynchronous P systems) have been studied in various placesin the literature (see, e.g., [5, 1, 2, 10]).
Here, we present results that complement these earlier results. In particular, we show the following:

1. Any sequential P system with cooperative rules (i.e., rules of the form� � �, where��� are
strings of symbols) with rules for membrane creation and membrane dissolution can be simu-
lated by a vector addition system (VAS), provided the rules are not prioritized and the number of
membranes that can be created during the computation is bounded by some fixed positive integer.
Hence the reachability problem (deciding if a configurationis reachable from the start configu-
ration) is decidable. It follows that 1-deterministic suchsystems have a decidable reachability
problem. Interestingly and somewhat surprisingly, if suchcooperative systems are allowed to cre-
ate an unbounded number of new membranes during the course ofthe computation, then they
become universal.

2. A sequential communicating P system language acceptor (CPA) is equivalent to a partially blind
multicounter machine (PBCM) [6]. Several interesting corollaries follow from this equivalence;
for example:

(a) The emptiness problem for CPAs is decidable.

(b) The class of CPA languages is a proper subclass of the recursive languages.

(c) The language�	
�
 � 
 � ��� cannot be accepted by a CPA.

(d) For every�, there is an� � � and a language that can be accepted by a quasirealtime CPA
with � membranes that cannot be accepted by a quasirealtime CPA with � membranes. (In a
CPA, we do not assume that the CPA imports an input symbol fromthe environment at every
step. Quasirealtime means that the CPA has to import an inputsymbol from the environment
with delay of no more than� time steps for some nonnegative integer� independent of the
computation.)

(e) A quasirealtime CPA is strictly weaker than a linear timeCPA. (Here, linear time means that
the CPA accepts an input of length



within �
 time for some constant�.)

(f) The class of quasirealtime CPA languages is not closed under Kleene + and complementation.

We note that the relationship between PBCMs and sequential symport/antiport P systems (similar
to communication P systems) has been studied recently in [5], but only for systems with symbol
objects and not as language acceptors. Thus, the results in [5] deal only with tuples of nonnegative
integers defined by P systems and counter machines. For example, it was shown in [5] that a set of
tuples of nonnegative integers that is definable by a partially blind counter machine can be defined
by a sequential symport/antiport system with two membranes. Our new results above cannot be
derived from the results in [5].



136 O. H. Ibarra et al. / 1-Deterministic and Sequential P Systems

3. The results for CPA above generalize to cooperative system acceptors with membrane dissolution
and bounded creation rules. Hence, the latter are also equivalent to PBCMs.

4. Any recursively enumerable unary language can be accepted by a 1-deterministic 1-membrane
CPA with prioritized rules.

5. The reachability problem for sequential catalytic systems with prioritized rules (hence, for 1-
deterministic such machines as well) is NP-complete. It follows from this result that a 1-deter-
ministic catalytic system with prioritized rules can only accept recursive languages.

Note that from items 4 and 5 above, when the rules are prioritized, there are 1-deterministic systems
that are universal and 1-deterministic systems that are notuniversal. In contrast, from item 1, without
prioritized rules, 1-deterministic systems are not universal.

2. P Systems Without Prioritized Rules Operating in Sequential Mode

In this section, we consider the general definition of a P system as given originally by G. Paun in [16, 17],
but with unprioritized rules. However, we allow rules for membrane dissolution and membrane creation.
We look at systems that operate in sequential mode, i.e., exactly one rule instance is applied at each step
(unless the system halts).

Before proceeding further, we need the definition of a vectoraddition system. An



-dimensional
vector addition system(VAS) is a pair� � �����, where� � �


is called thestart point (or start
vector) and� is a finite set of vectors in�
, where� is the set of all integers (positive, negative, zero).
The reachability setof the VAS ����� is the set�	�
 � �� �

for some�, � � � 
 �� 
 � � � 
 �� �
where, for all� � � � �, each�� � � and� 
 �� 
 � � � 
 �� � ��

. The halting reachability set
��	�
 � �� � � � �	�
�� 
 � �� �

for every� in � �
. An



-dimensionalvector addition system

with states(VASS) is a VAS ����� together with a finite set� of transitions of the form� � 	���
,
where� and� are states and� is in � . The meaning is that such a transition can be applied at point� in state� and yields the point� 
 � in state�, provided that� 
 � � �

. The VASS is specified
by � � ������ ����, where�� is the starting state. It is known that



-dimensional VASS can be

effectively simulated by	

�
-dimensional VAS [7]. Thereachability problemfor a VAS (VASS)� is
to determine, given a vector�, whether� is in �	�
. Similarly, one can define the reachability problem
for halting configurations. It is known that the reachability problem for VASS (and hence also for VAS)
is decidable [12]. It is also known that VAS, VASS, and Petri net are all equivalent.

First, we study P systems with membrane dissolution but without rules for membrane creation.
Clearly, for sequential computations, it is sufficient to only have cooperative rules of the form� � � or
of the form� � � � �, where� and� are strings of objects (symbols) where each symbol

�
in � has a

designation or target, i.e., it is written
��, where� can be !�!, ��", or �
� . The designation !�!means

that the object
�

remains in the membrane containing it (we usually omit this target, when it is under-
stood). The designation��" means that the object is transported to the membrane directly enclosing the
membrane that contains the object. The designation�
� means that the object is moved into a membrane,
labelled�, that is directly enclosed by the membrane that contains theobject. The� attached to the rule
means that after the application of the rule, the membrane and the rules it contains are dissolved and



O. H. Ibarra et al. / 1-Deterministic and Sequential P Systems 137

the objects in the membrane become part of the membrane that enclosed the dissolved membrane. We
will show that these types of P systems can essentially be simulated by a VASS. Hence the reachability
problem is decidable.

Theorem 2.1. A sequential P system with unprioritized cooperative rules(possibly with membrane dis-
solution rules) can be simulated by a VASS. Hence its reachability problem is decidable.

Proof:
Let � be a system with cooperative rules which operates in sequential mode (one rule is nondetermin-
istically chosen and applied per step). Let� be the set of objects in� , with


 � ���. The rules of�
can have the form	�	� � � �	� � ���� � � � �� or 	�	� � � �	� � ���� � � � �� � �, where� is the membrane
dissolution indicator. We can label the membranes in� from �� � � � ��, where� is the skin membrane.
Also, without loss of generality, label the membranes containing dissolution rules from�� � � � � � (where
obviously� ��, since the skin membrane cannot be dissolved). Label the (distinct) rules in the system
from ��� � � � ��� (note the rule number uniquely defines the membrane each ruleis associated with).

We construct a VASS� to simulate� . �has dimension�

such that for� � � �� and� � � � 


,
position�� corresponds to the multiplicity of object	� in membrane�. The start vector of� is given by
the initial configuration of� . In what follows, we let	 � ����� � � � � ��. The states in� are defined as
follows:


 �� �	�: denoting the starting state of the system. In this state allmembranes are intact.


 �� �	
� (for every � � � � � and	
 � 	): denoting the fact that rule�� has been selected to be
applied.


 ���� �	
� (for every� � � � the number of objects in rule�� and	
 � 	): denoting that rule�� is
currently being applied to the system. At state���� , the�th object in the rule is being processed.


 � �	
� (for every	
 � 	): denoting that the computation has halted.

Starting in state�� �	�, the transitions of VASS� are created as follows:


 Create the transitions�� �	� � 	�� �	�� 	�� � � � ��

 for all � � � � �. This selects the next rule to
apply by nondeterministically moving to state�� �	� without changing any component.


 Create the following transitions for each rule�� in �:

Case 1. �� (of the form	� � � �	� � �� � � � ��) is a nondissolving rule. For all	
 � 	:

1. Starting in state�� �	
�, � (using intermediate states���� �	
�) sequentially subtracts 1 from
the coordinates corresponding to symbols	�� � � � � 	� (in this order) in the membrane where
rule�� appears, and then sequentially adds 1 to the coordinates corresponding to

��� � � � � ��
(in this order) in the membranes targeted in the

��’s. (If there are not enough objects in the
current membrane to apply rule��, �will become negative and hence will not lead to a valid
computation.)

2. �nondeterministically moves to either� �	
� or��� �	
� for some�
 such that��� is a rule not
yet been dissolved. If� transitions to� �	
�, the computation is in a halting state; otherwise,
rule��� �	
� is applied.



138 O. H. Ibarra et al. / 1-Deterministic and Sequential P Systems

Case 2. �� (of the form	� � � �	� � �� � � � �� � �) is a dissolving rule. Let�� be in membrane�.
For all 	
 � 	:

1. Same as case 1 step 1. (Each	 is consumed and each
�

is created sequentially.)

2. To dissolve membrane�, each object in the membrane must be sent��" into the surrounding
membrane. This is done as follows. For each symbol	� � �, � subtracts 1 from the coordi-
nate corresponding to	� in membrane� and adds 1 to the coordinate corresponding to	� in
the membrane enclosing�. This process is iterated a number of times, where the numberof
times is chosen nondeterministically (i.e., when� guesses that	� has been exhausted from
membrane�). Then� does the same thing for each symbol in�. (The goal is to expel all
objects from membrane�. If done correctly, all positions in� should be 0. If the nondetermin-
istic choices of repeats made were wrong, the vector will become negative causing an invalid
computation. After we reach a final state, the symbol counts in all dissolved membranes must
be checked to guarantee all objects were expelled from the dissolved membranes.)

3. � nondeterministically moves to state� �	
 � ���� or ��� �	
 � ���� for some�
 such that���
is a rule which has not yet been dissolved. Again, if� transitions to� �	
�, the computation
is in a halting state; otherwise, rule��� �	
 � ���� is applied.

At this point, the system has halted in a state� �	
�. To determine if this state is indeed reachable,
we must verify that case 2 step 2 released all objects in the dissolved membranes. For notational conve-
nience, write� �	 � ������ �	 � ��� � ��
��, etc. by� �	 � ���� �	 � � � �
�, etc. respectively, where
���
 � 	. If � is a state, let�	�
 be the set of all vectors that reach state� from the initial vector starting
in state�� �	�. Now the reachability set of the P system corresponds to the following: The union over
all permutations	��� � � � � ��
 of 	�� � � � � �
 of the following:�	� �	�
 � 	�	� �	 � ���
 ���
�	 
 � � � � �
	�	� �	 ��� � � � �����
���
�	
���
��
, where��

 is the set of all�


-dimensional vectors with zeros
in positions corresponding to the symbols in membranes not in � .

Since it is decidable to determine, given an�

-dimensional vector, whether it is in the set above, we

have shown that any sequential P system with dissolving rules and no priority rules can be simulated by
a VASS. ��

Another type of P systems (calledactive P systems) introduced in [14] allows rules to create new
membranes during the computation. The objects of an active Psystem consist ofpassive objectswhich
do not create new membranes andactive objectswhich do create new membranes. A membrane creation
rule is written as� � �����. If a rule of this form is applied in membrane�, this rule consumes� from
�, creates a new membrane� within �, and creates the string��
�. Membrane creation changes how
the degree of a system is defined. In a P system without membrane creation, its degree is the number
of membranes in the initial configuration. A P system which allows membrane creation must take into
consideration the membranes that may be created. Hence, thedegree of a system of this type is an
ordered pair where the first component consists of the numberof membranes in the initial configuration
and the second component consists of the maximum number of membranes at any given time in the
system during computation. The concept of membrane creation in a P system has a biological basis. In
biology, reproduction is a fundamental function of most cells. Including this function in the definition
of a P system is a natural generalization of the model. If we allow membrane creation in our model
but bound the total number of membranes that can be created (independent of the computation), we can
extend our previous result to incorporate this new functionality. This gives us the following result.



O. H. Ibarra et al. / 1-Deterministic and Sequential P Systems 139

Theorem 2.2. A sequential P system with unprioritized rules and with bothmembrane dissolution and
creation rules, where the total number of membranes that canbe created during the computation is at
most " (for some positive integer"), can be simulated by a VASS. Hence its reachability problemis
decidable.

Proof:
The structure of this proof follows the structure of the proof of Theorem 2.1 with a few minor changes.
One change that needs to be made is the vector size we are working with. For P systems with membrane
creation we need to account for the maximum number of membranes that may be needed. For a P system
which uses a total of" membranes with



objects, we need a VASS� with dimension"
. The initial

vector will contain all zeros for each membrane which does not yet exist.
The set associated with each state will need to be changed to represent all membranes which are

currently alive. Let	 � ��� � � � ���
and	
 � ��� � � � ���� 
 �� � � � � "�. The states of this system are� �	
�, �� �	
�, and���� �	
� with � � � � � and� � � � the number of objects in rule��. The initial state

of the system is�� �	�. The transitions are the same as in the previous proof with one additional case:
Case 3. �� is of the form	� � � �	� � �� �� � � � ���� (�� is a creation rule). Let�� be in membrane�.

Then for all	
 � ���� � � � ���� 
 �� � � � � "� � ����:
1. Starting in state�� �	
�, � (using intermediate states���� �	
�) sequentially subtracts 1 from the co-

ordinates corresponding to symbols	�� � � � � 	� (in this order) in membrane�. Then� sequentially
adds 1 to the coordinates corresponding to

��� � � � � �� (in this order) in membrane�.
2. � nondeterministically moves to either� �	
 � ���� or ��� �	
 � ���� for some�
 such that��� is a

rule in in membrane�
 such that�
 � 	
 � ���.
The rest of the construction follows from the proof of Theorem 2.1. ��

The key reason why Theorem 2.2 works is the bound" of the total number of membranes created
during any computation. What if we remove this condition? That is, suppose the number of times
membrane creation rules are invoked during the computationis unbounded (i.e., it is a function of the
computation). In this case, the sequential P system in Theorem 2.2 becomes universal. More precisely,
we have the following.

Theorem 2.3. Sequential P systems with unprioritized rules and with bothmembrane dissolution and
creation rules can simulate two-counter machines (and hence are universal).

Proof:
Let � be a (nondeterministic) two-counter machine with nonnegative integer counters� and�. For this
proof, it is convenient to have each instruction in� to be in one of the following forms:


 � � � 

��
�
 �
 (on state�, increment counter� by one and move to state�
);

 � � � � ���
�
 �
 (on state�, decrement counter� by one and move to state�
. The machine

crashes when it attempts to decrement a counter with value 0);


 � � � � ����
�
 �
 (on state�, if counter� stores a positive value, move to state�
. If, however,
counter� is with value 0, the machine crashes);



140 O. H. Ibarra et al. / 1-Deterministic and Sequential P Systems


 � � � �� ����
�
 �
 (on state�, if counter� stores 0, move to state�
. If, however, counter� is
positive, the machine crashes),

where�� �
 are states (there are only finitely many states in�) and� is one of the two counters. Initially,
� starts with a designated initial state����� with both counters 0.� halts when it enters a designated
accepting state����� with both counters 1.

We now construct a P system� to simulate�. � operates in the sequential mode and uses two
membranes�� and�� which are directly inside the skin membrane. The membrane�� (resp. �� )
in � is to simulate the counter� (resp.�) in �. � uses symbols� and�, along with a number of other
“state symbols” (each state� in � is treated a symbol� in � ). In our construction, the multiplicities of
symbols� (resp.�) in membrane�� (resp.�� ) correspond to the counter value� (resp.�) in �.

We now describe how each instruction in� is simulated in� . We only describe instructions
�

concerning�; instructions for� can be handled similarly. We have following cases to consider:


 if the instruction
�

is � � � 
 
��
�
 �
, we add the following rule to membrane��: � � ��
	
�.
That is, a new copy of symbol� is added in membrane��, and symbol� is removed from the
membrane while a copy of symbol�
 is sent out into the skin membrane;


 if the instruction
�

is � � � ����
�
 �
, we add the following rule to membrane��: �� � �
	
�.
That is, the symbol� and a copy of symbol� are removed from the membrane while a copy of
symbol�
 is sent out into the skin membrane;


 if the instruction
�

is � � � � ����
�
 �
, we add the following rule to membrane��: �� � ��
	
�.
That is, the symbol� and a copy of symbol� are removed from the membrane, and then the copy
of � is added back (to ensure that� � �

in �) while a copy of symbol�
 is sent out into the skin
membrane;


 if the instruction
�

is � � � �� ����
�
 �
, we add the following rule to membrane��: � �
�
	
���	
� � �. That is, the symbol� is removed from the membrane, and then a copy of symbol�

and a copy of “membrane creation” symbol�� are sent out into the skin membrane. As a result
of this dissolving rule, the membrane�� disappears and all the objects� in the membrane are
now moved into the skin membrane. Notice that, according to the instruction, we expect that
the number of symbols� in the membrane�� before its dissolution be 0 – we will see how to
handle this “zero-test” in a moment. The membrane creation symbol �� is to create an empty��
membrane using the following rule in the skin membrane:�� � ���
�.

In the skin membrane, there are the following additional rules that move a state symbol object into��
(labelled with 2) or�� (labelled with 3): � � ��
� and� � ��
�, for each state� in �. Initially, �
starts with three membranes: in the skin membrane, it has onecopy of the symbol�����, and�� and��
are empty membranes. Notice that, during any sequential execution of� , there is exactly one copy of a
state symbol in all the three membranes.� ends when the following configuration is reached: membrane
�� contains exactly one� object, membrane�� contains exactly one� object, and the skin membrane
contains exactly one����� object. The latter condition ensures that there is no� and� object in the skin
membrane; i.e., all the zero-tests are handled correctly. Clearly,� has a halting computation iff� has.
The result follows. ��



O. H. Ibarra et al. / 1-Deterministic and Sequential P Systems 141

Notice that, in the proof of Theorem 2.3, objects can move in and move out a membrane (e.g., the
object of a state symbol). This move-in/out is essential in simulating the state transitions in a two-counter
machine. We do not currently know whether the P systems in thetheorem become nonuniversal when,
in addition to membrane creation and dissolution rules, we only allow local rules in the form of� � �
where the target of every object in� is  !�! (i.e., no move-in/out). This will be left as a topic for further
investigation.

3. P Systems and Partially Blind Multicounter Machines

In this section, we show that unprioritized cooperative P systems with dissolution rules and bounded
membrane creation rules used as language acceptors are equivalent to partially blind multicounter ma-
chines (PBCMs). First we show that the equivalence holds fora special class, called communicating P
system acceptors.

In a communicating P system CPS (with multiple membranes) [18], each rule is of one of the fol-
lowing forms: (1)	 � 	�, (2) 	� � 	���, and (3)	� � 	�����	��, where	� �� � are objects,���
(which indicate the directions of movements of	 and

�
) can be !�!, ��", or �
� (see Section 2 for their

meanings). The���! can only occur within the outermost region (i.e., skin membrane), which brings in
symbol� from the environment.

Here, we consider a variant of the CPS which is used as a language acceptor. Consider a CPS�
with input alphabet� � �	�� � � � � 	��. Let � be a new symbol not in�. We assume that only� and the
symbols in� occur abundantly in the environment. Let�� � � � ���. Thus, the CPS can import an
unbounded number of symbols in�� from the environment. We assume that no symbol in�� occurs in
the initial configuration. We can view the CPS� above as a language acceptor, which we call a CPA.�
accepts a string� � �� if it constitutes all the symbols over� imported from the environment during the
computation, in the order given in�, when the system halts. Thus,� is built up as follows. At the start
of the computation,� � �

(the null string). Symbols from� are appended to� as they are imported into
the skin membrane during the computation. The CPA need not import a symbol (from��) at every step.

Note that in the “maximal parallelism” operating mode, an unbounded number of symbols from�
can enter the skin membrane in one step since several rules oftype (3) in the definition of� may be
applicable to an unbounded number of	� pairs in the skin membrane. If the input symbols (i.e., from�)
that enter the membrane in the step are��� � � � ��� (note that� is not fixed), then��	 � � ���� is the string
appended to�, where��� � � � � �� is some nondeterministically chosen permutation of�� � � � � �. Actually,
it can be shown [8] that, in fact, we can assume without loss ofgenerality that� � � (i.e., at most one
symbol enters the membrane in each step). A string� � �� � � ��
 � �� is accepted if� has a halting
computation after importing symbols��� � � � ��
 from the environment. It follows from the result in [18]
that every recursively enumerable language can be acceptedby a CPA under the maximal parallelism
semantics, and vice-versa.

In the rest of the paper, CPAs are assumed to operate in sequential mode, unless otherwise noted. It
turns out that such a CPA is equivalent to a partially blind multicounter machine (PBCM), which is a one-
way nondeterministic finite automaton augmented with blindcounters [6]. At every step, each counter
can be incremented/decremented by 1 or not changed, but it cannot be tested for zero. When there is an
attempt to decrement a zero counter, the machine gets stuck and the computation is aborted. The machine
does not have to read an input symbol at every step (i.e., it can have� moves). An input string� is



142 O. H. Ibarra et al. / 1-Deterministic and Sequential P Systems

accepted if, when the machine is started in a distinguished initial state with all counters zero, it processes
all the input symbols in� and eventually enters an accepting state with all the counters zero. Note that
if in a computation, a zero counter gets stuck (because of an attempt to decrement it), the computation
is aborted and the input is not accepted. It is well known thatif “testing for zero” is allowed (i.e., the
counters are not partially blind), such a machine can acceptevery recursively enumerable language, even
when there are only two counters [13]. However, PBCM’s are strictly weaker than TM’s – its emptiness
problem (Is the accepted language empty?) and, hence, also the membership problem are decidable.
This follows from the decidability of the reachability problem for VAS [12].

Clearly, we can assume that when a PBCM reads a new input symbol, it does not change the value
of any counter. However, it can change the state in the transition. So the counters can only be updated
during a non-reading step. We may also assume that at most onecounter can be updated at each step.

Finally, we may assume that instead of “reading ” an input from the one-way input tape, the PBCM
has an input terminal from which it can request an input symbol, e.g., an instruction like: From state
�, get ‘�’ and go to state�. This means the environment delivers input ‘�’ to the system. Formally, an
atomic move of a PBCM consists of one of the followinglabelled instructions (the labels are states):
(1) � � Get ‘�’ and go to (�� or . . . or ��); (2) � � Increment counter� by 1 and go to (�� or . . . or��); (3) � � Decrement counter� by 1 and go to (�� or . . . or ��). Note that (�� or . . . or��) allows a
nondeterministic choice for the next state. Also note that amove of the machine without reading an input
and without updating a counter but changing only its state can be simulated by an instruction of type 2
followed by an instruction of type 3. We assume that the machine has a unique halting accepting state.

Theorem 3.1. Language� is accepted by a CPA if and only if it can be accepted by a PBCM.

Proof:
Suppose that� is accepted by a CPA�with � membranes. We construct a PBCM� from �accepting
�. � has finitely many counters. For each object	 � �� and membrane� of �, we associate a counter������. Thus,� will have�	���
 �
 counters. These counters are used to keep track of the multiplicity
of each symbol in each membrane.

Since no symbol in�� appears in the initial configuration, all counters are initially zero. The symbols
that appear in the initial configuration and their distributions are recorded in the finite-state control of�.
Every step of the simulation starts with� nondeterministically selecting a rule� in some membrane.
Suppose� is a read-rule. There are two cases. If� imports a symbol� in � from the environment,�
gets symbol� from its input terminal. If� imports�, � does not execute a get instruction. Instead, it
increments the counter

��
�����
� (i.e., the counter associated with the symbol� in the skin membrane)

by 1.
Simulation of a rule� of the form	 � 	� or 	� � 	��� is easy, since it only involves decrementing

some counters (corresponding to	 or 	 and
�
) by 1 and incrementing the target counters by 1.

At some point during the simulation (chosen nondeterministically), � guesses that� has reached a
halting configuration.� verifies for each membrane� that no rule is applicable.� constructs a set��
for each membrane�. The purpose of�� is to gather all symbols that are no longer in membrane�. First
� puts all symbols in the initial configuration that are no longer in membrane� to �� (this is easily done
since there are only a finite number of such symbols, and� has kept track of their distribution during
the computation).� then proceeds as follows. It looks at each rule of the form	 � 	� in membrane�,
and stores	 in �� if it is not already there (thus� is “guessing” that this rule is not applicable). Next,�



O. H. Ibarra et al. / 1-Deterministic and Sequential P Systems 143

looks at each rule of the form	� � 	��� or 	� � 	�����	��. Clearly, this rule is not applicable if either
there is no	 or no

�
in membrane�. If 	 or

�
is already in��, � looks at another rule. Otherwise,�

nondeterministically chooses one of these, say	, and puts it in��, and then proceeds to look at another
rule. When� has processed all the rules in membrane�, it examines��. Let ��� � � � ��� be the symbols
in �� but not in��. For each��, � decrements the counter in membrane� corresponding to�� (by 1)
nondeterministically many times (including zero time), after which it guesses that there is no more��,
and puts�� in ��. The process above is done for all membranes. At this point,� enters an accepting
state. It is easily verified that� accepts� (= language accepted by�).

The converse (i.e., constructing a CPA to simulate a PBCM) follows directly from the construction
in [18]. Due to space limitations, the details are omitted here. ��

In what follows, we let CPA(



) (resp., CPA(linear)) denote the class of languages accepted by CPA
in quasirealtime (resp., linear time), and PBCM(



) (resp., PBCM(linear)) denote the class of languages

accepted by PBCM in quasirealtime (resp., linear time). We also write COUNTER(



) to denote�� ��
is accepted by a multicounter machine in quasirealtime

�
.

It is obvious from the construction described in Theorem 3.1(see [18]) that a quasirealtime (linear
time) PBCM can be simulated by a quasirealtime (linear time)CPA. However, the simulation of a quasi-
realtime (linear time) CPA by a PBCM� described in Theorem 3.1 does not quite yield a quasirealtime
(linear time) PBCM. This is because after� guesses that�has halted, the symbols��� � � � ��� which are
not in�� must have their counters decremented to zero. Clearly, the values in the counters (the multiplic-
ities of the��’s) are unbounded. However, we can modify the construction of � so that at the beginning
of the simulation,� nondeterministically guesses the symbols��� � � � ���. If these symbols are known
from the beginning, the computation can decrease the counter for each�� sporadically throughout the
computation and hence spread the decreasing steps throughout the whole computation. During the sim-
ulation,� nondeterministically chooses the times to decrement the counter corresponding to�� (in fact,
it can choose to decrement it directly after incrementing it). If � decrements each�� too little, then
at the end the counter will not be zero and hence will not accept. If � decrements each�� too much,
the counter will become negative at some point during the computation. When the computation halts,
if the the instances (nondeterministically chosen) the counters are decremented are correct, the counters
corresponding to each�� will be zero and no extra processing will be done at this point. This allows�
to run in quasireal time. We omit the details.

The following theorem follows from similar results for PBCM[6].

Theorem 3.2. 1. CPA has a decidable emptiness problem.

2. CPA is a proper subset of the family of recursive languages.

3. CPA does not contain the language� � 	�	
�
 � 
 � ��
� and is not closed under Kleene +.

4. CPA(



) is not closed under Kleene +.

5. CPA(



) is not closed under complementation.

6. CPA(



) is a proper subset of COUNTER(



).

7. CPA(



) is a proper subset of CPA(linear).



144 O. H. Ibarra et al. / 1-Deterministic and Sequential P Systems

8. CPA(linear) – COUNTER(



) is not empty.

Lemma 3.1. (from [6]) For every�, there is a language that can be accepted accepted by a quasirealtime
PBCM with 	� 
 �
 counters but not by any quasirealtime PBCM with� counters.

We can now show the following result.

Theorem 3.3. For every�, there is an� � � and a language� that can be accepted by a quasirealtime
CPA with �membranes but not by any quasirealtime CPA with� membranes.

Proof:
Without loss of generality consider only languages over a binary alphabet�. Then

��� � � ������� � �.
Suppose there is an� such that any language language accepted by a quasirealtimeCPA can be accepted
by a quasirealtime CPA with� membranes.

Let � � ��. From Lemma 3.1, there is a language� that can be accepted by a quasirealtime
PBCM with � 
 � counters but not with� counters. By Theorem 3.3, this language can be accepted
by a quasirealtime CPA. Then, by hypothesis,� can also be accepted by a quasirealtime CPA with�
membranes. From the construction in the first part of the proof of Theorem 3.1, we can construct from
this CPA, a quasirealtime PBCM with at most�� counters. Hence,� can be accepted by a quasirealtime
PBCM with � counters, a contradiction. ��

A cooperative P system acceptor with dissolution rules and bounded membrane creation rules can
be defined in the usual manner (as in a CPA). Clearly, a CPA is a special case of a cooperative P system
acceptor. Hence, a PBCM can be simulated by a cooperative system. For the converse, the constructions
in Theorems 2.1, 2.2, and 3.1 can be implemented on a PBCM. Hence, Theorems 3.1, 3.2, and 3.3 hold
when CPA is replaced by PBCM. We have:

Corollary 3.1. The following are equivalent: CPA, PBCM, cooperative P system acceptors with disso-
lution and bounded membrane creation rules.

In Theorem 3.1, the model of the CPA� has a sequence of input symbols coming in from the
environment, and this sequence constitutes the (one-way) input to the PBCM. Now suppose we modify
the way the input is given to�. As before, let� � �	�� � � � � 	�� and�� � � � ���, where� is a
distinguished symbol. At the start of the computation,� is given a multiset�	�	� � � �	��� in its input
membrane, where� is some fixed multiset from an alphabet� disjoint from��, and each�� � �� � �
� � �. The environment only contains an abundance of�. Initially, there are no symbols from� ��
in the environment, and only symbols from this set that are exported to the environment (during the
computation) can be imported from the environment. Thus, the multiplicity of each symbol in� �� in
the system (including the environment) remains the same during the computation. We say that	�	� � � �	���
is accepted if�, when given�	�	� � � �	��� in its input membrane, halts. We denote the language accepted
by �	�
. We call the new model NCPA. Like CPAs, the language acceptedby an NCPA can also be
accepted by a PBCM. Hence, the following holds.

Theorem 3.4. We can effectively construct, given an NCPA�, a PBCM� accepting�	�
. Hence, the
emptiness problem for NCPAs is decidable.



O. H. Ibarra et al. / 1-Deterministic and Sequential P Systems 145

Proof:
(Idea) The operation of� when given input	�	� � � �	��� is similar to the construction in the first part of
the proof of Theorem 3.1. We just show how� makes sure that the during the simulation, the total
number of	� (which initially is ��) in the system is always the same during computation, for� � � � �.

Initially, the PBCM� reads	�	� � � �	��� and stores�� in counter�� (for � � � � �). For each
�, we also use another counter�� (initially zero) to represent the number of	� ’s in the environment.
Whenever an	� is exported into the environment, we increment�� by 1. When an	� is imported into
the skin membrane from the environment, we decrement�� by 1. Note that we do not have to worry
about checking the multiplicities of the	� ’s in the skin membrane and in the other membranes. ��

4. 1-Deterministic P Systems with Prioritized Rules

Now let us look at P systems which allow rules to be prioritized, meaning that a rule of lower priority can
only be used when rules of higher priority are no longer applicable. Previously we showed that sequential
cooperative P systems without priority rules are equivalent to VASS and hence nonuniversal. Allowing
priority rules increases the power of these systems causingthem to be universal. In fact, even cooperative
P systems with the restriction of 1-determinism with only one membrane are already universal. We have
the following result.

Theorem 4.1. A prioritized 1-deterministic 1-membrane cooperative system (COS) with rules of the
form � � �, where

��� � �, and
�� � � 1 or 2, can simulate a 2-counter machine (hence, it is universal).

Proof:
Let � be a (deterministic) 2-counter machine. We first construct anormalized 2-counter machine� 

that simulates�. The construction follows the idea in [13]. Suppose the two counters of� have values
���. These values can be represented in one counter of� 
 by the number


 � ���� . To increment��� by
one, the number



is multiplied by 2, 3, respectively.� 
 uses a second counter, which is initially zero,

for this purpose. The second counter is incremented by 2, 3, respectively for every decrement of 1 in
the first counter. When the first counter becomes zero, the second counter has value�
��
 respectively.
Similarly, decrementing��� by one corresponds to incrementing the second counter by onefor every
decrement of 2, 3, in the first counter (i.e.,



is divided by 2, 3, respectively), after checking that



is

divisible by 2,3, respectively.
The state of� is stored in the finite control of� 
. To determine the next move,� 
 has to determine

which, if any, of��� are zero. By passing



from one counter to the other, the finite control of� 
 can
determine if



is divisible by 2, 3, respectively. We modify the above construction slightly by adding the

factor� to



. Thus,

 � �����. The purpose of the factor is so that



is always positive.

Using the above description of how� 
 operates, we see that the counters behave in a regular pat-
tern. � 
 operates in phases in the following way. Let

�
and� be its counters.� ’s operation can be

divided into phases����� ��� � � � � � where each�� starts with one of the counters equal to some posi-
tive integer�� and the other counter equal to zero. During the phase, the first counter is nonincreasing
and the other counter is nondecreasing. The phase ends with the first having value zero and the second
counter having a positive value (note that the positivenessis guaranteed by the factor�). This value is
equal to



(i.e., no change),�
, �
,


��, 
��, where



is the value of the first counter before the start
of the phase. Thus, a sequence of configurations corresponding to the phases above will be of the form:



146 O. H. Ibarra et al. / 1-Deterministic and Sequential P Systems

	�������
� 	�� �����
� 	�� ��� ��
� 	�� �����
� � � � , where the�� are states and�� � ���� ��� � � � � are posi-
tive integers. Note that the second component of the configuration refers to the value of counter

�
, while

the third component refers to the value of counter�. Moreover, the state determines which of the five
case (


��
��
�
���
��) applies.
We may assume that the state names of the 2-counter machine� 
 when it is operating in odd phases

����� � � � � are different from the state names when it is operating in even phases�� ��� � � � � . We use�’s
for states in the odd phases�’s for states in the even phases.

Clearly, an instruction of the 2-counter machine� 
 has one of the following forms:

1. �	������"��!�
	
 � 	�
 �����
 (i.e., in the odd phases).

2. �	� �
	�����"��!
 � 	� 
 �����
 (i.e., in the even phases).

3. �	���!�������"��!
 � 	� �����
 (i.e., switching from odd phase to even phase).

4. �	� �����"��!��!��
 � 	������
 (i.e., switching from even phase to odd phase).

where� (respectively,�) is the current state,positivemeans that the first (respectively, second) counter
is positive,na means that the value of the second (respectively, first) counter does not matter,�
 (re-
spectively,� 
) is the next state,��means decrementing the first (respectively, second) counter by 1, and
� � ��� �� ���� means incrementing the second (respectively, the first) counter by�. (Note that� � 0 or
1 when division by 2, 3, is being simulated.)

Let ����� � � � � be the states the counter machine uses in the odd phases and����� � � � � be the states it
uses in the even phases. As already stated, we assume that the��’s are different from the��’s. Assume
that �� is the state of the machine when the first counter has value�����
 � � and is about to begin
phase��. We construct a prioritized 1-deterministic 1-membrane cooperative P system with symbols	� ������� � � � � ������ � � � � to simulate the normalized counter machine. The symbols	 and

�
represent

the two counters. The initial configuration is����	���. (This means that the first counter has value 5 and
the second counter is zero.) The rules are defined according to the type of rules above.

1. For a transition of form 1, define the rule�	 � �
��.
2. For a transition of form 2, define the rule�� � � 
	�.
3. For a rule of form 3, define the rule�� � �	�.
4. For a rule of form 4, define the rule�	 � ���.

Rules of the form�	 � �
�� and�� � � 
	� are of higher priority than rules of the form�� � �	�
and�	 � ���. It is clear that the system described above simulates the computation of the two-counter
machine. Note that the rules above can be simplified, e.g., a rule of the form�	 � �
��� can be simulated
by the rules:�	 � ��
����� ��
���� � ��
����� ��
��� � ��
���� ��
�� � �
�, where ��
����� ��
���� ��
�� are
new symbols. ��

The above result applies to a 1-deterministic 1-membrane symport/antiport system (SAS) [11, 15].
This system has rules of the following forms:	����"�� � �

 which is an antiport rule, and	����"
 or
	�� �

 which is an symport rule, where��� are strings of symbols. Theradius of an antiport rule is
	�� �� �� �
. For a symport rule, the radius is

�� �.
Corollary 4.1. A prioritized 1-deterministic 1-membrane symport/antiport system (SAS) whose rules
are antiport of radius (2,1) or (2,2) can simulate a 2-counter machine.



O. H. Ibarra et al. / 1-Deterministic and Sequential P Systems 147

Looking at the class of communicating P systems, we find similar results. The class of 1-deterministic
1-membrane CPS with priority rules can also simulate a 2-counter machine using a technique similar to
the proof of Theorem 4.1.

Theorem 4.2. A prioritized 1-deterministic 1-membrane CPS can simulatea 2-counter machine.

Proof:
We need only show that the rules in the COS constructed above can be implemented in a 1-membrane
CPS with priority rules.

We construct a CPS� with priority rules which simulates a COS.� has one membrane (the skin
membrane) and a distinguished symbol

�
. Initially, � contains symbols

���	�. We describe how the
rules of� are constructed.

Note that in the COS constructed above, its rules are of the form �� � "�, where�� " are states,� is
a symbol (either	 or

�
), and� is (a unary string) of the form��� ��� ����, where� is a symbol (either	 or

�
). The rules of the CPS are defined by cases:

Case 1. If the rule is�� � ", then the following rules are in�:

�� � �� � �	
��	
�"�	��
Case 2. If the rule is�� � "�, then the following rules are in�:

�� � �� � �	
��	
� �"���	���� �� �"�� � ����� �"������ �"����	���� � �"�� �"��� � �"��	
� �"���������	���� �� �"��� ������ �"���	
�"�	��
Priority: �� ���

Case 3. If the rule is�� � "��, then the following rules are in�:

�� � �� � �	
��	
� �"����	���� �� �"��� ������ �"������� �"�����	���� � �"��� �"���� � �"���	
� �"����������	���� �� �"���� ������ �"�������� �"�����	���� � �"���� �"���� � �"����	
� �"����������	���� �� �"���� ������ �"����	
�"�	��
Priority: �� ��� ��� ���

Case 4. If the rule is�� � "���, then the following rules are in�:

�� � �� � �	
��	
� �"�����	���� �� �"���� ������ �"�������� �"������	���� � �"���� �"����� � �"����	
� �"�����������	���� �� �"����� � ����� �"��������� �"������	���� � �"����� �"����� � �"�����	
� �"�����������	��



148 O. H. Ibarra et al. / 1-Deterministic and Sequential P Systems

�� �� �"����� ������ �"��������� �"������	���� � �"������"����� � �"�����	
� �"�����������	���� �� �"����� ������ �"�����	
�"�	��
Priority: �� ��� ��� ��� ��� ���

Clearly these rules use a 1-membrane CPS with priority rulesto simulate a 2-counter machine. Hence
a 1-membrane CPS with priority rules is universal. ��

The above theorem is in contrast to a result in [10] that a sequential multi-membrane CPS whose
rules are not prioritized is equivalent to a VAS.

Finally, consider the model of a sequential multi-membraneCS where the rules are prioritized.
Specifically, there is a priority relation on the rules: A catalytic rule�
 of lower priority than� can-
not be applied if� is applicable. We refer to this system as prioritized CS. We know that the reachability
set of a sequential multi-membrane CS is semilinear and, hence, its reachability problem is NP-complete.
In [9], the status of the reachability problem for systems with prioritized rules was left open. Here we
show that the reachability problem is also NP-complete.

Taking advantage of the equivalence between sequential multi-membrane CS and communication-
free VAS1 [9], we first show the reachability problem for prioritized communication-free VAS (which
will be defined in detail below) to be NP-complete, which immediately yields the mentioned complexity
result for prioritized sequential multi-membrane CS.

Given a communication-free VAS� � �����, apriority relation � over� is an irreflexive, asym-
metric, and transitive relation such that�� takes precedence over�� if (��, ��) � �, meaning that��
cannot be applied if�� is applicable. Due to the nature of communication-freeness, we further assume
� to satisfy a property that if� and�
 subtract from the same coordinate, neither	���

 nor 	�
 ��
 is in
�; otherwise, one of the two could never be applied. Let�� denote�	���

�	���

 �� � and 	�
 ��
 �� �

�
.

In this paper,�� is assumed to be an equivalence relation. Given a vector� � �

, an addition vector�

can be applied at� under priority relation� if � 
 � � �
and no other�
 � � of higher priority has� 
 �
 � �

. Let � �� �
 (resp.,� ��� �
) denote the reachability of�
 from � through transition sequence
� under the unprioritized (resp., prioritized with priorityrelation�) semantics.

The following result plays a key role in our analysis.

Lemma 4.1. Given a communication-free VAS� � ����� and a priority relation�, if � �� �
 (� �
� �) and for every� applicable at�
, � is in the lowest priority class induced by��, then� ���� �
, for
some permutation�
 of �.

Proof:
Along � �� �
 , let �

 be the leftmost vector at which the priority requirement is violated. Let�� be
the addition vector applied at�

, and�� be one of the highest priority applicable at�

. We claim that
there exists a�
�, 	�� ��
�
 � �� and�
� is present in the segment from�

 to �
; otherwise,�� would still
be applicable at�
 (due to the communication-freeness nature of�) – violating the assumption of the

1A communication-free VAS is a VAS where in every transition,at most one component is negative, and if negative, its value
is ��.



O. H. Ibarra et al. / 1-Deterministic and Sequential P Systems 149

lemma. Since�
� and�� do not subtract from the same coordinate, applying�
� at �

 followed by ��
remains a valid computation. By repeatedly applying such a rearrangement to the remaining sequence, a
computation meeting the priority requirement can be constructed. ��

For related results concerning other types of prioritized concurrent models, the reader is referred
to, e.g., [20]. Based upon the above lemma and the fact that the binary reachability relation of commu-
nication-free VAS can be characterized by integer linear programming [4, 19], we have the following
result.

Theorem 4.3. The reachability problem for prioritized communication-free VAS is NP-complete.

Proof:
The lower bound follows immediately from the NP-hardness ofchecking reachability for the basic model
of communication-free VAS, as they are special cases of their prioritized counterparts (with an empty
priority relation).

First we recall the following result (referred to as ‘Fact A’in our subsequent discussion) from [4,
19], indicating that the binary reachability relation of communication-free VAS can be characterized by
integer linear programming:


 Given a communication-free VAS�� �����, there exists a system of linear inequalities�	���


of polynomial size such that�
 � �	�
 iff �	���

has an integer solution. Furthermore,�	���


remains linear even if� and�
 are replaced by variables.

Recall that�� is an equivalence relation, which partitions� into a number ofequivalence classes��� � � � ���, for some� (� � �� �
). Intuitively, each

�� � � � � � �� represents a set of vectors having
the same priority. For every� � �� and�
 � �� (� �� �), either 	���

 � � or 	�
 ��
 � � (but not both);
we write

�� � �� (resp.,
�� � ��) if 	���

 � � (resp.,	�
 ��
 � �). Without loss of generality, we

assume
��� � � � ��� to be enumerated in increasing priority. Given a� � � and a�, we let��	��	�
 � �

if � � �� (i.e., ��	��	�
 is the index of the equivalence class containing�).
To show the upper bound, suppose� ��� � is a computation reaching� in a prioritized communica-

tion-free VAS� � ����� with priority relation�. Listing in increasing priority, let the equivalence
classes induced by�� be

��� � � � ���, for some� 	� �� �
. We let ��� � � � ���, �
�� � � � ��
� be vectors and
��� � � � ��� be addition vectors along� satisfying the following: (We assume�
� � �, �
� � �, and
�� � ��� � � � �� � �.)

1. �� � � is the vector applied at�� in �, and�� ���� �
�, �� � � � �.
2. �� � � � �,

(a) ��	��	��
 � ��	��	��
 � � � � � ��	��	��
,
(b) �� applied in	�
�
� ��� �
, ��	��	�
 � ��, and�� applied in (�
� ��� �), ��	��	�
 � ��. (In

words,�� is the rightmost occurrence among the lowest priority transitions in �
�
� ��� �.)

The crux of our subsequent analysis lies in the fact that in�
�
� ��� �� � � � � � �, �� is of the lowest
priority in VAS �� with its set of addition vectors restricted to�� � � � 	�����������		 ��
 (The start



150 O. H. Ibarra et al. / 1-Deterministic and Sequential P Systems

vector of�� is not important here.) . By Lemma 4.1,�
�
� �� �� iff �
�
� ��� �� in �
. This, in conjunction
with Fact A, enables us to set up a system of linear inequalities to capture the reachability of� from �:

We begin by guessing the following:

1. transitions��� � � � ��� with ��	��	��
 � � � � � ��	��	��
,
2. �� � � � �, a set of coordinates�� such that� subtracts from some coordinate in��, for every�

with ��	��	�
 � ��	��	��
. (�� is the set of coordinates that are zero so that no vector of higher
priority than�� is applicable in��.

Then the system of linear inequalities is set up as follows:

(A0) �
� � �,

(A1) �� 	� 
 � ���� � ��,
(A2) �� � � � �, �	��
�
��������
— a system of linear inequalities guaranteed by Fact A,

(A3) �� 
 �� � �
and�
� � �� 
 ��,

(A4) �
� � �.

In the above inequalities,�
� �����
�� � � �����
� are vector variables representing the values of markings�, ��, �
�, � � � ��, �
�, respectively, mentioned in our earlier discussion. (A0) is trivial. What (A1) says is
that at��, no vectors with priorities higher than�� are applicable. By Fact A, (A2) is sufficient to imply�
�
� �� ��. Lemma 4.1, in conjunction with (A1) and (A2), further implies�
�
� ��� ��. (A3) and (A4)
are again trivial.

Based on our earlier discussion, it is then straightforwardthat the above system of linear inequalities
has an integer solution iff� � �� 	�
. Hence, the reachability problem is in NP. ��

We now have the following.

Corollary 4.2. The reachability problem for sequential multi-membrane catalytic systems with priori-
tized rules is NP-complete.

Proof:
(Sketch) As shown in [10], every sequential multi-membraneCS S can be simulated by a communication-
free VAS G, and vice-versa. Consider a priority relation formulti-membrane CS such that the prioritizing
is only between rules in the same membrane, and if�	 � � and �
	 � �
 are rules in the same
membrane, then neither the first rule takes precedence over the second rule nor the second rule takes
precedence over the first rule. Examining the proof of Theorem 4.3 shows that every sequential multi-
membrane CS S with prioritized rules can be simulated by a communication-free VAS G with prioritized
rules, and vice-versa. ��



O. H. Ibarra et al. / 1-Deterministic and Sequential P Systems 151

5. 1-Deterministic Language Acceptors with Prioritized Rules

It is known that any recursively enumerable unary language� � �� can be accepted by a (deterministic)
2-counter machine� with a one-way input tape which operates as follows:�, starting in its start state
with both counters zero, when given a string�
�, reads the input symbols left-to-right and halts if and
only if �
 � �. Note that� need not read a new input symbol at every step. We may assume that
after the right delimiter is read by the counter machine, it can continue with the computation (without
attempting to read another symbol on the tape). The input is accepted if� eventually halts. The input is
not accepted if the machine does not halt.

The 2-counter machine can be normalized, with each instruction taking one of the following forms:
(1) �	�� ������"��!�
	
 � 	�
 �����
; (2) �	�� 	�
	�
	
 � 	�
 ����
, where	 � � or

�
(meaning that�

is a reading state and the machine reads an input symbol and changes state without altering the counter
contents); (3)�	� � ��
	�����"��!
 � 	� 
 �����
; (4) �	� � 	�
	�
	
 � 	� 
 ����
, where	 � � or

�
; (5)

�	�� ���!�������"��!
 � 	� �����
; (6) �	� � ������"��!��!��
 � 	������
. See the proof of Theorem
4.1 in the appendix for more details. Note that the state can also be “tagged” whether they are in a
reading mode or nonreading mode. Transitions of the form 1, 3, 5, 6 are non-reading (indicated by� in
the second parameter) and are handled as before. Transitions 2 and 4 are reading and are translated to
cooperative rules�	 � �
 and�	 � � 
, respectively.

It follows that all the results in the previous section can bereformulated for P systems that are
acceptors when the 2-counter machine is an acceptor. For example, Theorem 4.2 can be written to read:

Corollary 5.1. Every recursively enumerable unary language� can be accepted by a deterministic 1-
membrane CPS with prioritized rules.

6. Conclusion

In this paper we investigated the computational power of different types of sequential and 1-deterministic
P systems. We showed that without prioritized rules, sequential P systems are equivalent to VAS, even
if they are allowed to have dissolution rules and bounded creation rules. We also showed that these
systems when used as language acceptors are equivalent to communicating P system acceptors which,
in turn, are equivalent to to partially blind counter machines. When the rules are prioritized, there are
two types of results: there are sequential P systems that areuniversal and sequential P systems that
are nonuniversal. In particular, both communicating and cooperative P systems are universal, even if
restricted to 1-deterministic systems with one membrane. However, catalytic P systems with prioritized
rules have NP-complete reachability problem and, hence, nonuniversal.

References

[1] E. Csuhaj-Varju, O.H. Ibarra, G. Vaszil: On the computational complexity of P automata.Proc DNA10,
Milano, 2004 (C. Ferretti, G. Mauri, C. Zandron, eds.), LNCS3384, Springer, Berlin, 2005, 76–89.

[2] Z. Dang, O.H. Ibarra: On P systems operating in sequential and limited parallel modes.Pre-Proceedings of
6th Workshop on Descriptional Complexity of Formal Systems, London, Ontario, 2004, 164–177.



152 O. H. Ibarra et al. / 1-Deterministic and Sequential P Systems

[3] R. Freund, Gh. Păun: On deterministic P systems, See P Systems Web Page at
���� �����������	
���
	������ 	��, 2003.

[4] L. Fribourg, H. Olsen: Proving safety properties of infinite state systems by compilation into Presburger
Arithmetic.CONCUR’97, LNCS 1243, Springer, Berlin, 1997, 213–227.

[5] P. Frisco: About P systems with symport/antiport.Second Brainstorming Week on Membrane Computing,
Sevilla, Spain, 2004, 224–236.

[6] S.A. Greibach: Remarks on blind and partially blind one-way multicounter machines.Theoretical Computer
Science, 7, 3 (1978), 311–324.

[7] J. Hopcroft, J.-J. Pansiot: On the reachability problemfor 5-dimensional vector addition systems.Theoretical
Computer Science, 8, 2 (1979), 135–159.

[8] O.H. Ibarra: On the computational complexity of membrane systems.Theoretical Computer Science, 320, 1
(2004), 89–109.

[9] O.H. Ibarra, Z. Dang, O. Egecioglu: Catalytic P systems,semilinear sets, and vector addition systems.Theo-
retical Computer Science, 11, 1 (2004), 167–181.

[10] O.H. Ibarra, H. Yen, Z. Dang: On the power of maximal parallelism in P systems.Developments in Language
Theory 2004, LNCS 3340, Springer, Berlin, 2004, 212–224.

[11] C. Martin-Vide, A. Păun, Gh. Păun: On the power of P systems with symport rules.Journal of Universal
Computer Science, 8, 2 (2002), 317–331.

[12] E. Mayr: An algorithm for the general Petri net reachability problem.SIAM J. Computing, 13 (1984), 441–
460.

[13] M. Minsky: Recursive unsolvability of Post’s problem of Tag and other topics in the theory of Turing ma-
chines.Ann. of Math., 74 (1961), 437–455.

[14] M. Mutyam, K. Kriithivasan: P systems with active objects: Universality and efficiency.Proceedings of
the Third International Conference on Machines, Computations, and Universality, Chişinău, Moldova, May
23–27 2001, 276 – 287.

[15] A. Păun, Gh. Păun: The power of communication: P systems with symport/antiport.New Generation Com-
puting, 20, 3 (2002), 295–306.

[16] Gh. Păun: Computing with membranes.Journal of Computer and System Sciences, 61, 1 (2000), 108–143.

[17] Gh. Păun:Membrane Computing: An Introduction. Springer, Berlin, 2002.

[18] P. Sosik: P systems versus register machines: two universality proofs.Pre-Proceedings of Workshop on
Membrane Computing (WMC-CdeA2002), Curtea de Argeş, Romania, 2002.

[19] H. Yen: On reachability equivalence for BPP-nets,Theoretical Computer Science, 179 (1997), 301–317.

[20] H. Yen: Priority conflict-free Petri nets.Acta Informatica, 35, 8 (1998), 673–688.


