Fundamenta Informaticae 73 (2006) 133152 133
10S Press

On the Computational Power of 1-Deter ministic and Sequential
P Systems*

Oscar H. Ibarraf, Sara Woodworth

Department of Computer Science, University of California
Santa Barbara, CA 93106, USA

ibarra@cs.ucsb.edu; swood@cs.ucsb.edu

Hsu-Chun Yen!

Department of Electrical Engineering, National Taiwan Werisity
Taipei, Taiwan 106, R.O.C.

yen@cc.ee.ntu.edu.tw

Zhe Dang?

School of Electrical Engineering and Computer Science
Washington State University

Pullman, WA 99164, USA

zdang@eecs.wsu.edu

Abstract. The original definition of P systems calls for rules to be #&tpin a maximally parallel
fashion. However, in some cases a sequential model may beareesonable assumption. Here
we study the computational power of different variants afusmntial P systems. Initially we look
at cooperative systems operating on symbol objects andutitbrioritized rules, but which allow
membrane dissolution and bounded creation rules. We sheivttiby are equivalent to vector addi-
tion systems and, hence, nonuniversal. When these systermased as language acceptors, they are
equivalent to communicating P systems which, in turn, atevedent to partially blind multicounter
machines. In contrast, if such cooperative systems are/@fldo create an unbounded number of

*A preliminary version of this paper was presented atlthih International Computing and Combinatorics Conferenc
fResearch supported in part by NSF Grants CCR-0208595, @86985, and CCF-0524136.

tAddress for correspondence: Department of Computer Seiéhuversity of California, Santa Barbara, CA 93106, USA
tResearch supported in part by NSC Grant 93-2213-E-002T0&an.

$Research supported in part by NSF Grant CCF-0430531.

134 O. H. Ibarra et al./ 1-Deterministic and Sequential P System

new membranes (i.e., with unbounded membrane creatios)rdiging the course of the compu-
tation, then they become universal. We then consider systeith prioritized rules operating on
symbol objects. We show two types of results: there are sagl® systems that are universal and
sequential P systems that are nonuniversal. In partidadéin,communicating and cooperative P sys-
tems are universal, even if restricted to 1-deterministgtesms with one membrane. However, the
reachability problem for multi-membrane catalytic P systewith prioritized rules is NP-complete
and, hence, these systems are nonuniversal.

Keywords: Sequential P system, 1-deterministic P system, commumic& system, catalytic
system, vector addition system, partially blind countechiae.

1. Introduction

Initiated five years ago by Gheorghe Paun [16] as a branch lefaular computinggnembrane computing
identifies an unconventional computing model, namely a Resysfrom natural phenomena of cell
evolutions and chemical reactions. A P system abstraats fine way the living cells process chemical
compounds in their compartmental structure. Thus, regimimed by a membrane structure contain
objects that evolve according to given rules. The objects i described by symbols or by strings
of symbols, in such a way that multisets of objects are plane#gions of the membrane structure.
The membranes themselves are organized as a Venn diagrarneer structure where one membrane
may contain other membranes. By using the rules in a nonditistic, maximally parallel manner,
transitions between the system configurations can be @uataiA sequence of transitions shows how
the system is evolving. Various ways of controlling the $fain of objects from a region to another and
applying the rules, as well as possibilities to dissolveiddi or create membranes have been studied.

Membrane computing has been quite successful: many moaetsheen introduced, most of them
Turing complete and/or able to solve computationally ictetle problems (NP-complete, PSPACE-
complete) in a feasible time (polynomial), by trading spfmetime. (See the P system website at
http://psystems.disco.unimib. it for a large collection of papers in the area, and in particihia
monograph [17].) Due to the built-in nature of maximal plem inherent in the model, P systems have
a great potential for implementing massively concurrestays in an efficient way that would allow us
to solve currently intractable problems (in much the samg asthe promise of quantum and DNA
computing) once future bio-technology (or silicon-teclogy) gives way to a practical bio-realization
(or chip-realization). In fact, the Institute for Scientifnformation (ISI) has recently selected membrane
computing as a fast “Emerging Research Front” in Computéer8e pttp://esi-topics.com/
erf/october2003.htr

In the standard definition of a P system, the computationrisechout in a maximally parallel and
nondeterministic manner [16, 17]. However, an interestiags of P systems with symport/antiport rules
was studied in [3] where each systendéterministidn the sense that the computation path of the system
is unique; i.e., at each step of the computation, the maxmatiset of rules that is applicable is unique.
It was shown in [3] that any recursively enumerable unarglmgel C o* can be accepted by a de-
terministic 1-membrane symport/antiport system. Thuss§onport/antiport systems, the deterministic
and nondeterministic versions are equivalent.

The construction of the deterministic system in [3] is suaht tthe size of the maximal multiset
of rules that is applicable at every step of the computatiorither 1 or 2. We refer to this system

O. H. Ibarra et al./ 1-Deterministic and Sequential P System 135

as2-deterministic. In general, A-deterministic system is one in which the maximal multisetutes
applicable at each step is at méstAn interesting case is whén= 1, i.e., the system is 1-deterministic.

A concept, which is more general than 1-determinism, is tiatequential mode of computation

in P systems; i.e., at every step, only one nondetermialtichosen rule instance is applied. Clearly,
when a P system is 1-deterministic, then the system (whictefinition, is still maximally parallel) can
be treated as a sequential system. So if a class of systermsusikersal under the sequential mode,
then any 1-deterministic such system in the class is alsameersal. Sequential P systems (also called
asynchronous P systems) have been studied in various plates literature (see, e.g., [5, 1, 2, 10]).
Here, we present results that complement these earlidtgeBuparticular, we show the following:

1. Any sequential P system with cooperative rules (i.eesuf the formu — v, whereu, v are

strings of symbols) with rules for membrane creation and brame dissolution can be simu-

lated by a vector addition system (VAS), provided the rulesret prioritized and the number of

membranes that can be created during the computation islbduyy some fixed positive integer.

Hence the reachability problem (deciding if a configuratismeachable from the start configu-

ration) is decidable. It follows that 1-deterministic susystems have a decidable reachability
problem. Interestingly and somewhat surprisingly, if suobperative systems are allowed to cre-
ate an unbounded number of new membranes during the coutbe cbmputation, then they

become universal.

. A seguential communicating P system language accepfA)({S equivalent to a partially blind
multicounter machine (PBCM) [6]. Several interesting dlartes follow from this equivalence;
for example:

(&) The emptiness problem for CPAs is decidable.
(b) The class of CPA languages is a proper subclass of thesieelanguages.
(c) The languagéa™b™ | n > 1}* cannot be accepted by a CPA.

(d) For everyr, there is ars > r and a language that can be accepted by a quasirealtime CPA
with s membranes that cannot be accepted by a quasirealtime CRA wiembranes. (In a
CPA, we do not assume that the CPA imports an input symbol thenenvironment at every
step. Quasirealtime means that the CPA has to import an aymibol from the environment
with delay of no more thai time steps for some nonnegative integandependent of the
computation.)

(e) A guasirealtime CPA is strictly weaker than a linear ti@fA. (Here, linear time means that
the CPA accepts an input of lengthwithin ¢n time for some constant)

(f) The class of quasirealtime CPA languages is not closdédleene + and complementation.

We note that the relationship between PBCMs and sequentigbart/antiport P systems (similar
to communication P systems) has been studied recently ,ii{Blonly for systems with symbol
objects and not as language acceptors. Thus, the resulisdadl only with tuples of nonnegative
integers defined by P systems and counter machines. For &xdtwpas shown in [5] that a set of
tuples of nonnegative integers that is definable by a plrtidihd counter machine can be defined
by a sequential symport/antiport system with two membra@s new results above cannot be
derived from the results in [5].

136 O. H. Ibarra et al./ 1-Deterministic and Sequential P System

3. The results for CPA above generalize to cooperative syatxeptors with membrane dissolution
and bounded creation rules. Hence, the latter are alsoaqnitio PBCMs.

4. Any recursively enumerable unary language can be aatdptea 1-deterministic 1-membrane
CPA with prioritized rules.

5. The reachability problem for sequential catalytic systewith prioritized rules (hence, for 1-
deterministic such machines as well) is NP-complete. lbvad from this result that a 1-deter-
ministic catalytic system with prioritized rules can onlycapt recursive languages.

Note that from items 4 and 5 above, when the rules are pdediithere are 1-deterministic systems
that are universal and 1-deterministic systems that areimgéersal. In contrast, from item 1, without
prioritized rules, 1-deterministic systems are not ursgér

2. P SystemsWithout Prioritized Rules Operating in Sequential Mode

In this section, we consider the general definition of a Pesgsts given originally by G. Paunin [16, 17],
but with unprioritized rules. However, we allow rules for migrane dissolution and membrane creation.
We look at systems that operate in sequential mode, i.ectlgxane rule instance is applied at each step
(unless the system halts).

Before proceeding further, we need the definition of a veatiition system. Am-dimensional
vector addition systerfVAS) is a pairG = (z, W), wherez € N" is called thestart point(or start
vecto) andW is a finite set of vectors iZ", whereZ is the set of all integers (positive, negative, zero).
The reachability setof the VAS (z, W) is the setR(G) = {z | for somej, z = z + v1 + -+ + vj,
where, for alll < i < j, eachv; € W andz + v; + --- + v; > 0}. The halting reachability set
R,L(G) = {z]| 2z € R(G),z +v # 0 for everyv in W}. An n-dimensionalvector addition system
with states(VASS) is a VAS(z, W) together with a finite seT’ of transitions of the formp — (¢, v),
wherep andq are states and is in W. The meaning is that such a transition can be applied at point
y in statep and vyields the poiny + v in stateq, provided thaty + v > 0. The VASS is specified
by G = (z,W,T,py), wherep, is the starting state. It is known thatdimensional VASS can be
effectively simulated byn + 3)-dimensional VAS [7]. Theeachability problenfor a VAS (VASS)G is
to determine, given a vectgr, whethery is in R(G). Similarly, one can define the reachability problem
for halting configurations. It is known that the reachabpifitroblem for VASS (and hence also for VAS)
is decidable [12]. It is also known that VAS, VASS, and Pe#t are all equivalent.

First, we study P systems with membrane dissolution butowitirules for membrane creation.
Clearly, for sequential computations, it is sufficient tdyomave cooperative rules of the form— v or
of the formu — v; 4, whereu andv are strings of objects (symbols) where each synébialv has a
designation or target, i.e., it is writtén, wherex can behere, out, orin;. The designatiohere means
that the objecb remains in the membrane containing it (we usually omit thiget, when it is under-
stood). The designatiosu:t means that the object is transported to the membrane gimtlosing the
membrane that contains the object. The designatigmeans that the object is moved into a membrane,
labelledy, that is directly enclosed by the membrane that containsifect. Thej attached to the rule
means that after the application of the rule, the membradetta rules it contains are dissolved and

O. H. Ibarra et al./ 1-Deterministic and Sequential P System 137

the objects in the membrane become part of the membranentiased the dissolved membrane. We
will show that these types of P systems can essentially belaied by a VASS. Hence the reachability
problem is decidable.

Theorem 2.1. A sequential P system with unprioritized cooperative rpssibly with membrane dis-
solution rules) can be simulated by a VASS. Hence its realitygtiroblem is decidable.

Proof:
Let P be a system with cooperative rules which operates in seigli@mbde (one rule is nondetermin-
istically chosen and applied per step). Bebe the set of objects i, with n = |X|. The rules ofP
can have the formajas ...a, — biba...bg Orajas...ap — biba...by; 0, whered is the membrane
dissolution indicator. We can label the membrane®ifiom 1,...,m, wherem is the skin membrane.
Also, without loss of generality, label the membranes doirig dissolution rules from, ..., s (where
obviouslys < m, since the skin membrane cannot be dissolved). Label thér(ch) rules in the system
from Ry, ..., Ry (note the rule number uniquely defines the membrane eaclsragsociated with).
We construct a VAS& to simulateP. G has dimensiomin such that fod <i <mandl < 5 < n,
position:;j corresponds to the multiplicity of objeat in membrane. The start vector ofr is given by
the initial configuration ofP. In what follows, we letS = {1,2,...,s}. The states it7 are defined as
follows:

e Ry[S]: denoting the starting state of the system. In this statmathbranes are intact.

e R;[S'] (for everyl < i < k andS’ C S): denoting the fact that rul&; has been selected to be
applied.

e R;;[S"] (for everyl < j < the number of objects in rulB; andS’ C S): denoting that rule?; is
currently being applied to the system. At stalg;, the jth object in the rule is being processed.

e F[S'] (for everyS’ C S): denoting that the computation has halted.
Starting in stateR[.S], the transitions of VAS$/ are created as follows:

e Create the transitionBy[S] — (R;[S], (0,...,0)) forall 1 < < k. This selects the next rule to
apply by nondeterministically moving to stal&[.S] without changing any component.

e Create the following transitions for each rukg in G:
Casel. R; (of the forma; ... a, — by ...b,) is a nondissolving rule. For aff’ C S:

1. Starting in state?;[S’], G (using intermediate statd®; ;[.S']) sequentially subtracts 1 from
the coordinates corresponding to symbals. . . , a, (in this order) in the membrane where
rule R; appears, and then sequentially adds 1 to the coordinatessponding tdy, . .., b,

(in this order) in the membranes targeted in &is. (If there are not enough objects in the
current membrane to apply rul&, G will become negative and hence will not lead to a valid
computation.)

2. G nondeterministically moves to eithél{S’] or R;;[S'] for somei’ such thatR; is a rule not
yet been dissolved. I transitions taF'[S’], the computation is in a halting state; otherwise,
rule R;[S] is applied.

138 O. H. Ibarra et al./ 1-Deterministic and Sequential P System

Case 2. R; (of the forma; ...a, — by...by;0) is a dissolving rule. LeRR; be in membrane.
Forall S’ C S:

1. Same as case 1 step 1. (Eadk consumed and eadhs created sequentially.)

2. To dissolve membrane each object in the membrane must be semtinto the surrounding
membrane. This is done as follows. For each symabat », G subtracts 1 from the coordi-
nate corresponding t@ in membrane: and adds 1 to the coordinate corresponding;tm
the membrane enclosing This process is iterated a number of times, where the nuofber
times is chosen nondeterministically (i.e., wh@&muesses that; has been exhausted from
membrane). ThenG does the same thing for each symbol-in(The goal is to expel all
objects from membrane If done correctly, all positions inshould be 0. If the nondetermin-
istic choices of repeats made were wrong, the vector wilblrexznegative causing an invalid
computation. After we reach a final state, the symbol coum#di dissolved membranes must
be checked to guarantee all objects were expelled from #s@lied membranes.)

3. G nondeterministically moves to staf§S’ — {r}] or R[S’ — {r}] for somei’ such thatR;
is a rule which has not yet been dissolved. Agairt ifransitions toF[S’], the computation
is in a halting state; otherwise, rule/[S’ — {r}] is applied.

At this point, the system has halted in a st&5’]. To determine if this state is indeed reachable,
we must verify that case 2 step 2 released all objects in #sohlied membranes. For notational conve-
nience, writeF'[S — {r}], F[S — {r} — {r'}], etc. byF[S — r], F[S — r — r'], etc. respectively, where
r,r’ € S. If ais a state, leR(«) be the set of all vectors that reach statieom the initial vector starting
in stateRy[S]. Now the reachability set of the P system corresponds todt@nfing: The union over
all permutationgr,...,r,) of (1,...,s) of the following: R(F'[S]) U (R(F[S —r]) "N ™)U--- U
(R(F[S =711 —---=1s]) NN .), whereN7™" is the set of alinn-dimensional vectors with zeros
in positions corresponding to the symbols in membranesibt i

Since it is decidable to determine, giveman-dimensional vector, whether it is in the set above, we
have shown that any sequential P system with dissolving rarel no priority rules can be simulated by
a VASS. 0

Another type of P systems (callegttive P systemsntroduced in [14] allows rules to create new
membranes during the computation. The objects of an actyestém consist gbassive objecta/hich
do not create new membranes autive objectsvhich do create new membranes. A membrane creation
rule is written asu — [;v];. If a rule of this form is applied in membrane this rule consumes from
r, creates a new membramevithin r, and creates the string,,,. Membrane creation changes how
the degree of a system is defined. In a P system without memloraation, its degree is the number
of membranes in the initial configuration. A P system whidbvesé membrane creation must take into
consideration the membranes that may be created. Henceéggiee of a system of this type is an
ordered pair where the first component consists of the nufimembranes in the initial configuration
and the second component consists of the maximum number mibra@es at any given time in the
system during computation. The concept of membrane creatia P system has a biological basis. In
biology, reproduction is a fundamental function of mostselncluding this function in the definition
of a P system is a natural generalization of the model. If u@vaimembrane creation in our model
but bound the total number of membranes that can be creaidep@ndent of the computation), we can
extend our previous result to incorporate this new funetiioy This gives us the following result.

O. H. Ibarra et al./ 1-Deterministic and Sequential P System 139

Theorem 2.2. A sequential P system with unprioritized rules and with bmimbrane dissolution and
creation rules, where the total number of membranes thabeasreated during the computation is at
mostt (for some positive integet), can be simulated by a VASS. Hence its reachability probilem
decidable.

Proof:

The structure of this proof follows the structure of the grobTheorem 2.1 with a few minor changes.
One change that needs to be made is the vector size we areg/avikh. For P systems with membrane
creation we need to account for the maximum number of merebrdrat may be needed. For a P system
which uses a total of membranes witm objects, we need a VASS with dimensionin. The initial
vector will contain all zeros for each membrane which dods/abexist.

The set associated with each state will need to be changezptesent all membranes which are
currently alive. LetS = {1,...,m} andS’ C {1,...,m,m + 1,...,t}. The states of this system are
F[S'], R;[S"], andR; ;[S'] with 1 < i < k andi < j < the number of objects in rulg;. The initial state
of the system is?([S]. The transitions are the same as in the previous proof wighaalditional case:

Case 3. R; is of the forma; ...a, — [;b1...b,]; (R; is a creation rule). LeR; be in membrane.
ThenforallS’ C {{1,....m,m+1,...,t} —{j}}:

1. Starting in staté?;[S’], G (using intermediate staté® ;[S']) sequentially subtracts 1 from the co-
ordinates corresponding to symbals . .., a, (in this order) in membrane. ThenG sequentially
adds 1 to the coordinates correspondingito. . , b, (in this order) in membrang.

2. G nondeterministically moves to eithél{S’ U {;j}] or R[S’ U {;j}] for somei’ such thatR; is a
rule in in membrane’ such that’ € S’ U {j}.

The rest of the construction follows from the proof of Theor2.1. O

The key reason why Theorem 2.2 works is the boumd the total number of membranes created
during any computation. What if we remove this condition?affts, suppose the number of times
membrane creation rules are invoked during the computddiombounded (i.e., it is a function of the
computation). In this case, the sequential P system in Eme@.2 becomes universal. More precisely,
we have the following.

Theorem 2.3. Sequential P systems with unprioritized rules and with bo#fmbrane dissolution and
creation rules can simulate two-counter machines (andeharecuniversal).

Proof:
Let M be a (nondeterministic) two-counter machine with nonrnegamteger counters andy. For this
proof, it is convenient to have each instructioniihto be in one of the following forms:

e s:c+ +,goto s’ (on states, increment counter by one and move to staté);

e s : c— —, goto s’ (on states, decrement counter by one and move to staté. The machine
crashes when it attempts to decrement a counter with vajue 0)

e s:c> 07 goto s’ (on states, if counterc stores a positive value, move to state If, however,
counterc is with value 0, the machine crashes);

140 O. H. Ibarra et al./ 1-Deterministic and Sequential P System

e s:c == 07 goto s’ (on states, if counterc stores 0, move to staté. If, however, countet is
positive, the machine crashes),

wheres, s’ are states (there are only finitely many stateadfinandc is one of the two counters. Initially,
M starts with a designated initial statg;; with both counters OM halts when it enters a designated
accepting statey,,; with both counters 1.
We now construct a P systef to simulateM. P operates in the sequential mode and uses two
membranesn, andm, which are directly inside the skin membrane. The membraperesp. m,,)
in P is to simulate the counter (resp.y) in M. P uses symbols andy, along with a number of other
“state symbols” (each statein M is treated a symbdl in P). In our construction, the multiplicities of
symbolsz (resp.y) in membranem, (resp.m,) correspond to the counter valugresp.y) in M.
We now describe how each instruction Ad is simulated inP. We only describe instructions
concerninge; instructions fory can be handled similarly. We have following cases to comside
e if the instruction! is s : z + +, goto s’, we add the following rule to membrame,: s — zs/,,.
That is, a new copy of symbal is added in membranm,, and symbols is removed from the
membrane while a copy of symbglis sent out into the skin membrane;
e if the instruction/ is s : x — —, goto s’, we add the following rule to membrama,: sz — s ;.
That is, the symbok and a copy of symbat are removed from the membrane while a copy of
symbols’ is sent out into the skin membrane;

e iftheinstructionl iss : z > 07, goto ', we add the following rule to membrame,: sx — zs/,,.

That is, the symbao$ and a copy of symbat are removed from the membrane, and then the copy
of z is added back (to ensure that> 0 in M) while a copy of symbok’ is sent out into the skin

membrane;
e if the instruction/ is s : z == 07, goto s’, we add the following rule to membrana,: s —
st C% ;0. That is, the symba$ is removed from the membrane, and then a copy of syrsbol

and a copy of “membrane creation” syml@g¥ are sent out into the skin membrane. As a result
of this dissolving rule, the membrana, disappears and all the objectsn the membrane are
now moved into the skin membrane. Notice that, accordinghéoinstruction, we expect that
the number of symbols in the membranen, before its dissolution be 0 — we will see how to
handle this “zero-test” in a moment. The membrane creagiarbsl C* is to create an emptsn,
membrane using the following rule in the skin membra@é:— [A]ny, .

In the skin membrane, there are the following additionaésuhat move a state symbol object imig.
(labelled with 2) orm,, (labelled with 3):s — s;,, ands — s;y,, for each state in M. Initially, P
starts with three membranes: in the skin membrane, it hasameof the symbok;,;;, andm, andm,

are empty membranes. Notice that, during any sequentialire of P, there is exactly one copy of a
state symbol in all the three membran&sends when the following configuration is reached: membrane
m, contains exactly one object, membranen, contains exactly ong object, and the skin membrane
contains exactly ongg,,; object. The latter condition ensures that there ig:ramdy object in the skin
membrane; i.e., all the zero-tests are handled correctbarty, M has a halting computation i has.
The result follows. O

O. H. Ibarra et al./ 1-Deterministic and Sequential P System 141

Notice that, in the proof of Theorem 2.3, objects can movenith move out a membrane (e.g., the
object of a state symbol). This move-in/out is essentiaintutating the state transitions in a two-counter
machine. We do not currently know whether the P systems iththerem become nonuniversal when,
in addition to membrane creation and dissolution rules, mhg allow local rulesin the form ofu — v
where the target of every objectinis here (i.e., no move-in/out). This will be left as a topic for fueth
investigation.

3. P Systemsand Partially Blind Multicounter Machines

In this section, we show that unprioritized cooperative Bteaps with dissolution rules and bounded
membrane creation rules used as language acceptors avalequio partially blind multicounter ma-
chines (PBCMs). First we show that the equivalence holds fgpecial class, called communicating P
system acceptors.

In a communicating P system CPS (with multiple membraneB), gach rule is of one of the fol-
lowing forms: (1)a — az, (2) ab — azby, and (3)ab — azbyccome, Wherea, b, c are objectsz, y
(which indicate the directions of movementsacfindb) can behere, out, orin; (see Section 2 for their
meanings). Theome can only occur within the outermost region (i.e., skin meamie), which brings in
symbolc from the environment.

Here, we consider a variant of the CPS which is used as a lgagaeceptor. Consider a CRS
with input alphabel = {a4,...,ax}. Leta be a new symbol not i&. We assume that only and the
symbols in¥ occur abundantly in the environment. 8t = X U {«}. Thus, the CPS can import an
unbounded number of symbolsih, from the environment. We assume that no symbal jnoccurs in
the initial configuration. We can view the C5above as a language acceptor, which we call a @PA.
accepts a string € >* if it constitutes all the symbols ovét imported from the environment during the
computation, in the order given in when the system halts. Thusjs built up as follows. At the start
of the computationy =) (the null string). Symbols fronx are appended to as they are imported into
the skin membrane during the computation. The CPA need rdrina symbol (from,,) at every step.

Note that in the “maximal parallelism” operating mode, amarmmded number of symbols frob
can enter the skin membrane in one step since several rulgpe{3) in the definition of7 may be
applicable to an unbounded numbeméfpairs in the skin membrane. If the input symbols (i.e., fiajn
that enter the membrane in the stepaye. . . , o, (note thatk is not fixed), therv;, ... 0;, is the string
appended ta, whereiq, .. ., i, is some nondeterministically chosen permutation,of . , k. Actually,
it can be shown [8] that, in fact, we can assume without logpeokrality that < 1 (i.e., at most one
symbol enters the membrane in each step). A string o1 ...0,, € X* is accepted if7 has a halting
computation after importing symbals, . .., o,, from the environment. It follows from the result in [18]
that every recursively enumerable language can be accbptadCPA under the maximal parallelism
semantics, and vice-versa.

In the rest of the paper, CPAs are assumed to operate in s&jueade, unless otherwise noted. It
turns out that such a CPA is equivalent to a partially blindtimaunter machine (PBCM), which is a one-
way nondeterministic finite automaton augmented with btindnters [6]. At every step, each counter
can be incremented/decremented by 1 or not changed, burribthe tested for zero. When there is an
attempt to decrement a zero counter, the machine gets stddk@ computation is aborted. The machine
does not have to read an input symbol at every step (i.e.nitheaee moves). An input stringw is

142 O. H. Ibarra et al./ 1-Deterministic and Sequential P System

accepted if, when the machine is started in a distinguishigidlistate with all counters zero, it processes
all the input symbols inv and eventually enters an accepting state with all the cosizro. Note that

if in a computation, a zero counter gets stuck (because oftampt to decrement it), the computation
is aborted and the input is not accepted. It is well known ihdesting for zero” is allowed (i.e., the
counters are not partially blind), such a machine can a@epy recursively enumerable language, even
when there are only two counters [13]. However, PBCM's arietst weaker than TM’s — its emptiness
problem (Is the accepted language empty?) and, hence,edsmembership problem are decidable.
This follows from the decidability of the reachability piein for VAS [12].

Clearly, we can assume that when a PBCM reads a new input $yintoes not change the value
of any counter. However, it can change the state in the tiansiSo the counters can only be updated
during a non-reading step. We may also assume that at mosbonéer can be updated at each step.

Finally, we may assume that instead of “reading " an inputnftbe one-way input tape, the PBCM
has an input terminal from which it can request an input syiimdg., an instruction like: From state
p, get ‘o’ and go to state. This means the environment delivers inpaitto the system. Formally, an
atomic move of a PBCM consists of one of the followiladpelledinstructions (the labels are states):
Q) p: Get'oc’andgoto @ or...orgg); (2)p : Increment counte’ by 1 and go toq; or ... or
qr); (3)p : Decrement countef’ by 1 and go toq; or ...orq;). Note that {; or...org) allows a
nondeterministic choice for the next state. Also note thrabae of the machine without reading an input
and without updating a counter but changing only its statel@asimulated by an instruction of type 2
followed by an instruction of type 3. We assume that the nrachias a unique halting accepting state.

Theorem 3.1. Languagel is accepted by a CPA if and only if it can be accepted by a PBCM.

Proof:

Suppose thak is accepted by a CP& with m membranes. We construct a PBAWI from G accepting
L. M has finitely many counters. For each object Y., and membrane of GG, we associate a counter
A(q,r)- Thus,M will have (]3] + 1) counters. These counters are used to keep track of the fiwitlip
of each symbol in each membrane.

Since no symbol i, appears in the initial configuration, all counters areatiifizero. The symbols
that appear in the initial configuration and their distribng are recorded in the finite-state control\éf
Every step of the simulation starts wifif nondeterministically selecting a rul@ in some membrane.
Supposer is a read-rule. There are two casesRIfmports a symbot in ¥ from the environment\
gets symbot from its input terminal. IfR importsa, M does not execute a get instruction. Instead, it
increments the countet,, ., (i.€., the counter associated with the symaah the skin membrane)
by 1.

Simulation of a rulek of the forma — a, or ab — a;b, is easy, since it only involves decrementing
some counters (correspondingd@r a andbd) by 1 and incrementing the target counters by 1.

At some point during the simulation (chosen nondetermua8y), M guesses tha¥ has reached a
halting configuration.M verifies for each membranethat no rule is applicable}M constructs a set,
for each membrane. The purpose of, is to gather all symbols that are no longer in membrarigirst
M puts all symbols in the initial configuration that are no lengn membrane to Z,. (this is easily done
since there are only a finite number of such symbols, htlas kept track of their distribution during
the computation)M then proceeds as follows. It looks at each rule of the form a, in membrane,
and storeg in Z, if it is not already there (thus/ is “guessing” that this rule is not applicable). Nekf,

O. H. Ibarra et al./ 1-Deterministic and Sequential P System 143

looks at each rule of the forab — a,b, or ab — a;byc.ome. Clearly, this rule is not applicable if either
there is naz or nob in membraner-. If a or b is already inZ,, M looks at another rule. Otherwis#/
nondeterministically chooses one of these, &agnd puts it inZ,., and then proceeds to look at another
rule. WhenM has processed all the rules in membranié examinesZ,.. Letd,,.. ., d; be the symbols
in ¥, but notinZ,. For eachd;, M decrements the counter in membraneorresponding ta/; (by 1)
nondeterministically many times (including zero time}teafwhich it guesses that there is no mdge
and putsd; in Z,. The process above is done for all membranes. At this psihgnters an accepting
state. It is easily verified tha/ acceptsl (= language accepted lgy).

The converse (i.e., constructing a CPA to simulate a PBCIvis directly from the construction
in [18]. Due to space limitations, the details are omittecehe O

In what follows, we let CPA{) (resp., CPA(linear)) denote the class of languages aeddpt CPA
in quasirealtime (resp., linear time), and PBGM(resp., PBCM(linear)) denote the class of languages
accepted by PBCM in quasirealtime (resp., linear time). & arite COUNTER(®) to denote{L | L
is accepted by a multicounter machine in quasirealtime

It is obvious from the construction described in Theorem(8ek [18]) that a quasirealtime (linear
time) PBCM can be simulated by a quasirealtime (linear ti@®A. However, the simulation of a quasi-
realtime (linear time) CPA by a PBCIW described in Theorem 3.1 does not quite yield a quasirealtim
(linear time) PBCM. This is because aftef guesses tha¥ has halted, the symbals, .. ., ds which are
not in Z, must have their counters decremented to zero. Clearlyalues in the counters (the multiplic-
ities of thed;’s) are unbounded. However, we can modify the constructfol/ o that at the beginning
of the simulation,M nondeterministically guesses the symhdis. .., d,. If these symbols are known
from the beginning, the computation can decrease the coforteachd; sporadically throughout the
computation and hence spread the decreasing steps thrudugbovhole computation. During the sim-
ulation, M nondeterministically chooses the times to decrement thateo corresponding té; (in fact,
it can choose to decrement it directly after incrementifg it M decrements eact too little, then
at the end the counter will not be zero and hence will not acdépl/ decrements eacty too much,
the counter will become negative at some point during thepedation. When the computation halts,
if the the instances (hondeterministically chosen) thenteng are decremented are correct, the counters
corresponding to eaafy will be zero and no extra processing will be done at this poiis allowsM
to run in quasireal time. We omit the detalils.

The following theorem follows from similar results for PBCH.

Theorem 3.2. 1. CPA has a decidable emptiness problem.
2. CPAis a proper subset of the family of recursive languages
3. CPA does not contain the languabie= ({a"b™ | n > 0})* and is not closed under Kleene +.
4. CPAf) is not closed under Kleene +.
5. CPAf) is not closed under complementation.
6. CPAf) is a proper subset of COUNTER)

7. CPA) is a proper subset of CPA(linear).

144 O. H. Ibarra et al./ 1-Deterministic and Sequential P System

8. CPA(linear) — COUNTERY) is not empty.

Lemma 3.1. (from [6]) For everyk, there is a language that can be accepted accepted by aegliirsie
PBCM with (k£ + 1) counters but not by any quasirealtime PBCM witbounters.

We can now show the following result.

Theorem 3.3. For everyr, there is ars > r and a languagé. that can be accepted by a quasirealtime
CPA with s membranes but not by any quasirealtime CPA withembranes.

Proof:

Without loss of generality consider only languages ovenatyi alphabekE. Then|X,| = |[Su{a}| = 3.
Suppose there is ansuch that any language language accepted by a quasire&liean be accepted
by a quasirealtime CPA withmembranes.

Let k. = 3r. From Lemma 3.1, there is a languagethat can be accepted by a quasirealtime
PBCM with £ + 1 counters but not withk counters. By Theorem 3.3, this language can be accepted
by a quasirealtime CPA. Then, by hypothediscan also be accepted by a quasirealtime CPA with
membranes. From the construction in the first part of thefpsb@heorem 3.1, we can construct from
this CPA, a quasirealtime PBCM with at m@stcounters. Hencd, can be accepted by a quasirealtime
PBCM with k counters, a contradiction. O

A cooperative P system acceptor with dissolution rules anthbled membrane creation rules can
be defined in the usual manner (as in a CPA). Clearly, a CPApecia case of a cooperative P system
acceptor. Hence, a PBCM can be simulated by a cooperatitensy&or the converse, the constructions
in Theorems 2.1, 2.2, and 3.1 can be implemented on a PBCM&;l&meorems 3.1, 3.2, and 3.3 hold
when CPA is replaced by PBCM. We have:

Corollary 3.1. The following are equivalent: CPA, PBCM, cooperative P egsacceptors with disso-
lution and bounded membrane creation rules.

In Theorem 3.1, the model of the CRA has a sequence of input symbols coming in from the
environment, and this sequence constitutes the (one-wpyj to the PBCM. Now suppose we modify
the way the input is given t6:. As before, letS = {ay,...,a;} andX, = X U {a}, wherea is a
distinguished symbol. At the start of the computatiéhjs given a muItise'rwa’i1 ...ayf in its input
membrane, where is some fixed multiset from an alphab&tdisjoint fromX,, and each; > 0,1 <
j < k. The environment only contains an abundance.ofnitially, there are no symbols froh U A
in the environment, and only symbols from this set that aoeied to the environment (during the
computation) can be imported from the environment. Thusnthltiplicity of each symbol irt U A in
the system (including the environment) remains the samaglthie computation. We say th@ét1 cap
is accepted it7, when givenwaﬁ1 e afj in its input membrane, halts. We denote the language aatepte
by L(G). We call the new model NCPA. Like CPAs, the language accepyedn NCPA can also be
accepted by a PBCM. Hence, the following holds.

Theorem 3.4. We can effectively construct, given an NCPAa PBCMM acceptingL(G). Hence, the
emptiness problem for NCPAs is decidable.

O. H. Ibarra et al./ 1-Deterministic and Sequential P System 145

Proof:

(Ided The operation of\/ when given inputoﬂi1 . a}f is similar to the construction in the first part of

the proof of Theorem 3.1. We just show hdW makes sure that the during the simulation, the total

number ofa; (which initially is i;) in the system is always the same during computation] férj < k.
Initially, the PBCM M readsdi1 a}c’f and storeg; in counterC; (for 1 < j < k). For each

J, we also use another count®¥; (initially zero) to represent the number @f’s in the environment.

Whenever am; is exported into the environment, we increméftby 1. When aru; is imported into

the skin membrane from the environment, we decrenignby 1. Note that we do not have to worry

about checking the multiplicities of thg’s in the skin membrane and in the other membranes. O

4. 1-Deterministic P Systemswith Prioritized Rules

Now let us look at P systems which allow rules to be priordizmeaning that a rule of lower priority can
only be used when rules of higher priority are no longer aalie. Previously we showed that sequential
cooperative P systems without priority rules are equivale’vVASS and hence nonuniversal. Allowing
priority rules increases the power of these systems catisémg to be universal. In fact, even cooperative
P systems with the restriction of 1-determinism with onlganembrane are already universal. We have
the following result.

Theorem 4.1. A prioritized 1-deterministic 1-membrane cooperativetsys (COS) with rules of the
formu — v, whereju| = 2, and|v| = 1 or 2, can simulate a 2-counter machine (hence, it is uraljers

Proof:

Let M be a (deterministic) 2-counter machine. We first construmbranalized 2-counter maching’
that simulated/. The construction follows the idea in [13]. Suppose the tawrters ofd/ have values
i,j. These values can be represented in one countef dfy the number = 237, To increment, j by
one, the numben is multiplied by 2, 3, respectivelyM’ uses a second counter, which is initially zero,
for this purpose. The second counter is incremented by Zspectively for every decrement of 1 in
the first counter. When the first counter becomes zero, ttendemounter has valun, 3n respectively.
Similarly, decrementing, j by one corresponds to incrementing the second counter byooreery
decrement of 2, 3, in the first counter (i.e.js divided by 2, 3, respectively), after checking thais
divisible by 2,3, respectively.

The state of\/ is stored in the finite control of/’. To determine the next mové/’ has to determine
which, if any, ofi, j are zero. By passing from one counter to the other, the finite controldf can
determine ifn is divisible by 2, 3, respectively. We modify the above camstion slightly by adding the
factor5 ton. Thus,n = 2'375. The purpose of the factor is so thats always positive.

Using the above description of holv’ operates, we see that the counters behave in a regular pat-
tern. M' operates in phases in the following way. L&tand B be its counters.M’s operation can be
divided into phase#, P, Ps, ..., where eachP; starts with one of the counters equal to some posi-
tive integerd; and the other counter equal to zero. During the phase, theditmter is nonincreasing
and the other counter is nondecreasing. The phase endshwiflrdt having value zero and the second
counter having a positive value (note that the positiveiegsiaranteed by the factdy. This value is
equal ton (i.e., no changeRn, 3n, n/2, n/3, wheren is the value of the first counter before the start
of the phase. Thus, a sequence of configurations corresgptalthe phases above will be of the form:

146 O. H. Ibarra et al./ 1-Deterministic and Sequential P System

(q1,71,0), (g2,0, 72), (g3, 73,0), (¢4, 0, 74), . .., where they; are states and; = 5, z9, 73, .. . are posi-
tive integers. Note that the second component of the corfigur refers to the value of countdr, while
the third component refers to the value of courfierMoreover, the state determines which of the five
case {, 2n, 3n,n/2,n/3) applies.

We may assume that the state names of the 2-counter makHinden it is operating in odd phases
Py, Ps, ... are different from the state names when it is operating im@mased, Py, We use;’s
for states in the odd phasg's for states in the even phases.

Clearly, an instruction of the 2-counter machik& has one of the following forms:

1. 4(q, positive,na) = (¢, —1,d) (i.e., in the odd phases).

2. 6(p, na, positive) = (p',d, —1) (i.e., in the even phases).

3. d(q, zero, positive) = (p,d, —1) (i.e., switching from odd phase to even phase).
4. §(p, positive, zero) = (q,—1,d) (i.e., switching from even phase to odd phase).

whereq (respectivelyp) is the current statggositivemeans that the first (respectively, second) counter
is positive,na means that the value of the second (respectively, first)teouwtoes not mattey’ (re-
spectively,p’) is the next state;-1 means decrementing the first (respectively, second) cobpté, and

d € {0,1,2,3} means incrementing the second (respectively, the firsfjteoloyd. (Note thatd = 0 or

1 when division by 2, 3, is being simulated.)

Letq, ¢o, ... be the states the counter machine uses in the odd phasgs,and .. be the states it
uses in the even phases. As already stated, we assume thgs the different from the;’s. Assume
that ¢; is the state of the machine when the first counter has \288%) = 5 and is about to begin
phaseP;. We construct a prioritized 1-deterministic 1-membraneperative P system with symbols
a,b,q1,q9,--.,p1,p2, ... to simulate the normalized counter machine. The symba@adb represent
the two counters. The initial configuration[iga®];. (This means that the first counter has value 5 and
the second counter is zero.) The rules are defined accomlithg type of rules above.

1. For atransition of form 1, define the ruje — ¢'b°.
2. For a transition of form 2, define the rylé — p'a?.
3. For arule of form 3, define the rulé — pa?.
4. For a rule of form 4, define the rupe, — ¢b°.

Rules of the formya — ¢'b? andpb — p’a® are of higher priority than rules of the forgb — pa?
andpa — ¢b?. Itis clear that the system described above simulates timpetation of the two-counter
machine. Note that the rules above can be simplified, e.gleaf the formga — ¢'bbb can be simulated
by the rules:ga — [¢'bbb], [¢'bbb] — [¢'bb]b, [¢'bb] — [¢'b]b, [¢'b] — ¢'b, where[q'bbb], [¢'bb], [¢'b] are
new symbols. O

The above result applies to a 1-deterministic 1-membrangeyt/antiport system (SAS) [11, 15].
This system has rules of the following formge, out; y,in) which is an antiport rule, anflz, out) or
(z,4in) which is an symport rule, where, y are strings of symbols. Thedius of an antiport rule is
(|=|, ly|). For a symport rule, the radiusl|is|.

Corollary 4.1. A prioritized 1-deterministic 1-membrane symport/anttpgystem (SAS) whose rules
are antiport of radius (2,1) or (2,2) can simulate a 2-caumigchine.

O. H. Ibarra et al./ 1-Deterministic and Sequential P System 147

Looking at the class of communicating P systems, we find ammélsults. The class of 1-deterministic
1-membrane CPS with priority rules can also simulate a Z#@yumachine using a technique similar to
the proof of Theorem 4.1.

Theorem 4.2. A prioritized 1-deterministic 1-membrane CPS can simue®ecounter machine.

Proof:
We need only show that the rules in the COS constructed akmvée implemented in a 1-membrane
CPS with priority rules.

We construct a CP&’ with priority rules which simulates a CO®' has one membrane (the skin
membrane) and a distinguished symbBal Initially, C' contains symbols{¢;a°. We describe how the
rules ofC are constructed.

Note that in the COS constructed above, its rules are of ttme §oc — tv, wheres, ¢ are statesy is
a symbol (either or b), andw is (a unary string) of the form, 8, 58, 853, wheres is a symbol (either
a orb). The rules of the CPS are defined by cases:

Case 1. If the rule issa — t, then the following rules are i@
Ry sa = SoutQoutteome
Case2. If the rule issa. — t(3, then the following rules are i@:

Ry :sa— Soutaout[t,@]come

R : X[tﬁ] — Xhere[tﬁ]here[tﬁl]come
Rj: [tﬁ] [t/ﬁl] — [tﬁ]out[tﬁl]hereﬁcome
R4 : X[t/gl] — Xhere[tﬁl]outtcome

Priority: Ry < Rj3

Case 3. If the rule issae — t33, then the following rules are i@

Ry :sa— Soutaout[tﬁﬁ]come

R : X[tﬁﬁ] — Xhere[tﬁﬁ]he're[tﬁﬁl]come

R3 : [tﬁﬁ][tﬁﬁl] - [tﬁﬁ]out[tﬁﬁl]hem/@come
Ry : X[tﬁﬁl] - Xhere[tﬁﬁl]here[tﬁﬁﬂcome
Rs: [tﬁﬁl][tﬁﬁﬂ - [tﬁﬁl]out[tﬁﬁﬂhereﬁcome
Rg : X[t/3/32] — Xhere[tﬁﬁQ]outtcome

Priority: Ry < R3; R4 < R;

Case 4. If the rule issae — 833, then the following rules are i@0:

Ry :sa— Soutaout[tﬁﬁﬁ]come

Ry : X[tﬁﬁﬁ] - Xhere[tﬁﬁﬁ]he're[tﬁﬁﬁl]come

Ry : [tBBAI[tBAG1] — [tBBBlout[tBBB1 | hereBeome
Ry : X[tﬁﬁﬁl] - Xhe're[tﬁﬁﬁl]here[tﬁﬁﬁﬂcome

Rs : [tﬁﬁﬁl][tﬁﬁﬁﬂ — [t/B/B/BI]out[tﬁﬁﬁQ]here/Bcome

148 O. H. Ibarra et al./ 1-Deterministic and Sequential P System

R : X[t/B/B,BQ] - Xhere[t/B/B/BQ]here[t/BIBIBS]come
Ry : [tBBB)[tBBAs] — [tBBB2lout[tBBBs]hereBeome
Rg : X[t/B/B,B3] — Xhere[t/B/B/B3]outtcome

Priority: Ry < R3; Ry, < R5; R¢ < Ry

Clearly these rules use a 1-membrane CPS with priority tolsgnulate a 2-counter machine. Hence
a 1-membrane CPS with priority rules is universal. O

The above theorem is in contrast to a result in [10] that a esetipl multi-membrane CPS whose
rules are not prioritized is equivalent to a VAS.

Finally, consider the model of a sequential multi-membr& where the rules are prioritized.
Specifically, there is a priority relation on the rules: Aalgtic rule R’ of lower priority thanR can-
not be applied ifR is applicable. We refer to this system as prioritized CS. Wakthat the reachability
set of a sequential multi-membrane CS is semilinear and;&hétis reachability problem is NP-complete.
In [9], the status of the reachability problem for systemthwvgrioritized rules was left open. Here we
show that the reachability problem is also NP-complete.

Taking advantage of the equivalence between sequentidl-meimbrane CS and communication-
free VAS! [9], we first show the reachability problem for prioritizedramunication-free VAS (which
will be defined in detail below) to be NP-complete, which intiaely yields the mentioned complexity
result for prioritized sequential multi-membrane CS.

Given a communication-free VAG = (z, W), apriority relation p overW is an irreflexive, asym-

metric, and transitive relation such that takes precedence over if (v1, v2) € p, meaning that,
cannot be applied if, is applicable. Due to the nature of communication-freenessfurther assume
p to satisfy a property that if andv’ subtract from the same coordinate, neittery’) nor (v, v) is in
p; otherwise, one of the two could never be applied. fdenote{ (v, v')|(v,v") &€ p and(v',v) & p}.
In this paperp is assumed to be an equivalence relation. Given a vectoiN", an addition vectop
can be applied at under priority relatiorp if z + v > 0 and no othew’ € W of higher priority has
z+v' > 0. Letz 5 2/ (resp.,z =, 2') denote the reachability af from = through transition sequence
o under the unprioritized (resp., prioritized with prioritglationp) semantics.

The following result plays a key role in our analysis.

Lemma4.1. Given a communication-free VAE = (z, W) and a priority relatiorp, if = % 2' (o €

W*) and for everyv applicable at’, v is in the lowest priority class induced hy thenz 1'>p 2, for
some permutation’ of o.

Proof:

Along z 5 2’ , let 2" be the leftmost vector at which the priority requirementiislated. Letv; be
the addition vector applied at’, andv, be one of the highest priority applicablet We claim that
there exists &), (v9,v}) € p andv), is present in the segment frogff to 2’; otherwise,v, would still
be applicable at’ (due to the communication-freeness natur& 9t violating the assumption of the

LA communication-free VAS is a VAS where in every transitiahmost one component is negative, and if negative, its value
is—1.

O. H. Ibarra et al./ 1-Deterministic and Sequential P System 149

lemma. Sincey), andv; do not subtract from the same coordinate, applyifat z” followed by v,
remains a valid computation. By repeatedly applying suasarangement to the remaining sequence, a
computation meeting the priority requirement can be coostd. O

For related results concerning other types of prioritizedotirrent models, the reader is referred
to, e.g., [20]. Based upon the above lemma and the fact thaiittary reachability relation of commu-
nication-free VAS can be characterized by integer lineagmmming [4, 19], we have the following
result.

Theorem 4.3. The reachability problem for prioritized communicatioed VAS is NP-complete.

Proof:
The lower bound follows immediately from the NP-hardnesshafcking reachability for the basic model
of communication-free VAS, as they are special cases of gr@ritized counterparts (with an empty
priority relation).

First we recall the following result (referred to as ‘FactiA our subsequent discussion) from [4,
19], indicating that the binary reachability relation ohwmunication-free VAS can be characterized by
integer linear programming:

¢ Given acommunication-free VAG = (z, W), there exists a system of linear inequaliti&s7, ')
of polynomial size such that € R(G) iff L(G, z’) has an integer solution. Furthermod G, ')
remains linear even if andz’ are replaced by variables.

Recall thatp is an equivalence relation, which partitiol8 into a number okequivalence classes
Qy,...,Q4, for somed (d < |W]). Intuitively, eachQ;,1 < i < d, represents a set of vectors having
the same priority. For every € Q; andv’ € Q; (i # j), either(v,v') € p or (v/,v) € p (but not both);
we write ; < Q; (resp.,Q; < ;) if (v,v") € p (resp.,(v',v) € p). Without loss of generality, we
assumey, ..., Q, to be enumerated in increasing priority. Given @ W and ap, we letclass(v) =i
if v e Q; (i.e.,class(v) is the index of the equivalence class containifg

To show the upper bound, suppose”»,, z Is a computation reachingin a prioritized communica-
tion-free VASG = (z, W) with priority relation p. Listing in increasing priority, let the equivalence
classes induced by be 2, ...,Q,, for somed (< |W]). We letzy,...,zs, 2,..., 2. be vectors and
v1,...,vs be addition vectors along satisfying the following: (We assumg = =z, z, = z, and
vi € Qj;,1 < ji < d.)

1. v; € W is the vector applied af; in o, andz; ﬂp z, V1 <i<s.
2. V1 <i<s,

(@) class(vy) < class(vy) < -+ < class(vs),

(b) Vo applied in(z/_, =, z), class(v) > j;, andvv applied in ¢! =, z), class(v) > j;. (In
words,v; is the rightmost occurrence among the lowest priority fitaoms in z,_, i>,, z.)

The crux of our subsequent analysis lies in the fact thaf in —*>p 7z, 1 <4 < s, v; is of the lowest

priority in VAS G; with its set of addition vectors restricted W; = W — (U,_;,_;, ,) (The start

150 O. H. Ibarra et al./ 1-Deterministic and Sequential P System

vector ofG; is notimportant here.) . By Lemma 44, | = z;iff 2| =, z; in G'. This, in conjunction
with Fact A, enables us to set up a system of linear inegealtth capture the reachability efrom z:
We begin by guessing the following:

1. transitionsvy, ..., vs with class(v1) < -+ - < class(vs),

2. V1 < i < s, a set of coordinate®; such thaw subtracts from some coordinate i, for everyw
with class(v) > class(v;). (P; is the set of coordinates that are zero so that no vector behig
priority thanw; is applicable inz;.

Then the system of linear inequalities is set up as follows:
(AO) zf, = z,
(A1) z;(j) =0,Vj € B,
(A2) V1 <i<s, L((z]_4, W), z;) — a system of linear inequalities guaranteed by Fact A,
(A3) z; +v; > 0andz, = z; + v,
(Ad) z!, = 2.

In the above inequalities;;, z1, z, . . . z,, z, are vector variables representing the values of markings
x, 71, 2, ... Zs, 25, respectively, mentioned in our earlier discussion. (AQyivial. What (A1) says is
that atz;, no vectors with priorities higher than are applicable. By Fact A, (A2) is sufficient to imply
z!_, = x;. Lemma 4.1, in conjunction with (A1) and (A2), further imgiz’ |, =, z;. (A3) and (A4)
are again trivial.

Based on our earlier discussion, it is then straightforvthed the above system of linear inequalities
has an integer solution iff € R,(G). Hence, the reachability problem is in NP. O

We now have the following.

Corollary 4.2. The reachability problem for sequential multi-membrantalgéic systems with priori-
tized rules is NP-complete.

Proof:

(Sketch) As shown in [10], every sequential multi-membr@geS can be simulated by a communication-
free VAS G, and vice-versa. Consider a priority relationrfarti-membrane CS such that the prioritizing
is only between rules in the same membrane, arddf — v andC’a — ' are rules in the same
membrane, then neither the first rule takes precedence loeeseicond rule nor the second rule takes
precedence over the first rule. Examining the proof of Theofe3 shows that every sequential multi-
membrane CS S with prioritized rules can be simulated by anvanication-free VAS G with prioritized
rules, and vice-versa. O

O. H. Ibarra et al./ 1-Deterministic and Sequential P System 151

5. 1-Deterministic Language Acceptorswith Prioritized Rules

It is known that any recursively enumerable unary language o* can be accepted by a (deterministic)
2-counter machind/ with a one-way input tape which operates as follows; starting in its start state
with both counters zero, when given a strisit, reads the input symbols left-to-right and halts if and
only if o € L. Note thatM need not read a new input symbol at every step. We may asswane th
after the right delimiter is read by the counter machineait continue with the computation (without
attempting to read another symbol on the tape). The inputtisged ifAM eventually halts. The input is
not accepted if the machine does not halt.

The 2-counter machine can be normalized, with each ingru¢aking one of the following forms:
(1) 4(q, €, positive,na) = (¢',—1,d); (2) §(q, a,na,na) = (¢',0,0), wherea = o or § (meaning thay
is a reading state and the machine reads an input symbol angie$ state without altering the counter
contents); (3Y(p, €, na, positive) = (p',d, —1); (4) (p, a,na,na) = (p',0,0), wherea = o or $; (5)
d(q, €, zero, positive) = (p,d,—1); (6) d(p, €, positive, zero) = (q,—1,d). See the proof of Theorem
4.1 in the appendix for more details. Note that the state tzmlze “tagged” whether they are in a
reading mode or nonreading mode. Transitions of the form &, 8 are non-reading (indicated byn
the second parameter) and are handled as before. Transiand 4 are reading and are translated to
cooperative rulega — ¢’ andpa — p’, respectively.

It follows that all the results in the previous section canré®rmulated for P systems that are
acceptors when the 2-counter machine is an acceptor. FondeaTheorem 4.2 can be written to read:

Corollary 5.1. Every recursively enumerable unary langudgean be accepted by a deterministic 1-
membrane CPS with prioritized rules.

6. Conclusion

In this paper we investigated the computational power é¢bht types of sequential and 1-deterministic
P systems. We showed that without prioritized rules, setiple systems are equivalent to VAS, even
if they are allowed to have dissolution rules and boundedtie rules. We also showed that these
systems when used as language acceptors are equivalemhmoucticating P system acceptors which,
in turn, are equivalent to to partially blind counter ma&sn When the rules are prioritized, there are
two types of results: there are sequential P systems thatraversal and sequential P systems that
are nonuniversal. In particular, both communicating anopeoative P systems are universal, even if
restricted to 1-deterministic systems with one membrarmvédy¥er, catalytic P systems with prioritized
rules have NP-complete reachability problem and, henaajmwversal.

References

[1] E. Csuhaj-Varju, O.H. Ibarra, G. Vaszil: On the compigaal complexity of P automatd&roc DNA1Q
Milano, 2004 (C. Ferretti, G. Mauri, C. Zandron, eds.), LNEX4, Springer, Berlin, 2005, 76—-89.

[2] Z. Dang, O.H. Ibarra: On P systems operating in sequieatid limited parallel mode$re-Proceedings of
6th Workshop on Descriptional Complexity of Formal Systeraedon, Ontario, 2004, 164-177.

152 O. H. Ibarra et al./ 1-Deterministic and Sequential P System

[8] R. Freund, Gh. Paun: On deterministic P systems See P Systems Web Page at
http://psystems.disco.unimib.it, 2003.

[4] L. Fribourg, H. Olsen: Proving safety properties of iinstate systems by compilation into Presburger
Arithmetic. CONCUR’97 LNCS 1243, Springer, Berlin, 1997, 213-227.

[5] P. Frisco: About P systems with symport/antip@econd Brainstorming Week on Membrane Computing,
Sevilla, Spain2004, 224-236.

[6] S.A. Greibach: Remarks on blind and partially blind omay multicounter machine$heoretical Computer
Science?, 3 (1978), 311-324.

[7] J.Hopcroft, J.-J. Pansiot: On the reachability probfenb-dimensional vector addition systeriifieoretical
Computer Scienge, 2 (1979), 135-159.

[8] O.H. Ibarra: On the computational complexity of memlwaystemsTheoretical Computer Sciencg?0, 1
(2004), 89-109.

[9] O.H. Ibarra, Z. Dang, O. Egecioglu: Catalytic P systesgmilinear sets, and vector addition systefigeo-
retical Computer Sciencé 1, 1 (2004), 167-181.

[10] O.H. Ibarra, H. Yen, Z. Dang: On the power of maximal glatesm in P systemsevelopments in Language
Theory 2004LNCS 3340, Springer, Berlin, 2004, 212-224.

[11] C. Martin-Vide, A. Paun, Gh. Paun: On the power of Ptegss with symport ruleslournal of Universal
Computer Scienge, 2 (2002), 317-331.

[12] E. Mayr: An algorithm for the general Petri net reachipproblem.SIAM J. Computingl3 (1984), 441—
460.

[13] M. Minsky: Recursive unsolvability of Post's probleri Tag and other topics in the theory of Turing ma-
chines Ann. of Math, 74 (1961), 437-455.

[14] M. Mutyam, K. Kriithivasan: P systems with active obigc Universality and efficiencyProceedings of
the Third International Conference on Machines, Compuotaj and UniversalityChisinau, Moldova, May
23-27 2001, 276 — 287.

[15] A. Paun, Gh. Paun: The power of communication: P systeiith symport/antiportNew Generation Com-
puting, 20, 3 (2002), 295-306.

[16] Gh. Paun: Computing with membrandsurnal of Computer and System Scienéds 1 (2000), 108-143.
[17] Gh. PAaunMembrane Computing: An Introductio8pringer, Berlin, 2002.

[18] P. Sosik: P systems versus register machines: two rsaity proofs.Pre-Proceedings of Workshop on
Membrane Computing (WMC-CdeA2002), Curtea de Arges, Riay2002.

[19] H. Yen: On reachability equivalence for BPP-ndtkgoretical Computer Scienck79 (1997), 301-317.
[20] H. Yen: Priority conflict-free Petri neté\cta Informatica 35, 8 (1998), 673—-688.

