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Abstract

This paper presents a Markov model fuzzy-reasoning based algorithm for fast block motion estimation. To reduce com-
putational complexity, the existing fast search algorithms move iteratively toward the winning point based only on a finite
set of search points in every stage. Despite the efficiency of these algorithms, the search process is easily trapped into local
minima, especially for high activity video sequences. To overcome this difficulty, we propose a three-states Markov model
based algorithm that invokes the fuzzy-reasoning to provide the search an acceptance probability of being able to move out
of local minima. Two schemes are employed to further enhance the performance of the algorithm. First, a set of initial
search points that exploit high correlations among the motion vectors of the temporally and spatially adjacent blocks
as well as their surrounding points are used. Second, an alternate search strategy is addressed to cover more area without
increasing computations. Simulation results show that the new algorithm offers superior performance with lower compu-
tational complexity and picture quality increase in terms of search points/block and MSE/pel, respectively, compared with
the previous works in various scenarios.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

Motion estimation underlines the core of motion compensated predictive coding of video sequence. The
block matching algorithms (BMA), which render efficient implementations, have in particular received a great
amount of attention and have been adopted by modern video compression standards such as the H.26x, and
MPEG-x, etc. [1].
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The most straightforward BMA is the full search (FS) algorithm, which searches exhaustively over all
allowable displaced points in the reference frame to locate the best match. The enormous amount of compu-
tations involved, however, has hindered it from practical implementations. To mitigate this, various attempts
have been made to reduce the number of search points while, at the same time, without serious degradation of
the reconstructed image quality. One of the most widespread BMAs is the simple yet effective three-step search
(TSS) algorithm [2], which iteratively checks the winning point as well as the surrounding eight points with a
diminishing window size. Several variants of the TSS such as the new three-step search (NTSS) algorithm [3],
the four-step (FSS) algorithm [4], and the diamond search (DS) algorithm [5] were also addressed, aiming at
locating the motion vector more precisely with reduced computations. All of these fast search algorithms,
however, are based on the implicit assumption that the block distortion measure (BDM) monotonically
increases around the global minimum [2]. The search thus moves iteratively toward the point that achieves
the minimum BDM in every stage. Since this underlying assumption does not hold in many practical situa-
tions, the search process is therefore easily trapped into local minima if the point chosen in any stage is
not the one that leads to the global minimum. Consequently, despite their efficiency, the search process is vul-
nerable to local minima, especially for high activity video sequences that contain lots of them.

To overcome this difficulty, several robust BMAs were advocated to refrain the search from being easily
trapped into local minima. For example, Jan et al. [6] determined the motion vector based on the concept of
‘‘motion flow,’’ which employs multiple candidates in the search process and thus is more robust against local
minima. Tang et al. [7] decomposed the template matching into pixel and sub-pixel levels and considered a ro-
bust and accurate two-stage approach for motion estimation at the price of substantially more computations.

In this paper, a new algorithm by utilizing the fuzzy-reasoning technique [8] together with the local charac-
teristics of the video sequences is proposed. As discussed above, the main problem of the current fast search
algorithms is that they are ‘‘greedy’’ in the search process by only pursuing the winning point in every stage
to reduce the computational complexity. These algorithms are inevitably susceptible to the local minima dilem-
ma. In light of this, the proposed Markov model based algorithm invokes the fuzzy-reasoning to provide the
search an acceptance probability of being able to jump out of local minima so that the algorithm is more robust
against such undesired situations. In addition, two schemes are employed to further enhance the performance
of the algorithm. First, a set of initial search points that exploit high correlations among the motion vectors of
the temporally and spatially adjacent blocks are used. Second, an alternate search strategy is addressed to cover
more area without increasing computations. As a consequence of these techniques, the new algorithm can accu-
rately locate the motion vectors with lower computational overhead as compared with previous works.
2. Markov model based block motion estimation

The Markov model of the proposed algorithm is illustrated in Fig. 1. There are three states in this Markov
model, including Cinit, Cd, and Cend. Each edge represents a transition to the next state. The transition prob-
ability of the next state depends only upon the current state and not upon any previous states. In other words,
the probability that the matching process in one state will change to a different state depends only on the two
states (and not on the time, earlier states, or other factors). Thus, we have a random sequence in which the
dependency extends backwards one unit in time. That is, the way in which the entire past history affects
the future of the matching process is completely summarized in the current state of the matching process. Ex-
pressed analytically the Markov property of the proposed algorithm may be written as
P ½X ðtnþ1Þ ¼ xnþ1jX ðtnÞ ¼ xx;X ðtn�1Þ ¼ xn�1; . . . ;X ðt1Þ ¼ x1� ¼ P ½X ðtnþ1Þ ¼ xnþ1jX ðtnÞ ¼ xn�;
Fig. 1. The proposed three-states Markov model for motion estimation.
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where t1 < t2 < � � � <tn < tn + 1 and xi is included in some discrete state space and {Xt}t = 0,1,2,. . . is a first order
finite state Markov chain.

To improve the drawback of the fast BMA algorithm described in Section 1, we adopt this three-states
Markov model herein. First, a rough motion vector is got in the state Cinit. In the Cd state, mechanism that
accepts a suboptimal solution is provided here to avoid getting into local minima. Finally precise fine-tuning is
done to achieve the global minimum in the Cend state.

The following are the detailed descriptions of each state mapping into the proposed block-matching
algorithm.

2.1. State Cinit

In Cinit, the starting search points consist of the origin and its surrounding eight points, i.e., the search win-
dow of 3 · 3. Meanwhile we consider the highly temporal and spatial correlation in image sequences. The mo-
tion vector of each block is highly correlated with the motion vectors of its neighboring blocks no matter in
temporal or spatial way. By exploiting the spatiotemporal relationship, we can reduce a considerable time in
finding a rough initial motion vector via getting enough information from the motion vectors of the neighbor-
ing blocks. Hence this algorithm not only uses the aforementioned 3 · 3 search points centered around the
origin, but also utilizes three search points located by the motion vectors of the two spatially and one tempo-
rally adjacent blocks. All these search points (12 in maximum if not overlapping) can be regarded as a search
points pattern denoted by Cinit.

2.2. State Cd

In the aforementioned fast algorithms, the candidate point with the minimum error in every iterative stage is
chosen as the starting point in the next stage, so that it is easily trapped into local minima. To conquer the local
minima problem, the suboptimal solution is accepted here in this state with the acceptance probability between 0
and 1. That means even getting a suboptimal solution, the current state still gets the chance to search outward
from the point with this solution. The search points maybe increase slightly though; it is still feasible to get
out of the local minimum to enhance the picture quality via a fine scheme. There are many ways to accept a sub-
optimal solution, e.g., simulated annealing [9,10]. In this paper, we utilized fuzzy-reasoning as a mechanism to
provide the acceptance probability of suboptimal solutions, as described in the next section.

2.3. State Cend

When the search reaches near the probably global optimum, we need to give it a smaller search window to
let the search be precisely converged. Thus, the 3 · 3 search points pattern as in Fig. 7 is applied in state Cend.

Fuzzy-reasoning is then used to decide whether the matching process shall proceed to the next state based
on the transition probability of the state in the Markov chain or not.

Hence, in this paper we propose a fast and robust block motion estimation algorithm that combines the
three-states Markov model with a fuzzy-reasoning algorithm [11] to avoid the local optimum dilemma in
the aforementioned algorithms.

3. Markov model fuzzy-reasoning based algorithm for block motion estimation

In this section, we describe a fuzzy-reasoning based algorithm for fast and robust motion estimation. Before
addressing the proposed algorithm in detail, we briefly review the fuzzy-reasoning.

3.1. Fuzzy-reasoning

Considering about the object function of multi-extreme value distribution, we can solve the local minimum
problem by using the concept of fuzzy logic. In this section, we first discuss the characteristic of fuzzy set. Sec-
ond, we describe how to apply fuzzy-reasoning to block motion estimation.
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3.2. Fuzzy set

For a fuzzy set A, membership lA (x) can be defined as
lA : X ! ½0; 1�. ð1Þ

lA (x) can be represented by real number ranging from zero to unity (including 0 and 1). While element x

does not completely belong to A and not completely unbelong to A, the membership lA (x) with respect to this
element will be a decimal fraction between 0 and 1. The bigger lA (x) is, the higher degree x belongs to A and
vice versa. Hence membership extends the range of crisp set from {0,1} to [0,1]. In other words, membership
represents the degree of certain element belongs to the fuzzy set. It is subjective and variant depending on hu-
man perception; however, we still can describe the egularity of taking value by objective statistical method.
One of the often-used memberships, S-shape function, depicted in Fig. 2 is formulated as Eq. (2):
Sðx; a; bÞ ¼

0 for x < a;

2 x�a
c�a
� �2

for a 6 x < b;

1� 2 x�c
c�a
� �2

for b 6 x < c;

1 for x P c.

8>>>><
>>>>:

ð2Þ
Before discussing fuzzy number, we define normalization and convex set of a fuzzy set.

3.3. Normalization

If there exists a fuzzy set A with property of, maxx2XlA (x) = 1 then A is normalized.

3.4. Convex set

For a fuzzy set A consisting of all real numbers, if there exists lA (y) P lx^lA (Z) for any real numbers,
x 6 y 6 z then we call A a convex set. Where ^ is to take the minimum from two operands.

The purpose here is to make each value of the membership function in the domain corresponds to one and
only one grade in the range. Then we can have one and the only one acceptance(transition) probability value
after getting the next state solution (MSE).

Take an example depicted in Fig. 3, the top curve represents a triangular fuzzy number; the middle curve
shows a trapezoidal fuzzy number; the bottom curve illustrates a bell-shaped fuzzy number. These three func-
tions, known as membership functions, are all convex (the grade starts at zero, rises to a maximum, and then
declines to zero again as the domain increases). However, some fuzzy numbers have concave, irregular, or
even chaotic membership functions. There is no restriction on the shape of the membership curve, as long
as each value in the domain corresponds to one and only one grade in the range, and the grade is never less
than 0 nor more than 1000.

3.5. Fuzzy number

A continuous convex fuzzy set consisting of all real numbers normalized is called fuzzy number.
Fig. 2. Plot of S-shape membership.



Fig. 3. Illustration of convex membership curve for fuzzy set.
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That is, a fuzzy number is a quantity whose value is imprecise, rather than exact as is the case with ‘‘ordin-
ary’’ (single-valued) numbers. Any fuzzy number can be thought of as a function whose domain is a specified
set (usually the set of real numbers, and whose range is the span of non-negative real numbers between, and
including, 0 and 1. Each numerical value in the domain is assigned a specific ‘‘grade of membership’’ where 0
represents the smallest possible grade, and 1 is the largest possible grade.

In many respects, fuzzy numbers depict the physical world more realistically than single-valued numbers.
Suppose, for example, that you are driving along a highway where the speed limit is 55 miles an hour (mph).
You try to hold your speed at exactly 55 mph, but your car lacks ‘‘cruise control,’’ so your speed varies from
moment to moment. If you graph your instantaneous speed over a period of several minutes and then plot the
result in rectangular coordinates, you will get a function that looks like one of the curves shown in Fig. 3. Note
that the grade of membership is not normalized for fuzzy number.

a-cut is a method that transforms the fuzzy number set into crisp set. According to Eq. (3), we implement
the transformation from fuzzy set to crisp set as shown in Fig. 4.
Aa ¼ fxjlAðxÞP ag; 0 6 a 6 1. ð3Þ
3.6. The proposed three-states Markov model fuzzy-reasoning based algorithm

The principle of fuzzy-reasoning based block matching algorithm is to apply a membership between 0
and 1 to sub-optimal solutions, representing the degree of acceptability of the current state solution, then



Fig. 4. Transform fuzzy set into crisp set using a-cut with Aa-cut = [a1, a2].
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using a-cut to transform the fuzzy number set into a crisp set. If the current state solution belongs to the
worse solution of the crisp set, we keep on searching. There are two parameters a and membership we
have to determine. We found that S-shape membership is the most suitable membership for the block-
matching algorithm, though Eq. (2) needs some modification as follows:
Fig. 5.
Sðx; a; bÞ ¼

1 for x < a;

1� 2 x�a
b�a
� �2

for a 6 x < aþb
2
;

2 x�b
b�a
� �2

for aþb
2

6 x < b;

0 for x P b.

8>>>><
>>>>:

ð4Þ
In Fig. 5, the value of S(x,a,b) is corresponding to x = (a + b)/2, a is the block distortion measure (BDM) of
the current state solution (the optimal solution till now), x represents the BDM of the next state solution (the
optimal solution found in the neighborhood of the current state solution), and b stands for a factor multiplied
by a (b = a · factor). The reason why BDM be taken to define the fuzzy number set is that BDM is the criteria
for judging the performance of the search result, from which, fuzzy-reasoning can deduce if the search shall
keep on from the suboptimal point or not.

The algorithm will keep on searching when the next state solution is less than the current state solution.
On the contrary, as long as we give an appropriate factor, if the BDM of the next state solution is larger
than that of the current state solution, we will apply these solutions to S-shape membership, and use a-cut to
decide whether we shall keep on searching or not. Since the fast search block motion estimation algorithm is
an iterative two-dimensional searching process, to follow this approach we consider a new algorithm that
incorporates the aforementioned fuzzy-reasoning technique.

To apply the fuzzy-reasoning in this problem, the state will denote the search points pattern and the solu-
tion associated with the state will correspond to the minimum BDM based on these search points [9,10]. In
every search stage, we consider two search points patterns, the current one and the next one, and invoke
the fuzzy-reasoning for deciding the appropriate one. More specifically, suppose that M1 and M2 stand for
the minimum BDM based on the current and the next search points patterns, respectively. If M2 < M1, then
the search will proceed based on the next search points pattern. Otherwise, the search will either jump to the
final fine search or stay in the current one to further search decided by Eqs. (3) and (4).
Plot of the modified S-shape membership with Aa-cut = [0, (a + b)/2].
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Furthermore, two strategies are employed to further enhance the performance of the proposed algorithm.
In view of the fact that most video sequences only involve gentle movements, there exist high correlations
among the motion vectors of the temporally and spatially adjacent blocks. The first scheme is then to
appropriately choose the initial search points by exploiting these intimate relationships. Similar ideas have
also been reported in previous literature [12–14]. Here, we extend their ideas by choosing not only the adja-
cent neighboring points as the initial search points but also the points located by the motion vectors of the
temporally and the spatially adjacent blocks. More specifically, we adopt the starting search points which
include Ct

0;C
t
i�1;C

t
j�1, and Ct�1

0 as shown in Fig. 6, where Ct
0 denotes the search point pattern that includes

the center of the search window of the present block and its eight neighboring points, Ct
i�1 and Ct

j�1 denote
the search points based on the motion vectors of the two spatially adjacent blocks, respectively, and Ct�1

0

represents that of the collocated block of the previous frame. In light of the center-biased characteristic
of the video sequences as addressed above, most of these search points are in common and therefore do
not incur too many computations. In addition, to reduce the computational complexity while still covering
enough search area, the second scheme uses the alternate search points patterns as shown in Fig. 7 for suc-
cessive blocks.

The proposed algorithm begins with the determination of the solution of the initial state, M1, as the min-
imum BDM based on the aforementioned Cinit search points pattern. Also, we consider the solution of the
next state, M2, as
Fig. 6
M2 ¼ medianfbti�1; btj�1; bt�10 g; ð5Þ
where median{} stands for the median value of the variables inside the bracket, and bti�1; b
t
j�1, and bt�10 denote

the minimum BDM of the two spatially and one temporally adjacent blocks based on their respective opti-
mum motion vectors, which have already been determined.

If M2 < M1, we expect that the present block involves fast movement and the next search pattern should be
closer to the boundary of the search window. As such, we use a larger search pattern Cd, where d denotes the
corresponding search size, and determines the new M2 based on the minimum BDM of these new search
points pattern. If the new M2 is still smaller than M1, we set this M2 as the new M1 and begin a new search
with the center at the winning point with a search points pattern of shrinking size, Cd/2, and repeat the above
steps. On the other hand, if M2 > M1, we use the fuzzy-reasoning to determine whether we shall proceed with
the same steps as the above or we shall go directly to the final fine search. The above procedures repeat until
. The starting search points patterns Ct
0;C

t
i�1;C

t
j�1, and Ct�1

0 , where the short arrows denote the corresponding motion vectors.



Fig. 7. {Cd} and Cend for alternate search points patterns (A) and (B) with w = 7.
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the minimum search window is attained. The final fine search pattern, Cend, is to check the optimum motion
vector determined so far along with its eight neighboring points to more accurately locate the best match as
shown in Fig. 7. Based on the discussion above, the overall procedure for the proposed algorithm can be sum-
marized as follows.

Cinit state: Let M1 = minimum BDM based on the search points pattern Ct
0;C

t
i�1;C

t
j�1, and Ct�1

0 ,
M2 ¼ medianfbti�1; btj�1; bt�10 g, search window size = (2w + 1) · (2w + 1), l = 1.
Cd state: Do FR(M1, M2, ACCEPT). If ACCEPT = 0, go to state Cend; otherwise, M1 min{M1,M2},
d ¼ wþ1

2l
, M2 = minimum BDM based on the search points pattern Cd with the center being the winning

point in the previous iteration. If d > 1, then l = l + 1and repeat state Cd.
Cend state: Perform the final fine search points pattern Cend.

PROCEDURE FR(M1, M2, ACCEPT)

{If M2 < M1, ACCEPT = 1;
else if M2 > M1 with the acceptance probability lA (M2) > a given in Eqs. (3) and (4), ACCEPT = 1;
else ACCEPT = 0.}

The search points pattern will alternate between patterns (A) and (B), as shown in Fig. 7 with w = 7, which
stands for search window size of 15 · 15.

An example to illustrate the above algorithm is shown in Fig. 8. In Fig. 8, numbers mean the orders of the
search steps. Search points denoted by No.1 represent that Cinit search point pattern including
fCt

0;C
t
i�1;C

t
j�1;C

t�1
0 g is applied in step one. Nos. 2, 3, 4 stands for applying C4, C2, and C1 in step 2, 3,

and 4, respectively. No. 5 means that the final fine search point pattern Cend is applied. Hence, each arrow
is on behalf of the motion vector estimated in each step. The fuzzy-reasoning mechanism will be activated be-
tween each step if M2 is larger than M1.

4. Experimental results

Simulations are conducted in this section to evaluate the proposed algorithm. Two sets of video sequences
are considered. The first set, including the ‘‘Claire,’’ ‘‘Miss America,’’ and ‘‘Salesman’’ video sequences, main-



Fig. 8. An example with motion vector (7, 6) to demonstrate the proposed algorithm.
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ly consists of low activity blocks; whereas the second set, including the ‘‘Flower,’’ ‘‘Football,’’ and ‘‘Table ten-
nis’’ video sequences, consists of lots of high activity blocks. The computationally efficient mean absolute dif-
ference (MAD) given by
Table
Compa

FS
TSS
NTSS
FSS
DS
(SA) S
(FR) F
MADdðxÞ ¼
1

bj j
X
i2b

fkðxþ iÞ � fk�1ðxþ iþ dÞj j ð6Þ
is used as the BDM, where fk (i) denotes the density of pixel at i = (i1, i2) of the kth frame, b is an M · N block,
and |b| denotes the number of points in b. For comparison, six existing algorithms, including the FS, TSS,
NTSS, FSS, and DS along with the proposed one (with the parameters factor = 1.3, a = 0.5), are carried
out. Two standard criteria: the average mean squares error per pixel (MSE/pixel) and the average search
points per block are utilized to evaluate the effectiveness of these algorithms. The former criterion is to mea-
sure the reconstructed image quality, whereas the latter the computational complexity.

The resulting average MSE/pixel and the average search points per block for the first 90 frames of the test
sequences using these algorithms based on video standards with M = N = 16 and w = 15 are listed in Tables 1
and 2, respectively. Table 3 lists the average number of carrying out Eq. (4) per block for the test sequences.

From Table 1, it is seen that the proposed algorithm outperforms the others by providing a smaller MSE/
pixel (except for the FS), whereas we can observe from Table 2 that the new algorithm also calls for the lowest
computational complexity. Note that we can regard FS as the ‘‘gold standard’’ which guarantees the global
optimum in block matching under the same conditions, ex. the same block size and search range. In addition,
the simulation of the deviation of the motion vectors from the ones found by FS is ignored due to its strong
correlation with the criterion MSE/pel.

The improvements of the proposed algorithm are more obvious in fast-motion sequences such as ‘‘Flower,’’
‘‘Football,’’ and ‘‘Table Tennis’’ in terms of MSE/pel and search points/block. It is because the proposed
algorithm not only using the fuzzy concept to jump out of the local optimum dilemma but also utilized the
1
rison of MSE/pixel for various algorithms on the first 90 frames of the test sequences

Claire Miss America Salesman Flower Football Table Tennis

9.14 10.11 27.60 277.00 384.88 184.86
9.35 10.57 28.29 320.33 416.43 240.07
9.31 10.24 27.92 285.01 412.54 217.46
9.31 10.50 28.16 299.69 428.89 213.28
9.29 10.26 28.13 287.03 433.32 205.94

imulated annealing-based 9.26 10.22 27.77 279.80 411.00 196.35
uzzy reasoning-based 9.29 10.20 27.75 279.71 411.95 196.78



Table 2
Comparison of average number of search points per block for various algorithms on the first 90 frames of the test sequences

Claire Miss America Salesman Flower Foot ball Table Tennis

FS 204.28 204.28 204.28 202.05 202.05 202.05
TSS 23.28 23.44 23.23 23.25 23.09 23.32
NTSS 20.28 21.78 16.85 21.58 20.56 21.57
FSS 17.59 18.83 16.24 18.90 18.04 19.03
DS 14.99 16.60 12.92 17.02 16.06 16.87
(SA) Simulated annealing-based 14.20 16.53 11.70 15.81 14.53 15.97
(FR) Fuzzy reasoning-based 14.95 16.59 11.49 15.42 14.33 15.74

Table 3
Comparison of the average number of performing Eq. (4) per block on the first 90 frames of the test sequences

Claire Miss America Salesman Flower Football Table Tennis

(SA) Simulated annealing-based 0.99 1.11 1.09 1.12 1.10 1.11
(FR) Fuzzy reasoning-based 1.12 1.34 1.03 1.06 1.08 1.15
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spatial and temporal correlations. The insignificant improvements in quasi-still or slow motion sequences such
as ‘‘Claire,’’ ‘‘Miss America,’’ and ‘‘Salesman’’ is because it is not necessary to utilize spatial and temporal
correlations in these kinds of sequences. The center-biased characteristic of the Diamond Search and Four-
Step Search can handle them well enough. As for fast-motion sequences, DS and FSS do not utilize the spatial
and temporal correlation to correctly allocate the initial search point and speed up the search. Besides, DS and
FSS do not handle the local optimum case, from which fast-motion sequences usually suffer. Hence, if the
algorithm performs well in these sequences, we could say the proposed technique can effectively avoid the local
minima.

The small MSE and low complexity of the proposed algorithm are due to the fuzzy-reasoning technique as
well as the full exploitation of the temporal and spatial relationships among the motion vectors field. The
incorporation of the fuzzy-reasoning scheme also explains that the proposed algorithm works in particular
well for high activity video sequences, in which the previous fast algorithms are easily trapped into local min-
ima in the search process.

We can find from Table 3 that values for all of the video sequences are about 1, which is negligible com-
paring with 256 subtractions and 255 additions needed for a search point. Thus, the overhead induced by per-
forming Eq. (4) is negligible.

Three states are adopted in the proposed Markov model based fast block-matching algorithm. State Cinit

equals fCt
0;C

t
i�1;C

t
j�1;C

t�1
0 g, which theoretically consists of 12 points, whereas the experimental results in

Table 4 shows that state Cinit actually only accounts for slightly more than 9 points. Because the most
blocks belong to still or slow motion type, most of the search points in fCt

i�1;C
t
j�1;C

t�1
0 g overlap that in

Ct
0. There are only a few blocks belong to fast motion type. At the same time, the search points of Cinit

increase in proportion to the picture complexity. State Cd composed of {C4, C2, C1} is allocated to search
outward for the probable blocks with local minima. Its execution count depends on the characteristic of the
block. In state Cd, the search points decrease with the search window shrinks, which means C4 > C2 > C1 as
Table 4
The average number of search points of different search point patterns

Cinit C4 C2 C1 Cend Points

Claire 9.06 2.07 0.85 0.72 2.26 14.95
Miss America 9.50 1.98 0.99 0.94 3.17 16.59
Salesman 8.60 1.90 0.10 0.09 0.78 11.49
Flower 9.23 1.79 0.09 0.08 4.16 15.42
Football 9.22 1.88 0.27 0.26 2.61 14.33
Table tennis 9.53 1.78 0.39 0.38 3.65 15.74
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shown in Table 4. It conforms to that there is only a small number of the blocks with high motion quantity,
for which search will not stop early as in slow motion ones. To cover more area under limited search points,
alternate search is adopted in state Cd. Because the incomplete search, fune-tune will be done in state Cend

to converge on global minimum in expectation. The increase points in state Cend are also tolerable. Com-
bining the above three states, we can correctly classify each block to give it appropriate search points to find
the best match.

The experimental results of three-state Markov model incorporated with simulated annealing-based (SA)
approach [9,10] instead of fuzzy reasoning-based (FR) one are also listed in Tables 1–3 for comparison.
MSE/pel of FR is higher than SA in sequences ‘‘Claire,’’ ‘‘Football,’’ ‘‘Table Tennis’’ as shown in Table 1,
while Average search points is lower in sequences ‘‘Miss America,’’ ‘‘Salesman,’’ ‘‘Flower,’’ ‘‘Football,’’
and ‘‘Table Tennis’’ as shown in Table 2. The acceptance probability of SA is as follows:
P ¼ e
�ðE2�E1Þ

kT ; ð7Þ

where E1 and E2 are the associated energy (BDM) of the current and next states, respectively, T is a control
parameter (called ‘‘temperature’’), and k is the Boltzmann constant. The average number of performing Eq.
(4) for FR is less than Eq. (7) for SA in sequence ‘‘Salesman,’’ ‘‘Flower,’’ and ‘‘Football.’’ The overhead in-
duced by performing Eq. (7) is also negligible.
5. Conclusions

In this paper, we describe a Markov model based fast block motion estimation algorithm that is also
robust against local minima. The spirit of this new algorithm is adopting a three-states Markov model,
which gets the initial rough motion vector in state Cinit via utilizing high correlations among the motion
vectors of the temporally and spatially adjacent blocks as well as the surrounding points centered at origin
point, applying fuzzy-reasoning to provide an acceptance probability for suboptimal solution in state Cd,
and precisely fine-tuning to converge toward global optimum in state Cend. The alternate search technique
for successive blocks is also applied to maintain the same search window size without incurring extra
overhead.

The major difference between the proposed algorithm and conventional multi-step ones is the employment of
the fuzzy-reasoning concept to keep on search from the acceptable suboptimal search point. The conventional
multi-step methods do not accept any suboptimal solution in each step, so they won�t regard the suboptimal
search point as the winning point from which the search proceeds.

The characteristic of this proposed technique is its simplicity yet effective compared with the existing pop-
ular algorithms. The results show the reduction of the computation complexity and the increase in the picture
quality in terms of search points/block and MSE/pel, respectively, as shown in Tables 1 and 2.

Note that although it is necessary to calculate the acceptance probability lA (M2) to decide if the sub-
optimal solution is acceptable, the overhead of applying fuzzy reasoning is about one time to calculate the
Eq. (4), which is negligible and represents the feasibility of the fuzzy-based algorithm. Because this algo-
rithm attains superior performance with lower computations compared with previous works, it offers an
appealing alternative to block motion estimation, which is compatible with those adopted in all H.26x
and MPEG-x series.
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