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Abstract

The hierarchical hypercube network is suitable for massively parallel systems. One of its appealing properties is the low
number of connections per processor, which can facilitate the VLSI design and fabrication. Other alluring features include
symmetry and logarithmic diameter, which can derive easy and fast algorithms for communication. In this paper, a max-
imal number of node-disjoint paths are constructed between every two distinct nodes of the hierarchical hypercube net-
work. Their maximal length is not greater than maxf2mþ1 þ 2mþ 1; 2mþ1 þ mþ 4g, where 2mþ1 is the diameter. The
effectiveness of node-disjoint paths is further verified by experiments.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Advances in hardware technology, especially the VLSI circuit technology, have made it possible to build a
large-scale multiprocessor system that contains thousands or even tens of thousands of processors. For exam-
ple, the Connection Machine [10] contains as many as 216 processors. One crucial step on designing a large-
scale multiprocessor system is to determine the topology of the interconnection network (network for short),
because the system performance is significantly affected by the network topology. In recent decades, a number
of networks were proposed in the literature (see [12,16]). A network is conveniently represented by a graph
whose vertices represent the nodes (i.e., processors) of the network and whose edges represent the communi-
cation links of the network. Throughout this paper, we use network and graph, node and vertex, and link and
edge, interchangeably.
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Let G ¼ ðV ;EÞ be a connected graph, where V and E represent the vertex set and edge set of G, respectively.
The degree of a vertex in G is the number of edges incident with it. If all vertices have the same degree d, then G

is called regular or d-regular. The distance between two vertices u and v, denoted by dðu; vÞ, is the length of the
shortest path between u and v. The diameter of G is the maximal distance between any two vertices of G. The
vertex (or node) connectivity of G is the minimal number of vertices in G whose removal can cause G discon-
nected or trivial.

The hypercube network [24] is one of the most popular networks. We use Qn to denote an n-dimensional
hypercube network. There are 2n nodes contained in a Qn network; each is uniquely represented by a binary
sequence bn�1bn�2 . . . b0 of length n. Two nodes in a Qn network are adjacent if and only if they differ at exactly
one bit position. An edge of a Qn network is said of dimension k if its two end vertices differ at bk, where
0 6 k 6 n� 1. The hypercube network suffers from a practical limitation: as n increases, it becomes more dif-
ficult to design and fabricate the nodes of a Qn network because of the large fanout.

To remove the limitation, the cube-connected cycles (CCC for short) network [22] was designed as a sub-
stitute for the hypercube network. The node degree of a CCC network is restricted to three. However, this
restriction degrades the performance of a CCC network at the same time. For example, a CCC network
has a greater diameter than a hypercube network having the same number of nodes. Taking both the practical
limitation and the performance into account, the hierarchical hypercube (HHC for short) network [19–21] was
proposed as a compromise between the hypercube network and the CCC network.

An HHC network, which has a two-level structure, takes hypercubes as basic modules and connects them in
a hypercube manner. An HHC network has a logarithmic diameter, which is the same as a hypercube network.
Since the topology of an HHC network is closely related to the topology of a hypercube network, it inherits
some favorable properties from the latter.

It is practically important to construct node-disjoint paths (disjoint paths for short) in networks, because
they can be used to increase the transmission rate and enhance the transmission reliability. Besides, disjoint
paths have applications in multipath routing (such as Rabin’s information dispersal algorithm [23]), fault tol-
erance (see [3,8]), and communication protocols (see [12]). Disjoint paths in a variety of networks can be found
in the literature [6,9,12,14,24]. Among them, one-to-one disjoint paths are also named containers, which we
formally define in the next section.

In this paper, a maximal number of disjoint paths whose maximal length is not greater than
maxf2mþ1 þ 2mþ 1; 2mþ1 þ mþ 4g are constructed between every two distinct nodes of an HHC network,
where 2mþ1 is the diameter of the HHC network. In the next section, the structure of an HHC network is first
reviewed. In Section 3, a maximal number of disjoint paths inside it are constructed. The effectiveness of dis-
joint paths is further verified by experiments. Finally, this paper concludes with some remarks in Section 4.
2. HHC networks and containers

A CCC network can be obtained by replacing each node of a Qk network with a cycle of k nodes so that
they are connected to the k neighbors of the original node in the Qk network. Actually, an HHC network is a
modification of a CCC network in which the k-node cycle is replaced with a hypercube. Assume k ¼ 2m. An
HHC network can be constructed as follows: start with a Q2m network and then replace each node of it with a
Qm network.

Since there are a total of 22m � 2m ¼ 22mþm nodes, each node in the HHC network can be uniquely represented
by a binary sequence bn�1bn�2 . . . b0, where n ¼ 2m þ m. Refer to Fig. 1, where an example with m = 2 is shown.
For convenience, bn�1bn�2 . . . b0 is expressed as a two-tuple ðS; P Þ, where S ¼ bn�1bn�2 . . . bm tells which Qm net-
work the node is located in and P ¼ bm�1bm�2 . . . b0 gives the address of the node in the located Qm network.

Let P ðlÞ ¼ bm�1 . . . blþ1
�blbl�1 . . . b0 ðSðmþlÞ ¼ bn�1 . . . bmþlþ1

�bmþlbmþl�1 . . . bmÞ denote the binary sequence
obtained by complementing bl ðbmþlÞ of P (S). An HHC network can be defined in terms of graph as follows.

Definition 2.1. The node set of an n-dimensional HHC (n-HHC for short) network is fðS; P Þ j S ¼ bn�1

bn�2 . . . bm, P ¼ bm�1bm�2 . . . b0, and bi 2 f0; 1g for all 0 6 i 6 n� 1g, where n ¼ 2m þ m and m P 1. Node
adjacency of an n-HHC network is defined as follows: ðS; P Þ is adjacent to (1) ðS; P ðlÞÞ for all 0 6 l 6 m� 1
and (2) ðSðmþdecðP ÞÞ; P Þ, where decðP Þ is the decimal value of P.
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Fig. 1. Construction of an HHC network from a Q22 network.
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Edges defined by (1) are referred to as internal edges, and those defined by (2) are referred to as external

edges. Internal edges are within Qm networks and each of external edges connects two Qm networks. Note that
an n-HHC network is ðmþ 1Þ-regular, symmetric, and has a diameter of 2mþ1 (see [20]). In subsequent discus-
sion, whenever a node A of an n-HHC network is mentioned, we use AS and AP to denote the S part and P

part of A, respectively.
In the following, we define containers and Gray codes, which will be used in the next section.

Definition 2.2 [12]. Suppose that A and B are two distinct nodes of a graph G. An ðA;BÞ-container in G is a
set of disjoint paths between A and B. The width (length) of a container is the number (maximal length) of the
paths it contains.

Definition 2.3 [11]. An m-bit Gray code, denoted by Gm, defines an ordering among all the m-bit binary num-
bers. G1 is defined as ð0; 1Þ, and for m > 1, Gm is defined recursively in terms of Gm�1 as ð0Gm�1, 1Gr

m�1Þ, where
Gr

m�1 stands for the reverse ordering of Gm�1 and 0Gm�1 ð1Gr
m�1Þ stands for prefixing each binary number in

Gm�1 ðGr
m�1Þ with 0 (1).

For example, G2 is (00, 01,11,10) and G3 is (000,001,011,010,110,111,101,100). Note that every two adja-
cent binary numbers, including the first one and the last one, in Gm differ in exactly one bit position.

3. A container of width mþ 1

Suppose that A and B are two distinct nodes of an n-HHC network. According to Menger’s theorem [1],
there are at most m + 1 disjoint paths between A and B. In this section, a maximal number (i.e., m + 1) of
disjoint paths from A to B are constructed. Since an n-HHC network is vertex-symmetric, we assume
A ¼ ð02m

; 0mÞ without losing generality, where 02m ð0mÞ represents 2m (m) consecutive 0’s. In the rest of this sec-
tion, we first introduce external edge sequences, which can be used to simplify the path representation. Then,
the construction of the container is shown, and an illustrative example is provided.

3.1. External edge sequences

Each path in an n-HHC network contains internal edges and external edges alternately. Since each path of
the container is desired to be as short as possible, each subpath of it within a Qm network is maintained shortest.
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It is easy to obtain a shortest path between any two distinct nodes of a Qm network. So, if the subpaths within
Qm networks are ignored, then a path in an n-HHC network can be simply represented by a sequence of exter-
nal edges, called an external edge sequence (EES).

For example, A¼ð0000;00Þ!� ð0000;11Þ! ð1000;11Þ!� ð1000;10Þ! ð1100;10Þ!� ð1100;01Þ! ð1110;01Þ¼B
expresses a path from A¼ð0000;00Þ to B¼ð1110;01Þ, where!� denotes a shortest path within a Q2 network.
The path contains three external edges that can be represented by their P parts, i.e., 11, 10 and 01 in sequence.
Hence, the path can be simply represented by an EES (11,10,01). Any path from A to B contains at least jBS j
external edges, where jBS j is the number of bits 1 in BS. An EES is shortest if it contains jBS j external edges. In
order to reduce the path length, a particular shortest EES, denoted by p, can be obtained from BS, as elaborated
below.

First, collect the indices i of BS ¼ b2mþm�1b2mþm�2 . . . bm with bi ¼ 1. Second, decrease each i by m, and so
0 6 i 6 2m � 1. Third, construct p by arranging all indices i (expressed in binary form) into a subsequence
of an m-bit Gray code (refer to Definition 2.3). That is, p contains only those collected indices minus m,
arranged in the order as they appear in an m-bit Gray code. For example, when m = 3 and BS ¼ 10101111,
the set of indices obtained after the second step is {0,1,2,3,5,7}. Considering a 3-bit Gray code
(000, 001,011,010,110,111,101,100), we have p ¼ ð000; 001; 011; 010; 111; 101Þ finally. Note that by Definition
2.3, we have an m-bit Gray code begins with 0m.

Suppose that t is an m-bit binary sequence contained in p. Define pt to be the shortest EES that is obtained
by cyclically shifting p toward the left until the resulting EES begins with t. For example, if p ¼ ð000;
001; 011; 010; 111; 101Þ, then p001 ¼ ð001; 011; 010; 111; 101; 000Þ and p111 ¼ ð111; 101; 000; 001; 011; 010Þ. For
those paths that contain more than j BS j external edges, their corresponding EESs are not shortest. For
example, A ¼ ð0000; 00Þ!� ð0000; 11Þ ! ð1000; 11Þ!� ð1000; 00Þ ! ð1001; 00Þ!� ð1001; 11Þ ! ð0001; 11Þ ¼ B
contains 3 > 1 ¼j BS j external edges, and so its corresponding EES, i.e., (11,00,11), is not shortest. It will
be clear later that EESs can greatly help the construction of disjoint paths.

3.2. Construction of the container

Now we show the construction of the container. First, we consider a special situation in which A and B are
located within the same Qm network, i.e., AS ¼ BS . According to Saad and Schultz’s work [24], m disjoint paths
from A to B can be obtained within the Qm network. Moreover, these m disjoint paths have maximal length
not greater than m + 1. One more disjoint path can be obtained according to the EES ð0m;BP ; 0

m;BP Þ whose
length is computed as 4þ 3dH ð0m;BP Þ 6 4þ 3m, where dH ð0m;BP Þ denotes the Hamming distance between 0m

and BP. In the rest of this section, we assume AS 6¼ BS .
Since an n-HHC network is ðmþ 1Þ-regular, each edge incident with A or B must be included in some dis-

joint path. First, we compute p ¼ ðc0; c1; . . . ; cr�1Þ according to AS and BS. One or two disjoint paths that con-
tain the two external edges incident with A or B are constructed below, depending on four cases.

Case 1. AP 2 p and BP 2 p. We have c0 ¼ 0m. Assume cz ¼ BP , where 0 6 z 6 r � 1. Two (or one if z ¼ r � 1)
disjoint paths are constructed according to pc0 and pcðzþ1Þmod r , respectively.

Case 2. AP 62 p and BP 2 p. Then, s ¼ ð0m; c0; c1; . . . ; cr�1Þ is a subsequence of an m-bit Gray code. Two dis-
joint paths are constructed according to ðs; 0mÞ and pcðzþ1Þmod r , respectively, where cz ¼ BP is assumed.

Case 3. AP 2 p and BP 62 p. We have c0 ¼ 0m. Construct h ¼ ðc0; . . . ; cu�1;BP ; cu; . . . ; cr�1Þ, where 0 6 u 6 r, so
that it is a subsequence of an m-bit Gray code. One disjoint path is constructed according to ðhBP ;BP Þ,
where hBP is obtained by cyclically shifting h toward the left until the resulting EES begins with BP.
Another disjoint path is constructed according to pc0 .

Case 4. AP 62 p and BP 62 p. One disjoint path is constructed according to ðs; 0mÞ, where s was defined in Case
2. If BP 6¼ 0m, another disjoint path is constructed according to ðhBP ;BP Þ, where hBP was defined in
Case 3.

Next, the other m � 1 or m disjoint paths are constructed. We show only the construction for Case 2 (i.e.,
AP 62 p and BP 2 p), in which m � 1 additional disjoint paths are required; the construction for the other cases
is similar. When r P m, the other m � 1 disjoint paths can be obtained according to the first m � 1 unused
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EESs of pc0 ; pc1 ; . . . ; pcr�1 . When r < m, r � 1 disjoint paths are first constructed according to the unused EESs
of pc0 ; pc1 ; . . . ; pcr�1 . Then, the remaining m� r disjoint paths are constructed by the aid of Rabin’s work [23],
as explained below.

Arbitrarily select m� r neighboring nodes of A within the same Qm network so that they were not included

in p. Without losing generality, assume that Að0ÞP , Að1ÞP , . . ., Aðm�r�1Þ
P are selected. For 0 6 l 6 m� r � 1, let

ql ¼ ðc0; . . . ; cwl�1;A
ðlÞ
P ; cwl ; . . . ; cr�1Þ be a subsequence of an m-bit Gray code, where 0 6 wl 6 r. The remaining

m� r disjoint paths can be obtained according to ðqAðlÞP
l ;AðlÞP Þs, where q

AðlÞP
l is the EES derived from cyclically

shifting ql toward the left until the resulting EES begins with AðlÞP . It was shown in [23] that there are m disjoint

paths from A (or B) to Að0ÞP ;Að1ÞP ; . . . ;Aðm�r�1Þ
P , c0, c1; . . . ; cr�1, respectively, whose maximal length is not greater

than m + 1.
A total of m + 1 paths were constructed above. They are disjoint because they traversed distinct Qm net-

works, exclusive of the first Qm network and the last Qm network where A and B reside, respectively. Their
lengths are computed as follows. The paths obtained by pc0 ; pc1 ; . . . ; pcr�1 have lengths not greater than
r þ ðmþ 1Þ þ ð2m � 1Þ þ ðmþ 1Þ, where r is the number of external edges traversed and m + 1 is an upper
bound on the number of internal edges traversed in the first (or last) Qm network. Since there are 2m binary
numbers in an m-bit Gray code, the total number of internal edges traversed in the other Qm networks is not
greater than 2m � 1.

The path obtained by ðs; 0mÞ has length not greater than ðr þ 2Þ þ 2m þ ðmþ 1Þ, as explained below. There
are r + 2 external edges traversed. No internal edges were traversed in the first Qm network and not more than
m + 1 internal edges were traversed in the last Qm network. At most 2m internal edges were traversed in the
other Qm networks. Similarly, the path obtained by ðqAðlÞP

l ;AðlÞP Þ has length not greater than ðr þ 2Þ þ 1þ
2m þ ðmþ 1Þ. To sum up, the m + 1 paths above have maximal length equal to maxf2m þ 2mþ r þ 1;
2m þ mþ r þ 4g.

The discussion above is based on Case 2. For the other cases, the path construction and length computation
are similar. The constructed m + 1 disjoint paths have maximal length equal to maxf2m þ 2mþ r þ 1;
2m þ mþ r þ 4g, maxf2m þ 2mþ r þ 1; 2m þ mþ r þ 4g and maxf2m þ 2mþ r þ 1; 2m þ mþ r þ 4g, if Case
1, Case 3 and Case 4 are considered, respectively. Consequently, the m + 1 disjoint paths from A to B have
maximal length equal to maxf2m þ 2mþ r þ 1; 2m þ mþ r þ 4g 6 maxf2mþ1 þ 2mþ 1; 2mþ1 þ mþ 4g. There-
fore, we have the following theorem.

Theorem 3.1. There exists a container of width m + 1 between any two distinct nodes of an n-HHC network

whose length is not greater than maxf2mþ1 þ 2mþ 1; 2mþ1 þ mþ 4g, where 2mþ1 is the diameter.
3.3. An illustrative example

Consider two nodes A ¼ ð00000000; 000Þ and B ¼ ð01010100; 101Þ in an 11-HHC network (i.e., m = 3).
Clearly, A and B belong to two different Qm networks and p ¼ ð010; 110; 100Þ. The construction of the
ðA;BÞ-container falls into Case 4 (AP 62 p and BP 62 p). The following two paths are constructed according
to ððs; 000Þ ¼Þ ð000; 010; 110; 100; 000Þ and ððh101; 101Þ ¼Þ ð101; 100; 010; 110; 101Þ, respectively.
P 1 : A ¼ ð00000000; 000Þ ! ð00000001; 000Þ!� ð00000001; 010Þ ! ð00000101; 010Þ!�

ð00000101; 110Þ ! ð01000101; 110Þ!� ð01000101; 100Þ ! ð01010101; 100Þ!�

ð01010101; 000Þ ! ð01010100; 000Þ!� ð01010100; 101Þ ¼ B:

P 2 : A ¼ ð00000000; 000Þ!� ð00000000; 101Þ ! ð00100000; 101Þ!� ð00100000; 100Þ !

ð00110000; 100Þ!� ð00110000; 010Þ ! ð00110100; 010Þ!� ð00110100; 110Þ !

ð01110100; 110Þ!� ð01110100; 101Þ ! ð01010100; 101Þ ¼ B:
Since r ¼ 3 P 3 ¼ m, two more disjoint paths are constructed according to ðp010 ¼Þð010; 110; 100Þ and
ðp100 ¼Þ ð100; 010; 110Þ, respectively, as shown below.
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P 3 : A ¼ ð00000000; 000Þ!� ð00000000; 010Þ ! ð00000100; 010Þ!� ð00000100; 110Þ !
ð01000100; 110Þ!� ð01000100; 100Þ ! ð01010100; 100Þ!� ð01010100; 101Þ ¼ B:

P 4 : A ¼ ð00000000; 000Þ!� ð00000000; 100Þ ! ð00010000; 100Þ!� ð00010000; 010Þ !
ð00010100; 010Þ!� ð01010100; 110Þ ! ð01010100; 110Þ!� ð01010100; 101Þ ¼ B:
The length of P1 is computed as 5þ dH ð000; 010Þ þ dH ð010; 110Þ þ dH ð110; 100Þ þ dHð100; 000Þþ
dH ð000; 101Þ ¼ 11, where 5 is the number of external edges traversed. Similarly, P2, P3 and P4 have lengths
equal to 13, 7 and 9, respectively.

3.4. Experimental results

In this section, we compare the performance and cost of the crossbar [25], fat-tree [17] and HHC network,
each with 64 processors. Table 1 shows their bisection widths, latencies, numbers of switches, and numbers
of ports per switch. The bisection width [16] of a network is the minimum number of links whose removal can
partition the network into two halves with identical (within one) numbers of processors. The bisection width
is often a critical factor in determining the speed with which a network can perform a calculation. This is due
to the fact that for many problems, the data contained and/or computed by one half of the network may be
needed by the other half before the overall computation can be completed. On the other hand, the latency
[15] is the time required for a (destination) node to receive all the messages transmitted from another (source)
node. In the experiment of Table 1, the latency was calculated for transmitting 10000 messages between two far-
thest nodes. Moreover, there were one, two and three node-disjoint paths between the source and the destination
nodes of the crossbar, fat-tree and HHC network, respectively. They all were used for message transmission.

Fig. 2 further shows the latencies of the crossbar, fat-tree and HHC network for transmitting 1, 10,
100, 1000 and 10000 messages. All messages were transmitted between two farthest nodes, using the
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store-and-forward strategy. We assumed that it took 0.25 ls for a message to pass through each switch. The
length of each message was assumed to be 20 bytes, and the transmission rate for each link was assumed to be
20 MB/s. For the fat-tree and HHC network, the messages to be transmitted were distributed evenly over the
node-disjoint paths. The time required for a node to transmit or receive a message was ignored. As revealed
from Fig. 2, the HHC network has lower latency than the crossbar and the fat-tree as the numbers of messages
are greater than 100 and 1000, respectively.

4. Discussion and conclusion

The hierarchical hypercube network, which was originally proposed in [19–21] for building massively par-
allel systems, owns many favorable topological properties. Besides, it can perform one-to-one communication,
one-to-all communication and divide-and-conquer algorithms efficiently. In [20,21], it was compared with the
hypercube and the CCC networks for three metrics: degree, number of edges, and diameter. It has a low num-
ber of connections per processor, which can enhance the feasibility of VLSI design and fabrication. It also has
a more compact VLSI layout than the hypercube network, which can reduce the fabrication cost and increase
the chip turnout.

In this paper, we constructed a container of maximal width m + 1 in a hierarchical hypercube network with
22mþm nodes (i.e., an n-HHC network with n ¼ 2m þ m). The length of the container, which counts the total
number of internal edges and external edges traversed, is greater than the diameter ð¼ 2mþ1Þ by
maxf2mþ 1;mþ 4g in the worst case. The number of external edges traversed is rð¼j BS jÞ or r + 2, whereas
the number of internal edges traversed relies on the EESs used. We estimated the container length for a worst-
case scenario, in which r ¼ 2m and the total number of internal edges traversed is 2m � 1. Really, there are
dH ðci; ciþ1Þ internal edges traversed for any two adjacent m-bit binary sequences ci, ciþ1 in an EES.

For the example of Section 3.3, the lengths of P1, P2, P3 and P4 are estimated as ðr þ 2Þ þ 2m þ ðmþ 1Þ,
ðr þ 2Þ þ ðmþ 1Þ þ 2m, r þ ðmþ 1Þ þ ð2m � 1Þ þ ðmþ 1Þ and r þ ðmþ 1Þ þ ð2m � 1Þ þ ðmþ 1Þ, respectively,
whose maximum is maxf2m þ mþ r þ 3; 2m þ 2mþ r þ 1g. Since m = 3 and r = 3, the length of the ðA;BÞ-con-
tainer is estimated as 18, compared with 13, the real length of the ðA;BÞ-container. Further, the estimation of
the container length in Theorem 3.1 took r ¼ 2m with the worst-case consideration.

Recall that the numbers of internal edges traversed in the first Qm network and the last Qm network were
estimated as m + 1 according to Rabin’s work [23]. In fact, when r approaches 2m, far fewer than m + 1 inter-
nal edges are traversed in the two Qm networks. This overestimation causes that the estimated container length
is greater than the diameter by maxf2mþ 1;mþ 4g in the worst case. It is a challenging problem how to make
a more accurate estimation when r is large.

The ðj� 1Þ-fault diameter of a graph G was defined to be the maximal diameter of G with at most j� 1
nodes removed [12], where j is the node connectivity of G. Theorem 3.1 provides an upper bound of
maxf2mþ1 þ 2mþ 1; 2mþ1 þ mþ 4g on the m-fault diameter of an n-HHC network. A lower bound on the
ðj� 1Þ-fault diameter of G can be easily derived by computing the distance between two particular nodes
in G with j� 1 nodes removed.

Consider two nodes A ¼ ð02m
; 0mÞ and B ¼ ð12m�10; 0mÞ in an n-HHC network, and remove the m neighbor-

ing nodes of A within the same Qm network. The remaining neighboring node of A is ð02m�11; 0mÞ. Thus, the
distance between A and B is at least 2ð2m þ 1Þ � 1 ¼ 2mþ1 þ 1, which is a lower bound on the m-fault diameter
of an n-HHC network. It is an interesting problem how to narrow down the gap between the upper bound and
the lower bound of the m-fault diameter of an n-HHC network.

Finally, before ending this paper, more further research problems on the hierarchical hypercube network
are suggested. There are some interesting combinatorial and topological problems, e.g., Rabin number
[4,14], wide diameter [2,13], hamiltonicity [7,8,18] and pancyclicity [5,26]. They are still open for the hierarchi-
cal hypercube network.
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