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COMPLEX SPHERICAL WAVES FOR THE ELASTICITY SYSTEM
AND PROBING OF INCLUSIONS∗

GUNTHER UHLMANN† AND JENN-NAN WANG‡

Abstract. We construct complex geometrical optics solutions for the isotropic elasticity system
concentrated near spheres. We then use these special solutions, called complex spherical waves, to
identify inclusions embedded in an isotropic, inhomogeneous, elastic background.
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1. Introduction. Let Ω ⊂ R
3 be an open bounded domain with smooth bound-

ary. The domain Ω is modeled as an inhomogeneous, isotropic, elastic medium char-
acterized by the Lamé parameters λ(x) and μ(x). Assume that λ(x) ∈ C2(Ω), μ(x) ∈
C4(Ω) and the following inequalities hold:

μ(x) > 0 and λ(x) + 2μ(x) > 0 ∀ x ∈ Ω (strong ellipticity).(1.1)

We consider the static isotropic elasticity system without sources:

Lu := ∇ · (λ(∇ · u)I + 2μ Sym(∇u)) = 0 in Ω,(1.2)

where Sym(A) = (A + AT )/2 denotes the symmetric part of the matrix A ∈ C
3×3.

Equivalently, if we denote σ(u) = λ(∇ · u)I + 2μ Sym(∇u) to be the stress tensor,
then (1.2) becomes

Lu = ∇ · σ = 0 and Ω.

On the other hand, since the Lamé parameters are differentiable, we can also write
(1.2) in the nondivergence form

Lu = μΔu + (λ + μ)∇(∇ · u) + ∇λ∇ · u + 2Sym(∇u)∇μ = 0 in Ω.(1.3)

Special types of solutions for elliptic equations or systems have played an im-
portant role in inverse problems since the pioneering work of Calderón [2]. In 1987,
Sylvester and Uhlmann [21] introduced complex geometrical optics solutions to solve
the inverse boundary value problem for the conductivity equation. For system (1.2),
complex geometrical optics solutions were constructed in [5], using [4], and in [16],
[17], and [18]. In [16], [17], and [18] the authors introduced an intertwining technique
using pseudodifferential operators. In both [5] and [16], [17], [18], the phase functions
of the complex geometrical optics solutions are linear. Other types of special solutions,
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called oscillating-decaying solutions, were constructed for general elliptic systems in
[19] and [20]. These oscillating-decaying solutions have been used in solving inverse
problems, particularly in detecting inclusions and cavities [19].

In developing the theory for inverse boundary value problems with partial or lo-
cal measurements, the authors of [7] and [14] gave, respectively, approximate complex
geometrical optics solutions concentrated near hyperplanes and near hemispheres for
the Schrödinger equation. In [14], the construction was based on hyperbolic geome-
try and was applied in [8] to construct complex geometrical optics solutions for the
Schrödinger equation where the real part of the phase function is a radial function, i.e.,
its level surfaces are spheres. They call these solutions complex spherical waves. The
hyperbolic geometry approach does not work for the Laplacian with first order per-
turbations such as the Schrödinger equation with magnetic potential and the isotropic
elasticity equation (1.2) (see below). Recently, complex geometrical optics solutions
with more general phase functions were constructed in [15] for the Schrödinger equa-
tion and in [3] for the Schrödinger equation with magnetic potential. The method
used in [15] and [3] relies on Carleman-type estimates, which is a more flexible tool in
treating lower order perturbations. Hence, we shall apply the method in [15] and [3]
to construct complex geometrical optics solutions for (1.2) with the real part of the
phase function being a radial function, i.e., complex spherical waves.

With these complex spherical waves at hand, we can study the inverse problem
of detecting unknown inclusions inside an elastic body with known isotropic back-
ground medium. The investigation of this inverse problem is motivated by [8], in
which the same problem was treated for the conductivity equation. There are several
results, both theoretical and numerical, concerning the object identification problem
by boundary measurements for the conductivity equation. We will not try to give
a full account of these developments here. For detailed references, we refer to [8].
For the elasticity system, we will compare our result to some existing ones. In [10],
Ikehata generalized his probe method to the isotropic elasticity system. Ikehata’s
probe method is based on singular solutions and Runge’s approximation property
(which is closely related to the unique continuation property). These ideas are due
to Isakov [13]. On the other hand, for the general (anisotropic) elasticity system, a
reconstruction method using oscillating-decaying solutions was given by the authors
in [19]. The method in [19] shares the same spirit as Ikehata’s enclosure method
(see Ikehata’s survey article [9]). Both methods enable us to reconstruct the support
function of the inclusion by the Dirichlet-to-Neumann map. It should be noted that
Runge’s property was used in [19]. Ikehata’s results on the enclosure method did
not rely on Runge’s property because he used the Laplacian as the background and
explicit complex geometrical optics solutions are available for this case. Our approach
here lies between the method in [19] and Ikehata’s enclosure method in the sense that
we treat the isotropic elasticity without using Runge’s property. Furthermore, since
we probe the region by complex spherical waves, it is possible to recover some con-
cave parts of inclusions. Also, as in [8], we can localize the measurements with these
complex spherical waves.

This paper is organized as follows. In section 2, (1.2) or (1.3) is transformed to
a system of dimension four, and a Carleman estimate is derived for the new system.
The construction of complex spherical waves for (1.2) is given in section 3. The study
of the inverse problem is carried out in section 4.

2. Carleman estimate and its consequence. It suffices to work with system
(1.3) here. Since the leading order of (1.3) is strongly coupled, we want to find
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a reduced system whose leading part is decoupled (precisely, the Laplacian), and
solutions of (1.3) can be constructed more easily. We will use the reduced system
derived by Ikehata [11]. This reduction had already been mentioned in [22]. Let
W = (w

g ) satisfy

PW := Δ

(
w
g

)
+ Ã1(x)

(
∇g
∇ · w

)
+ Ã0(x)

(
w
g

)
= 0,(2.1)

where

Ã1(x) =

(
2μ−1/2(−∇2 + Δ)μ−1 −∇ logμ

0 λ+μ
λ+2μμ

1/2

)
and

Ã0(x) =

(
−μ−1/2(2∇2 + Δ)μ1/2 2μ−5/2(∇2 − Δ)μ ∇μ

− λ−μ
λ+2μ (∇μ1/2)T −μΔμ−1

)
.

Here ∇2f is the Hessian of the scalar function f . Then

u := μ−1/2w + μ−1∇g − g∇μ−1

satisfies (1.3). A similar form was also used in [5] for studying the inverse boundary
value problem for the isotropic elasticity system.

With (2.1) at hand, we now consider the matrix operator Ph = −h2P . More
precisely, we have

Ph = (hD)2 + ihA1(x)

(
hD
hD·

)
+ h2A0,

where D = −i∇, A1 = −Ã1, and A0 = −Ã0. Later on we shall denote the matrix
operator

iA1(x)

(
hD
hD·

)
= A1(x, hD).

To construct complex geometrical optics solutions, we will follow closely the papers
[3] and [15]. The construction here is simpler than the one given in [16], [17], where
the technique of intertwining operators was first introduced. Furthermore, we do not
need to work with C∞ coefficients here. As in [3] and [15], we will use semiclassical
Weyl calculus. Our goal here is to derive a Carleman estimate with semiclassical H−2

norm for Ph.
The conjugation of Ph with eϕ/h is given by

eϕ/h ◦ Ph ◦ e−ϕ/h = (hD + i∇ϕ)2 + hA1(x, hD + i∇ϕ) + h2A0(x).

We first consider the leading operator (hD + i∇ϕ)2 and denote

(hD + i∇ϕ)2 = A + iB,

where A = (hD)2 − (∇ϕ)2 and B = ∇ϕ ◦hD+hD ◦∇ϕ. The Weyl symbols of A and
B are given as

a(x, ξ) = ξ2 − (∇ϕ)2 and b(x, ξ) = 2∇ϕ · ξ,
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respectively. Let Ω0 be an open bounded domain such that Ω̄ ⊂ Ω0. Accordingly, we
extend λ and μ to Ω0 by preserving their smoothness. We now let ϕ have nonvanishing
gradient in Ω0 and be a limit Carleman weight in Ω0:

{a, b} = 0 when a = b = 0,

i.e.,

〈ϕ′′|∇ϕ⊗∇ϕ + ξ ⊗ ξ〉 = 0 when ξ2 = (∇ϕ)2 and ∇ϕ · ξ = 0.

In order to get positivity in proving the Carleman estimate, we will modify the
weight ϕ as in [3] and [15]. Let us denote ϕε = ϕ + hϕ2/(2ε), where ε > 0 will
be chosen later. Also, we denote aε and bε to be the corresponding symbols as ϕ is
replaced by ϕε. Then one can easily check that

{aε, bε} =
4h

ε

(
1 +

h

ε
ϕ

)2

(∇ϕ)4 > 0 when aε = bε = 0.

Arguing as in [15], we get

{aε, bε} =
4h

ε

(
1 +

h

ε
ϕ

)2

(∇ϕ)4 + α(x)aε + β(x, ξ)bε,

where β(x, ξ) is linear in ξ. Therefore, at the operator level, we have

i[Aε, Bε] =
4h2

ε

(
1 +

h

ε
ϕ

)2

(∇ϕ)4 +
h

2
(α ◦Aε + Aε ◦ α)(2.2)

+
h

2
(βw ◦Bε + Bε ◦ βw) + h3c(x),

where βw denotes the Weyl quantization of β.
With the help (2.2), we now can estimate

‖(Aε + iBε)V ‖2 = ‖AεV ‖2 + ‖BεV ‖2 + i〈BεV |AεV 〉 − i〈AεV |BεV 〉
for V ∈ C∞

0 (Ω). Here and below, we define the norm ‖ ·‖ and the inner 〈· | ·〉 in terms
of L2(Ω). Integrating by parts, we conclude

〈BεV |AεV 〉 = 〈AεBεV |V 〉 and 〈AεV |BεV 〉 = 〈BεAεV |V 〉.(2.3)

On the other hand, we observe that

‖h∇V ‖2 = 〈AεV |V 〉 + ‖
√

(∇ϕ)V ‖2 � ‖AεV ‖2 + ‖V ‖2(2.4)

and the obvious estimate

‖(h∇)2V ‖2 � ‖AεV ‖2 + ‖V ‖2.(2.5)

Using (2.2), (2.3), (2.4), and (2.5) gives

‖(Aε + iBε)V ‖2

� ‖AεV ‖2 + ‖BεV ‖2 +
h2

ε
‖V ‖2 − h(‖AεV ‖‖V ‖ + ‖BεV ‖‖h∇V ‖)

� ‖AεV ‖2 + ‖BεV ‖2 +
h2

ε
‖V ‖2 − 1

2
‖AεV ‖2 − h2

2
‖V ‖2 − 1

2
‖BεV ‖2

−h2

2
(‖AεV ‖2 + ‖V ‖2)

�
(

1 −O

(
h2

ε

))
‖AεV ‖2 +

h2

ε
(‖AεV ‖2 + ‖V ‖2).
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Thus, taking h and ε (h � ε) sufficiently small, we arrive at

‖(Aε + iBε)V ‖2 � h2

ε
(‖V ‖2 + ‖h∇V ‖2 + ‖(h∇)2V ‖2),

namely,

‖(Aε + iBε)V ‖2 � h2

ε
‖V ‖2

H2
h(Ω).(2.6)

Here we define the semiclassical Sobolev norms

‖v‖2
Hm

h (Ω) =
∑

|α|≤m

‖(h∇)αv‖2 ∀ m ∈ N

and

‖v‖2
Hs

h(R3) =

∫
(1 + |hξ|2)s|v̂(ξ)|2dξ = ‖〈hD〉sv‖2 ∀ s ∈ R.

Now let Ω1 be open and Ω̄ ⊂ Ω1 ⊂ Ω0. The estimate (2.6) also holds for V ∈
C∞

0 (Ω1). Then, as done in [3], we can obtain that

h2

ε
‖V ‖2

H2
h(R3) � ‖(Aε + iBε)〈hD〉2V ‖2

H−2
h (R3)

.(2.7)

To add the first order perturbation hA1,εV +h2A0V = hA1(x, hD+ i∇ϕε)V +h2A0V
into (2.7), we note that

‖(hA1,ε + h2A0)〈hD〉2V ‖2
H−2

h (R3)
� h2‖V ‖2

H1
h(R3).(2.8)

In view of (2.8), we get from (2.7) that

‖(Aε + iBε + hA1,ε + h2A0)〈hD〉2V ‖2
H−2

h (R3)
� h2‖〈hD〉2V ‖2,(2.9)

provided ε � 1. Transforming back to the original operator, (2.9) is equivalent to

‖〈hD〉2V ‖ � h‖eφε/hPe−ϕε/h〈hD〉2V ‖H−2
h (R3)(2.10)

for V ∈ C∞
0 (Ω1).

Let χ ∈ C∞
0 (Ω1) with χ = 1 on Ω and W ∈ C∞

0 (Ω). Substituting V = χ〈hD〉−2W
into (2.10) and using the property that

‖(1 − χ)〈hD〉−2W‖Hs
h

= O(h∞)‖W‖

for any s ∈ R, we get that

‖W‖ � h‖eφε/hPe−ϕε/hW‖H−2
h (R3).(2.11)

Now since eϕε/h = eϕ
2/εeϕ/h and eϕ

2/ε = O(1), (2.11) becomes

‖W‖ � h‖eφ/hPe−ϕ/hW‖H−2
h (R3).(2.12)

Note that (2.12) also holds when ϕ is replaced by −ϕ. Therefore, by the Hahn–Banach
theorem, we have the following existence theorem.

Theorem 2.1. For h sufficiently small, for any F ∈ L2(Ω), there exists V ∈
H2

h(Ω) such that

eϕ/hPh(e−ϕ/hV ) = F

and h‖V ‖H2
h(Ω) � ‖F‖L2(Ω).
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3. Construction of complex spherical waves. In this section we will con-
struct complex spherical waves for the elasticity system (1.3). We apply the method
of [3] and [15] to our system here. We will work with the reduced system (2.1). Let
ψ be a solution of the eikonal equation

a(x,∇ψ) = b(x,∇ψ) = 0 ∀ x ∈ Ω,

i.e., {
(∇ψ)2 = (∇ϕ)2

∇ϕ · ∇ψ = 0
∀ x ∈ Ω.(3.1)

Since {a, b} = 0 on a = b = 0, there exists a solution to (3.1). To construct complex
spherical waves, we choose the limit Carleman weight

ϕ(x) = log |x− x0| for x0 /∈ ch(Ω);

then a solution of (3.1) is

ψ(x) =
π

2
− arctan

ω · (x− x0)√
(x− x0)2 − (ω · (x− x0))2

= dS2

(
x− x0

|x− x0|
, ω

)
,

where ch(Ω) := convex hull of Ω and ω ∈ S
2 such that ω �= (x − x0)/|x − x0| for all

x ∈ Ω [3]. We can be more explicit in the choices of ϕ and ψ. In fact, by suitable
translation and rotation, we can take x0 = 0, ω = (1, 0, 0) and set z = x1 + i|x′| with
x′ = (x2, x3); then ϕ + iψ = log z (see [3, Remark 3.1]). Having found ψ, we look for
U = e−(ϕ+iψ)/h(L + R) satisfying

(−h2Δ + h2A1(x,D) + h2A0(x))U = 0 in Ω.

Equivalently, we need to solve

e(ϕ+iψ)/hPh(e−(ϕ+iψ)/h(L + R)) = 0 in Ω.

We can compute that

e(ϕ+iψ)/hPhe
−(ϕ+iψ)/h

= ((hD −∇ψ)2 − (∇ϕ)2) + i(∇ϕ · (hD −∇ψ) + (hD −∇ψ) · ∇ϕ)

+ h2A1(x,D) + hA1(x, i∇ϕ−∇ψ) + h2A0

= h(−∇ψ ·D −D · ∇ψ + i∇ϕ ·D + iD · ∇ϕ + A1(x, i∇ϕ−∇ψ)) + Ph

= hQ + Ph,

where Q = −∇ψ · D − D · ∇ψ + i∇ϕ · D + iD · ∇ϕ + A1(x, i∇ϕ − ∇ψ). Hence we
want to find L, independent of h, so that

QL = 0 in Ω.(3.2)

Equation (3.2) is a system of Cauchy–Riemann type. In fact, in view of the choices
of ϕ and ψ above, (3.2) is equivalent to

∂z̄L + Ã(z, θ)L = 0 in Ω,(3.3)
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where Ã(z, θ) is a C2 matrix-valued function. Here we have used the cylindrical
coordinates for R

3, i.e., x = (x1, r, θ) ∈ R × R+ × S
1, and z = x1 + ir. Using the

results in [4], [6], or [18], one can find an invertible 4×4 matrix G(x) ∈ C2(Ω) satisfying
(3.2). For the sake of clarity, we outline the proof of the existence of G. We refer to,
for example, [6, pp. 59–60] for more detailed arguments. It suffices to consider (3.3).
Let M > 0 satisfy Ω̄ ⊂ {(x1, r, θ) : |x1| ≤ M, 0 ≤ r ≤ M, θ ∈ S

1} := U . Without

restriction, we can assume that (3.3) holds in U by suitably extending the matrix Ã.
By using cut-off functions with sufficiently small supports, one can show that G exists
near z0 = x0

1 + ir0, with |x0
1| < M, 0 < r0 < M , and depends C2 smoothly on θ for

all θ ∈ S
1. To construct a global invertible G in U , we simply patch local solutions

together with the help of Cartan’s lemma.
So L can be chosen from columns of G. Then R is required to satisfy

eϕ/hPh(e−(ϕ+iψ)/hR) = −e−iψ/hPhL.(3.4)

Note that ‖e−iψ/hPhL‖ � h2. Thus Theorem 2.1 implies that

‖e−iψ/hR‖H2
h(Ω) � h,(3.5)

which leads to

‖∂αR‖L2(Ω) � h1−|α| for |α| ≤ 2.(3.6)

So if we write L = ( �
d ) and R = ( r

s ) with �, r ∈ C
3, then

w = e−(ϕ+iψ)/h(� + r) and g = e−(ϕ+iψ)/h(d + s),

where r and s satisfy the estimate (3.6). Therefore, u = μ−1/2w + μ−1∇g − g∇μ−1

is the complex spherical wave for (1.3).
Remark 3.1. Even though the four-vector ( �

d ) is nonzero in Ω, we cannot conclude
that both � and d never vanish in Ω. However, for any point y ∈ Ω, it is easy to show
that there exists a small ball Bδ(y) of y with Bδ(y) ⊂ Ω such that one can find a
pair of � and d which does not vanish in Bδ(y). We will use this fact in studying our
inverse problem in the next section.

4. Probing for inclusions. In this section we shall apply the complex spherical
waves we constructed above to the problem of identifying the inclusion embedded
inside an elastic body with isotropic medium. We now begin to set up the problem.
Let D be an open subset of Ω with Lipschitz boundary satisfying the facts that
D ⊂⊂ Ω and Ω \ D is connected. Assume that λ0(x) ∈ C2(Ω) and μ0(x) ∈ C4(Ω)
satisfy the strong convexity condition, i.e.,

3λ0(x) + 2μ0(x) > 0 and μ0(x) > 0 ∀ x ∈ Ω.(4.1)

It is obvious that (4.1) implies (1.1). On the other hand, we assume that λ̃(x), μ̃(x)
are two essentially bounded functions such that either

μ̃ ≥ 0 and 3λ̃ + 2μ̃ ≥ 0 a.e. in D

or

μ̃ ≤ 0 and 3λ̃ + 2μ̃ ≤ 0 a.e. in D.



1974 GUNTHER UHLMANN AND JENN-NAN WANG

For our inverse problem here, we shall also assume appropriate jump conditions across
∂D:

For y ∈ ∂D, there exists a ball Bε(y) such that one of the following
conditions holds:⎧⎪⎪⎪⎨⎪⎪⎪⎩

(μ+) : μ̃ > ε, 3λ̃ + 2μ̃ ≥ 0

(λ+) : μ̃ = 0, λ̃ > ε

(μ−) : μ̃ < −ε, 3λ̃ + 2μ̃ ≤ 0

(λ−) : μ̃ = 0, λ̃ < −ε

∀ x ∈ Bε(y) ∩D.
(4.2)

To make sure that the forward problem is well-posed, we suppose that λ = λ0 +
χDλ̃ and μ = μ0 +χDμ̃ satisfy (4.1) a.e. in Ω, where χD is the characteristic function
of D. Therefore, for any f ∈ H1/2(∂Ω), there exists a unique (weak) solution u to{

LDu = 0 in Ω,

u = f on ∂Ω.

Here the elastic operator LD is defined in terms of λ and μ. The Dirichlet-to-Neumann
map related to LD is now defined as

ΛD : f → σ(u)ν|∂Ω,

where ν is the unit outer normal of ∂Ω and for x ∈ ∂Ω

σ(u) = λ(∇ · u)I + 2μ Sym(∇u) = λ0(∇ · u)I + 2μ0 Sym(∇u).

Now assume that all parameters are known except λ̃, μ̃, and D. The inverse problem
is to determine D by ΛD. This inverse problem was studied by Ikehata [10] with the
so-called probe method. However, as we mentioned in the introduction, this method
relies on Runge’s approximation property, which is difficult to realize in practice. In
this paper we approach this inverse problem from a different viewpoint. We would
like to get partial information of D by local measurements. Our main tool is the use
of complex spherical waves to probe for the inclusions. One of the advantages of our
method is that we do not need Runge’s property, and we can quickly determine roughly
where the inclusion is located by only a few measurements that can be advantageous
in practical applications.

We first derive some integral inequalities that we need. Let Λ0 be the Dirichlet-
to-Neumann map related to L0, where L0 is the elastic operator defined in terms of
λ0 and μ0. Assume that u0 is the solution of{

L0u0 = 0 in Ω,

u0 = f on ∂Ω.
(4.3)

Then we have the following inequalities:∫
D

{
3λ0 + 2μ0

3(3λ + 2μ)

(
3λ̃ + 2μ̃

)
|∇ · u0|2 + 2

μ0

μ
μ̃

∣∣∣∣Sym(∇u0) −
∇ · u0

3
I

∣∣∣∣2
}
dx

≤ 〈(ΛD − Λ0)f, f〉

≤
∫
D

{
3λ̃ + 2μ̃

3
|∇ · u0|2 + 2μ̃

∣∣∣∣Sym(∇u0) −
∇ · u0

3
I

∣∣∣∣2
}
dx(4.4)
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(see [10, Proposition 5.1]). The plan now is to plug complex spherical waves u0 given
in Ω with parameters h > 0 and t > 0, denoted by u0,h,t, into (4.4). For brevity, we
will suppress the subscript 0 and denote u0,h,t = uh,t. We set uh,t = elog t/hv and

vh = μ
−1/2
0 w+μ−1

0 ∇g−g∇μ−1
0 with w = e−(ϕ+iψ)/h(�+r) and g = e−(ϕ+iψ)/h(d+s),

where W = (w
g ) satisfies PW = 0 in Ω with λ, μ being replaced by λ0, μ0 (see (2.1)).

Recall that r and s satisfy (3.6). Furthermore, for any x ∈ Ω, we can choose a
neighborhood of x such that �(x) and d(x) never vanish in such a neighborhood. In
view of (4.4), we need to compute ∇ · uh,t and Sym(∇uh,t) in detail. We note that

Δg = −μ
1/2
0

λ0 + μ0

λ0 + 2μ0
∇ · w + b0 · w + c0g,(4.5)

where (b0, c0) is the bottom row of A0. From (4.5) we have

∇ · vh

= ∇μ
−1/2
0 · w + μ

−1/2
0 ∇ · w + ∇μ−1

0 · ∇g + μ−1
0 Δg −∇g · ∇μ−1

0 − gΔμ−1
0

= ∇μ
−1/2
0 · w + μ

−1/2
0 ∇ · w + μ−1

0 Δg − gΔμ−1
0

= (∇μ
−1/2
0 + μ−1

0 b0) · w + μ
−1/2
0

(
1 − λ0 + μ0

λ0 + 2μ0

)
∇ · w + (μ−1

0 c0 − Δμ−1
0 )g

= e−(ϕ+iψ)/h

{
(∇μ

−1/2
0 + μ−1

0 b0) · (� + r) − μ
−1/2
0

(
1 − λ0 + μ0

λ0 + 2μ0

)
∇ϕ + i∇ψ

h
· (� + r)

+ μ
−1/2
0

(
1 − λ0 + μ0

λ0 + 2μ0

)
∇ · (� + r) + (μ−1

0 c0 − Δμ−1
0 )(d + s)

}
.

(4.6)

Next we observe that

Sym(∇vh) = Sym(∇μ
−1/2
0 ⊗ w) + μ

−1/2
0 Sym(∇w) + μ−1

0 ∇2g − g∇2μ−1
0

and hence

Sym(∇vh)

= e−(ϕ+iψ)/h

{
Sym(∇μ

−1/2
0 ⊗ (� + r)) − 1

h
μ
−1/2
0 Sym((∇ϕ + i∇ψ) ⊗ (� + r))

+ μ
−1/2
0 Sym(∇(� + r)) + μ−1

0 ∇2(d + s) − μ−1
0

1

h
(d + s)∇2(ϕ + iψ)

− μ−1
0

2

h
Sym(∇(ϕ + iψ) ⊗∇(d + s)) + μ−1

0

1

h2
∇(ϕ + iψ) ⊗∇(ϕ + iψ)(d + s)

− (d + s)∇2μ−1
0

}
,

(4.7)

where (a⊗ b)jk = (ajbk) for 1 ≤ j, k ≤ 3.
We are now in a position to discuss the inverse problem. Recall that ϕ = log |x−

x0| with x0 /∈ ch(Ω). Let fh,t be the boundary value of uh,t on ∂Ω and denote

E(h, t) = |〈(ΛD − Λ0)fh,t, fh,t〉|.
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Our main result for the inverse problem is the following.
Theorem 4.1. Assume that the jump condition (4.2) holds. For t > 0 and

sufficiently small h, we have the following:
(i) If dist(D,x0) =: d0 > t, then E(h, t) ≤ Ca1/h for some constants C > 0 and

a < 1.
(ii) If d0 < t, then E(h, t) ≥ Cb1/h for some constants C > 0 and b > 1 with

appropriate choices of fh,t.

(iii) If D ∩Bt(x0) = y, then{
C ′h−1 ≤ E(h, t) ≤ Ch−3 if (μ±) holds near y,

C ′h ≤ E(h, t) ≤ Ch−1 if (λ±) holds near y,
(4.8)

provided � and d of uh,t do not vanish near y.
Proof. To prove the theorem, we simply substitute uh,t into (4.4). The key

observation comes from (4.6) and (4.7). We consider only the cases (μ+) and (λ+) of
(4.2) here. The same arguments work for (μ−) and (λ−) of (4.2). The only change is
to use integral inequalities obtained by multiplying “−” on (4.4). If (μ+) holds, then
the leading terms of two integrals in (4.4) come from Sym(∇uh,t) and are determined
by

1

h4

(
t

|x− x0|

)2/h

((∇ϕ)2 + (∇ψ)2)2|d|2 =
4

h4

(
t

|x− x0|

)2/h

(∇ϕ)4|d|2.(4.9)

On the other hand, if (λ+) holds, then the leading terms in those integrals in (4.4)
come from ∇ · uh,t and are governed by

2

h2

(
t

|x− x0|

)2/h

(∇ϕ)2|�|2.(4.10)

Using (4.4), (4.9), and (4.10), the proof of (i) follows easily from

E(h, t) ≤ C
1

h4

(
t

d0

)2/h

when (μ+) holds

and

E(h, t) ≤ C
1

h2

(
t

d0

)2/h

when (λ+) holds.

For the proof of (ii), we pick a small ball Bδ ⊂⊂ Bt(x0) ∩D such that the jump
conditions (μ+) or (λ+) hold in Bδ and �(x), d(x) of uh,t never vanish in Bδ(x). The
latter property is guaranteed by Remark 3.1. For such choice of � and d, the Dirichlet
data is a priori given by

fh,t = uh,t|∂Ω = e(log t−ϕ−iψ)/h(� + d)|∂Ω.

Thus, argued as above, we have that either

E(h, t) ≥ C
1

h4

(
t

d0

)2/h

when (μ+) holds
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or

E(h, t) ≥ C
1

h2

(
t

d0

)2/h

when (λ+) holds,

which implies (ii).
Now let y ∈ D ∩ Bt(x0) and choose a ball Bε(y) such that (4.2) holds and �(x),

d(x) of uh,t never vanish in Bε(y) ∩D. Pick a small cone with vertex at y, say Γ, so
that there exists an η > 0 satisfying

Γη := Γ ∩ {0 < |x− y| < η} ⊂ Bε(y) ∩D.

We observe that if x ∈ Γη with |x− y| = ρ < η, then |x− x0| ≤ ρ + t, i.e.,

1

|x− x0|
≥ 1

ρ + t
.

Thus, for the case (μ+), we get that from (4.4) and (4.9)

E(h, t) ≥ C
1

h4

∫
D

μ̃2(∇ϕ)4|d|2
(

t

|x− x0|

)2/h

dx

≥ Cε
1

h4

∫ η

0

(
t

ρ + t

)2/h

ρ2dρ(4.11)

≥ Cεh−1.

On the other hand, we can choose a cone Γ̃ with vertex at x0 such that D ⊂ Γ̃∩{|x−
x0| > t}. Hence, we can estimate

E(h, t) ≤ C
1

h4

∫
Γ̃∩{t<|x−x0|<t+η}

(
t

|x− x0|

)2/h

dx

+ C
1

h4

∫
Γ̃∩{t+η≤|x−x0|}

(
t

|x− x0|

)2/h

dx

(4.12)

≤ C
1

h4

∫ t+η

t

(
t

r

)2/h

r2dr + O

((
t

t + η

)2/h
)

≤ Ch−3.

Combining (4.11) and (4.12) yields the first estimate of (4.8). Using similar argu-
ments, we can get the second estimate of (4.8) for the case (λ+).

Remark 4.1. (1) Using Theorem 4.1, we can clearly determine whether the prob-
ing front {|x − x0| = t} intersects the inclusion. In view of (iii) of the theorem, it is
also possible to determine whether we have material jumps in μ or λ when the front
touches the boundary of the inclusion.

(2) In the proofs of (ii) and (iii) we need to choose � and d, which are nonvanishing
in small subdomains of Ω. Since � and d depend only on the known background
medium, they can be chosen to be nonvanishing near any point in Ω at our disposal.
In fact, it suffices to take � and d, which are nonvanishing near the probe front
{|x − x0| = t}. Different choices of � and d will give rise to different Dirichlet data
fh,t and therefore different measurements.
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(3) In real applications, we believe that the concerns in (ii) and (iii) can be
ignored.

Taking advantage of the decay of the complex spherical waves in the region {|x−
x0| > t}, we can localize the measurements, which is of great practical value. Let
φδ,t(x) ∈ C∞

0 (R3) satisfy

φδ,t(x) =

{
1 on Bt+δ/2(x0),

0 on R
3 \Bt+δ(x0),

where δ > 0 is sufficiently small. Now we are going to use the measurements fδ,h,t =
φδ,tfh,t = φδ,tuh,t|∂Ω. Clearly, the measurements fδ,h,t are localized on Bt+δ(x0)∩∂Ω.
Let us define

Eδ(h, t) = |〈(ΛD − Λ0)fδ,h,t, fδ,h,t〉|.

Theorem 4.2. The statements of Theorem 4.1 are valid for Eδ(h, t).
Proof. The main idea is to prove that the error caused by the remaining part

of the measurement (1 − φδ,t)fh,t =: gδ,h,t is exponentially small. Let wδ,h,t be the
solution of (4.3) with boundary value gδ,h,t. We now want to compare wδ,h,t with
(1 − φδ,t)uh,t. To this end, we first observe that{

L0((1 − φδ,t)uh,t − wδ,h,t) = L0((1 − φδ,t)uh,t),

(1 − φδ,t)uh,t − wδ,h,t = 0 on ∂Ω.

Since

‖L0((1 − φδ,t)uh,t)‖L2(Ω) ≤ Cβ1/h

for some 0 < β < 1, we have that

‖(1 − φδ,t)uh,t − wδ,h,t‖H1(Ω) ≤ Cβ1/h.(4.13)

Using (4.4) for 〈(ΛD − Λ0)gδ,h,t, gδ,h,t〉 with u0 being replaced by wδ,h,t, we get from
(4.13) and the decaying property of uh,t that

|〈(ΛD − Λ0)gδ,h,t, gδ,h,t〉| ≤ Cβ̃1/h

for some 0 < β̃ < 1.
Now we first consider (i) of Theorem 4.1 for Eδ(h, t). We begin with the case

(μ+) of (4.2). In view of the first inequality of (4.4), we see that

0 ≤ 〈(ΛD − Λ0)(ζfδ,h,t ± ζ−1gδ,h,t), ζfδ,h,t ± ζ−1gδ,h,t〉

for any ζ > 0, which leads to

|〈(ΛD − Λ0)fδ,h,t, gδ,h,t〉 + 〈(ΛD − Λ0)gδ,h,t, fδ,h,t〉|

≤ ζ2〈(ΛD − Λ0)fδ,h,t, fδ,h,t〉 + ζ−2〈(ΛD − Λ0)gδ,h,t, gδ,h,t〉.
(4.14)

It now follows from fh,t = fδ,h,t + gδ,h,t and (4.14) with ζ = 1/
√

2 that

1

2
〈(ΛD − Λ0)fδ,h,t, fδ,h,t〉

≤ 〈(ΛD − Λ0)gδ,h,t, gδ,h,t〉 + 〈(ΛD − Λ0)fh,t, fh,t〉

≤ Cβ̃1/h + 〈(ΛD − Λ0)fh,t, fh,t〉.

(4.15)
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So from (i) of Theorem 4.1, the same statement holds for Eδ(h, t). Other cases of
(4.2) are treated similarly.

Next we consider (ii) and (iii) of Theorem 4.1 for Eδ,h,t. As before, we treat only
(μ+) of (4.2). Choosing ζ = 1 in (4.14), we get that

1

2
〈(ΛD − Λ0)fh,t, fh,t〉

≤ 〈(ΛD − Λ0)gδ,h,t, gδ,h,t〉 + 〈(ΛD − Λ0)fδ,h,t, fδ,h,t〉

≤ Cβ̃1/h + 〈(ΛD − Λ0)fδ,h,t, fδ,h,t〉.

(4.16)

Therefore, (ii) of Theorem 4.1 and (4.16) imply that the same fact is true for Eδ(h, t).
Finally, combining (4.15) and (4.16) yields statement (iii) for Eδ(h, t). The proof is
now complete.

Remark 4.2. With the help of Theorem 4.2, when parts of ∂D are near the
boundary ∂Ω, it is possible to detect some points of ∂D from only a few measurements
taken from a very small region of ∂Ω.

To end this section, we provide an algorithm of the method.
Step 1. Pick a point x0 near ch(Ω). Construct complex spherical waves uh,t.
Step 2. Draw two balls Bt(x0) and Bt+δ(x0). Set the Dirichlet data fδ,h,t =

φδ,tuh,t|∂Ω. Measure the Neumann data ΛDfδ,h,t over the region Bt+δ(x0) ∩ ∂Ω.
Step 3. Calculate Eδ(h, t) = 〈(ΛD − Λ0)fδ,h,t, fδ,h,t〉. If E(h, t) tends to zero as

h → 0, then the probing front {|x−x0| = t} does not intersect the inclusion. Increase
t and compute Eδ(h, t) again.

Step 4. If Eδ,h,t increases to ∞ as h → 0, then the front {|x− x0| = t} intersects
the inclusion. Decrease t to make a more accurate estimate of ∂D.

5. Conclusion. In this work we have constructed complex spherical waves or
complex geometrical optics solutions for the elasticity system with isotropic inhomo-
geneous medium. We used these special solutions to investigate the inverse problem
of identifying inclusions with localized measurements. Numerical realization of this
method would be an interesting project. The same method should work for identifying
cavities.
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