
Pattern Recognition 40 (2007) 360–375
www.elsevier.com/locate/patcog

Fast and versatile algorithm for nearest neighbor search based
on a lower bound tree

Yong-Sheng Chena,∗, Yi-Ping Hungb,c, Ting-Fang Yena, Chiou-Shann Fuhb

aDepartment of Computer Science, National Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu 300, Taiwan, ROC
bDepartment of Computer Science and Information Engineering, National Taiwan University, 1 Roosevelt Road, Section 4, Taipei 106, Taiwan, ROC

cInstitute of Information Science, Academia Sinica, 128 Academia Road, Section 2, Taipei 115, Taiwan, ROC

Received 14 April 2004; received in revised form 1 June 2005; accepted 24 August 2005

Abstract

In this paper, we present a fast and versatile algorithm which can rapidly perform a variety of nearest neighbor searches. Efficiency
improvement is achieved by utilizing the distance lower bound to avoid the calculation of the distance itself if the lower bound is already
larger than the global minimum distance. At the preprocessing stage, the proposed algorithm constructs a lower bound tree (LB-tree) by
agglomeratively clustering all the sample points to be searched. Given a query point, the lower bound of its distance to each sample point
can be calculated by using the internal node of the LB-tree. To reduce the amount of lower bounds actually calculated, the winner-update
search strategy is used for traversing the tree. For further efficiency improvement, data transformation can be applied to the sample and the
query points. In addition to finding the nearest neighbor, the proposed algorithm can also (i) provide the k-nearest neighbors progressively;
(ii) find the nearest neighbors within a specified distance threshold; and (iii) identify neighbors whose distances to the query are sufficiently
close to the minimum distance of the nearest neighbor. Our experiments have shown that the proposed algorithm can save substantial
computation, particularly when the distance of the query point to its nearest neighbor is relatively small compared with its distance to
most other samples (which is the case for many object recognition problems).
� 2005 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.

Keywords: Nearest neighbor search; Lower bound tree

1. Introduction

Nearest neighbor search has been widely applied in many
fields, including object recognition [1], pattern classification
and clustering [2,3], image matching [4,5], data compres-
sion [6,7], texture synthesis [8], and information retrieval
in database systems [9,10]. Depending on the application,
each object (pattern, image block, or other kind of data) can
be represented as a multi-dimensional point. Using a dis-
tance function as the measure of dissimilarity, the nearest
neighbor search for the most similar object can be regarded
as the closest point search in a multi-dimensional space.

∗ Corresponding author. Tel.: +886 3 5131316; fax: +886 3 5724176.
E-mail addresses: yschen@cs.nctu.edu.tw (Y.-S. Chen),

hung@csie.ntu.edu.tw (Y.-P. Hung), tyen@andrew.cmu.edu (T.-F. Yen),
fuh@csie.ntu.edu.tw (C.-S. Fuh).

0031-3203/$30.00 � 2005 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
doi:10.1016/j.patcog.2005.08.016

In general, a fixed data set P of s sample points in a d-
dimensional space is given, represented by P ={pi ∈ Rd |i=
1, . . . , s}. Preprocessing can be performed, if necessary, to
construct a particular data structure. The goal of the nearest
neighbor search is to find in P the point closest to each
query point q in the d-dimensional space. A straightforward
way to do so is to exhaustively compute and compare the
distances between the query point and all sample points.
This exhaustive search has the computational complexity of
O(s · d), and when one or both of s, d are large, the process
can be very time-consuming.

Many methods have been proposed to speed up the com-
putation of nearest neighbor search. One category of these
methods partitions the data space into “regions” according
to the sample points. Various shapes of region have been
adopted, including hyper-rectangular bucket (the k-d tree
method [11]), bounding rectangle (the R-tree [12] and the

http://www.elsevier.com/locate/patcog
mailto:yschen@cs.nctu.edu.tw
mailto:hung@csie.ntu.edu.tw
mailto:tyen@andrew.cmu.edu
mailto:fuh@csie.ntu.edu.tw

Y.-S. Chen et al. / Pattern Recognition 40 (2007) 360–375 361

SR-tree [13] methods), bounding sphere (the SS-tree [14]
and the SR-tree [13] methods), pyramid [15], and Voronoi
cell [16]. A data structure, usually a tree, was used for
recording and indexing these regions. Given a query point,
its nearest neighbor can be found by using the tree struc-
ture. For example, Bentley (the k-d tree method [11]) par-
titioned the data space into hyper-rectangular buckets, each
of which contains several sample points. Their method for
nearest neighbor search is performed by a binary search for
the target bucket followed by a local search for the desired
sample point in the target bucket and its neighboring buck-
ets, which is very efficient when the dimension of the data
space is small. However, as reported in Refs. [16,17], when
the number of dimensions increases, its performance de-
grades exponentially, in an effect known as the curse of di-
mensionality. The main reason for this phenomenon is that
more neighboring buckets must be checked when the di-
mension is higher. Thus, the number of sample points to be
examined increases dramatically.

Another category of fast nearest neighbor search methods
are elimination-based methods (see Ref. [18] for a review).
For example, Fukunaga and Narendra [19] constructed a tree
structure for the sample points, and used a branch-and-bound
search strategy to traverse and prune the tree structure in the
query process for efficiently determining the nearest neigh-
bor. To construct the tree structure, a set of sample points is
first divided into k subsets using the k-means clustering al-
gorithm. Each subset is then further divided into k subsets.
This process is repeated thereby creating a tree structure,
with each node in the tree representing a number of sam-
ple points. The mean of these sample points and the farthest
distance from the mean to these sample points are recorded.
For a node in the tree, if the distance between its recorded
mean and the query point subtracted by the recorded far-
thest distance is larger than the minimum distance obtained
so far, the distance computation for all the sample points
represented by this node can be avoided due to the trian-
gle inequality. Brin [20] proposed a method similar to Ref.
[19]. They constructed another kind of data structure, called
GNAT, by using hierarchical decomposition for the sam-
ple points. Each level in the GNAT data structure can have
different numbers of branches. Vidal [21] also utilized the
branch-and-bound search strategy to reduce the distance cal-
culations. Friedman et al. [22] proposed a projection-based
search algorithm. On the projection coordinate, the sample
points are sorted according to the values of this coordinate.
They are then examined in the order of their distance (on
this coordinate) to the query point. Sample points whose dis-
tance to the query point on the projection coordinate is larger
than the current minimum distance (on all coordinates) can
be eliminated, thereby speeding up the search process. So-
leymani and Morgera [23] used an elimination technique
similar to Ref. [22] where they performed the elimination
test on each coordinate, instead of only on the projection
coordinate. Djouadi and Bouktache [24] partitioned the un-
derlying space of the sample points into a set of cells. By

calculating the distances between the query point and the
centers of the cells, the nearest neighbor can be found ef-
ficiently by searching only in those cells in the vicinity of
the query point, rather than the whole space. Lee and Chae
[25] also proposed a fast nearest neighbor search method,
which uses a number of anchor sample points to eliminate
many distance calculations based on the triangle inequality.
In Ref. [26], McNames presented a fast nearest-neighbor al-
gorithm based on principal axis trees. This method utilizes
depth-first search and distance lower bounds to eliminate
many distance calculations.

Instead of finding the exact nearest neighbor, that is, the
global optimum, another research direction is to find the ap-
proximate nearest neighbor. Arya et al. [27] proposed a fast
algorithm to find the (1 + r)-approximate nearest neighbor
within a factor of (1 + r) of the distance between the query
point and its exact nearest neighbor. They constructed a bal-
anced box-decomposition (BBD) tree by hierarchically de-
composing the underlying space. A priority search is then
applied to efficiently find the approximate nearest neighbors.

There are some application-dependent issues worth con-
sidering for nearest neighbor search. For example, Faragó et
al. [28] presented a fast nearest-neighbor search algorithm
in dissimilarity space in which the triangle inequality may
not hold [29]. In database systems, the obtained query re-
sults may have to be checked using some other conditions in
addition to the minimum distance requirement. In this case,
the number k of the k-nearest neighbors cannot be specified
beforehand. Hjaltason and Samet [30] proposed a fast algo-
rithm which can provide k-nearest neighbors progressively
(one-by-one) until the required number of nearest neighbors
satisfying other conditions is obtained. In object recognition
applications, the nearest neighbor of a query object is of in-
terest only when the distance between the query object and
its nearest neighbor is small enough. For this kind of appli-
cations, Nene and Nayar [17] proposed a fast algorithm for
searching the nearest neighbor within a pre-specified small
distance threshold in a high-dimensional space. For each di-
mension, their method excludes the sample points whose dis-
tances to the query point at the current dimension are larger
than the distance threshold. The nearest neighbor can then be
determined from examining the remaining candidates. This
process may eliminate all the sample points if the distance
threshold is too small. The remedy is to enlarge the distance
threshold gradually. For some other applications that utilize
audio or image matching, each multi-dimensional sample or
query point represents an autocorrelated signal. That is, the
signal values in consecutive dimensions are correlated. In
such cases, the search process can be accelerated by applying
some data transformation to each data point, such as mean
pyramid construction [5,6,31] or wavelet transform [7].

In this paper, a novel algorithm is presented which effi-
ciently searches for the exact nearest neighbor in Euclidean
space. The proposed algorithm first preprocesses the sam-
ple points by constructing a lower bound tree (LB-tree), in
which each leaf node represents a sample point and each

362 Y.-S. Chen et al. / Pattern Recognition 40 (2007) 360–375

internal node represents a mean point in a space of smaller
dimension. For each query point, a lower bound of its dis-
tance to each sample point can be calculated by using a mean
point of an internal node in the LB-tree. Distance calcula-
tions can be avoided for many sample points whose lower
bound of the distance to the query point is larger than the
minimum distance between the query point and its nearest
neighbor. The whole search process is accelerated this way
because the computational cost of the lower bounds is less
than that of the distance. In addition to the use of an LB-
tree, the following three techniques are further adopted to
reduce lower-bound calculation:

1. Winner-update search: To reduce the number of nodes
examined, we apply a winner-update search strategy for
traversing the LB-tree. Starting from the root node of the
LB-tree, the node having minimum lower bound is re-
placed by its children for the following competition after
the lower bounds of these children having been calcu-
lated.

2. Agglomerative clustering: When constructing the LB-
tree, we use an agglomerative clustering technique to
keep the number of the internal nodes as small as possi-
ble while keeping the lower bound as tight as possible.

3. Data transformation: Data transformation, such as the
wavelet transform or the principal component analysis,
is applied to each point so that the lower bound of an
internal node can be further tightened, thus saving more
computation.

Among the above three techniques, both the winner-update
search strategy and the data transformation are performed
in the search process. That means, additional computations
are required for each query. Fortunately, the amount of this
increased burden is relatively small compared to the sav-
ings gained by these two techniques and the overall search
efficiency can be improved in most situations (see Section
7). The other technique, agglomerative clustering for LB-
tree construction, can be very time-consuming. However,
the LB-tree is constructed in the preprocessing stage. It is
usually worthwhile to obtain a good data structure at the
expense of large amount of computation beforehand for the
sake of high search efficiency. For example, it took about
3 h to construct the LB-tree for 36,000 sample points in 35-
dimensional space and the search process can be over one
thousand times faster by using the constructed LB-tree in
our experiment (see Section 7.3).

Our experiments have shown that the proposed algorithm
for nearest neighbor search can save a considerable amount
of computation, particularly when the query point is rel-
atively closer to its nearest neighbor than to most other
samples. Furthermore, the proposed algorithm is versatile
because it can deal with various types of queries. More
specifically, this algorithm can speed up the progressive
search for k-nearest neighbors, the search for nearest neigh-
bors within a specified distance threshold, and the search

for neighbors whose distances to the query are sufficiently
close to the minimum distance of the nearest neighbor.

This paper is organized as follows. At first, we introduce
the data structure and the proposed algorithm for nearest
neighbor search in Sections 2 and 3, respectively. Next, we
present the supplement of the proposed algorithm for other
query types in Section 4. Then, the construction of the LB-
tree is described in Section 5. Two kinds of data transfor-
mation are introduced in Section 6. Section 7 presents the
experimental results of the proposed algorithm. Finally, con-
clusions are stated in Section 8.

2. Multilevel structure and LB-tree

This section introduces the LB-tree used in the proposed
algorithm for nearest neighbor search. We will first describe
the multilevel structure of a data point. The multilevel struc-
tures of all the sample points can then be used to construct
the LB-tree. We shall also introduce some properties of the
LB-tree, which reveals the effectiveness of the proposed al-
gorithm.

2.1. Multilevel structure of each data point

For a point p = [p1, p2, . . . , pd] in a d-dimensional Eu-
clidean space, Rd , we denote its multilevel structure of L+1
levels by {p0, p1, . . . , pL}, and define it in the following.
At each level l, pl = [p1, p2, . . . , pdl], which comprises
the first dl dimensions of the point p, is referred to as the
level-l projection of p, for 1�dl �d, l = 0, . . . , L. A triv-
ial way to construct a d-level structure is to let dl = l + 1,
l = 0, . . . , d − 1. Here, dl is an increasing function of l be-
cause dl =l+1 < (l+1)+1=dl+1. Notice that the construc-
tion method of multilevel structure for a data point belongs to
one kind of telescoping functions, which can be used to con-
tract and extend feature vectors, proposed by Lin et al. [32].

In this paper, the dimension at level l is set to dl = 2l .
Without loss of generality, we assume that the dimension of
the data point space, d, is equal to 2L. If d is not a power
of 2, zero padding can be used to enlarge the dimension of
the underlying space. In this way, an (L + 1)-level structure
for point p can be constructed. Notice that level-L projec-
tion, pL, is equivalent to point p. An example of a 4-level
structure, {p0, . . . , p3}, where d = 8, is shown in Fig. 1.

Given the multilevel structures of points p and q, we can
derive the succeeding inequality property:

Property 1. The Euclidean distance between p and q is
larger than or equal to the Euclidean distance between their
level-l projections pl and ql for each level l. That is,

‖p − q‖2 �‖pl − ql‖2, l = 0, . . . , L.

Although all the properties shown in this section (and
hence the proposed algorithm) are valid for any lp norm, we

Y.-S. Chen et al. / Pattern Recognition 40 (2007) 360–375 363

adopt l2 norm (Euclidean distance) here. The reason is that if
the data transformation described in Section 6 is applied, the
distance other than l2 norm may change. From Property 1,

p2

p1

p0

p3 p7p6p5 p8

p4

p4

p3

p3

p2

p2

p2

p1

p1

p1

p1

Fig. 1. An example of the 4-level structure of the point p, where p ∈ R8.

Fig. 2. An example of hierarchical construction of the LB-tree. All the points in the same dark region are determined agglomeratively and are grouped
into a cluster. Notice that each point is transposed in order to fit into the limited space.

a lower bound of the distance ‖p − q‖2 can be considered
to be the distance ‖pl − ql‖2 calculated using the level-
l projections. Notice that the computational complexity of
the distance ‖pl − ql‖2 is less than that of the distance
‖p − q‖2. Specifically, the complexity of calculating the
distance between level-l projections is O(2l) for l=0, . . . , L.

2.2. LB-tree for the data set

This section introduces the LB-tree and some of its prop-
erties. To construct an LB-tree, we require the multilevel
structures of all sample points pi , i = 1, . . . , s, in a data set
P, where s is the number of the data points in P. The LB-tree
has the same number of levels as the multilevel structure,
without considering the dummy root node, which is consid-
ered to have zero dimension. At level L in the LB-tree, each
leaf node contains a level-L projection pL

i , which is equiv-
alent to the sample point pi . For level 0 to level L − 1, the
level-l projections, pl

i , i = 1, . . . , s, of all the sample points
can be clustered to form a hierarchy, as illustrated in Fig. 2,

364 Y.-S. Chen et al. / Pattern Recognition 40 (2007) 360–375

Fig. 3. An example of the LB-tree.

where L = 3 and s = 9. More details of the LB-tree con-
struction will be given in Section 5.

Let sl denote the number of clusters at level l. Let 〈p〉
denote the node containing the point p in the LB-tree. Each
cluster Cl

j , j = 1, . . . , sl , is represented by an internal node

〈ml
j 〉 at level l in the LB-tree. The internal node 〈ml

j 〉 con-

tains the mean point ml
j , which is the mean of all the level-l

projections of the sample points contained in this cluster, and
the associated radius, rl

j , which is the radius of the smallest

2l-dimensional hyper-sphere centered at ml
j and covers all

the level-l projections in cluster Cl
j . An example of an LB-

tree is shown in Fig. 3. This smallest hyper-sphere is called
the bounding sphere of Cl

j ; its radius can be calculated as

the maximum distance from the mean point ml
j to all level-

l projections in this cluster. The LB-tree has the following
inequality property:

Property 2. Given a sample point p∗, the distance between
its level-l projection, p∗l , and its level-l ancestor, ml

j∗ , is
smaller than or equal to the radius of the bounding sphere
of cluster Cl

j∗ . That is,

‖p∗l − ml
j∗‖2 �rl

j∗ , l = 0, . . . , L.

*

*

*

*

q l

p l
j
lr

m j
l

j
l<m >LBd (, q l)

Fig. 4. Illustration of the distance inequality of Eq. (1).

Notice that a leaf node is equivalent to a cluster of only
one point. The radius is zero and the mean point is the sample
point itself in such cases.

Now, given a query point q, we first construct its mul-
tilevel structure as described in Section 2.1. For a sample
point p∗ and its corresponding leaf node 〈p∗〉, its ancestor
at level l in the LB-tree is denoted 〈ml

j∗〉. As illustrated in
Fig. 4, the following inequality can be derived using the tri-
angle inequality and Properties 1 and 2:

‖p∗ − q‖2 �‖p∗l − ql‖2

�‖ml
j∗ − ql‖2 − ‖p∗l − ml

j∗‖2

�‖ml
j∗ − ql‖2 − rl

j∗ . (1)

Y.-S. Chen et al. / Pattern Recognition 40 (2007) 360–375 365

The LB-distance dLB(〈ml
j∗〉, ql) between the internal node

〈ml
j∗〉 and ql , the level-l projection of the query point q, is

defined as

dLB(〈ml
j∗〉, ql) ≡ ‖ml

j∗ − ql‖2 − rl
j∗ . (2)

We then have the following inequality property:

Property 3. Given a query point q and a sample point p∗,
the LB-distance between the level-l ancestor of p∗ (that is,
〈ml

j∗〉) and the level-l projection of q is smaller than or
equal to the distance between p∗ and q. That is,

dLB(〈ml
j∗〉, ql)�‖p∗ − q‖2, l = 0, . . . , L.

We know now from the above property that dLB(〈ml
j∗〉, ql)

is a lower bound of the distance ‖p∗ − q‖2. Notice that
the LB-distance is not a valid distance metric. A negative
dLB(〈ml

j∗〉, ql) implies that the query point q is located

within the bounding sphere of Cl
j∗ centered at ml

j∗ . Also,

dLB(〈m0
j∗〉, q0), dLB(〈m1

j∗〉, q1), . . . , dLB(〈mL
j∗〉, qL) is not

necessarily (and not required to be) an ascending list of
lower bounds of the distance between p∗ and q.

The internal node 〈ml
j∗〉 can have a number of descen-

dants. Therefore, besides being a lower bound on the dis-
tance to q for any particular p∗, dLB(〈ml

j∗〉) is also a lower
bound on the distances from all the sample points in clus-
ter Cl

j∗ containing p∗ to q. Hence, we have the following
property:

Property 4. Let q be a query point and p̂ be a sample point.
For any internal node 〈ml

j 〉 of the LB-tree, if

dLB(〈ml
j 〉, ql) > ‖p̂ − q‖2,

then, for every descendant leaf node 〈p′〉 of 〈ml
j 〉, we

have

‖p′ − q‖2 > ‖p̂ − q‖2.

From Property 4, if the LB-distance of the internal node
〈ml

j 〉 is already larger than the distance between p̂ and q,

all the descendant leaf nodes 〈p′〉 of ml
j can be eliminated

in the search, since there is already a better candidate, p̂,
which is closer to q.

3. Winner-update search strategy and the proposed
algorithm

In our algorithm an LB-tree of L+1 levels has to be con-
structed using data set P before running the query process.
For each query point q, the goal of nearest neighbor search
is to find the sample point p̂ in P such that the Euclidean
distance ‖p̂ − q‖2 is minimum. According to Property 4,

if at some point the LB-distance of an internal node 〈ml
j 〉

is larger than the minimum distance between p̂ and q, then
the nearest neighbor cannot be in the descendant samples of
node 〈ml

j 〉. Hence, the costly calculation of their distances
to q can be all saved by only calculating the less-expensive
LB-distance of node 〈ml

j 〉.
The above saving requires knowing the value ‖p̂ − q‖2,

but it is unknown beforehand which sample point p̂ is. In
fact, p̂ is exactly the nearest neighbor which we are look-
ing for. To achieve the same calculation saving effect, we
adopt the winner-update search strategy, which computes
the lower bounds from the root node toward the leaf nodes
while traversing the LB-tree. The LB-distances of the in-
ternal nodes is calculated starting from the top level down.
Since the computation cost of the LB-distance is smaller at
the upper level, and an upper-level node generally has more
descendants, we can save more distance calculation if the
LB-distance of an upper-level node is already larger than the
minimum distance.

We now describe the winner-update search strategy that
greatly reduces the number of LB-distance calculations.
First, the LB-distances between q0 and all the level-0 nodes
in the LB-tree are calculated using Eq. (2). A heap data
structure is then constructed using these level-0 nodes,
〈m0

1〉, 〈m0
2〉, . . . , 〈m0

s0〉, with the root node of the heap, 〈p̂〉,
being the node having the minimum LB-distance. Then, we
delete the node 〈p̂〉 and insert its children into the heap,
calculating their LB-distances and rearranging the heap to
maintain the heap property. This produces a new root node
with the minimum LB-distance, which becomes the new
〈p̂〉. The procedure of deleting 〈p̂〉 and inserting its children
is repeated until the dimension of 〈p̂〉, dim(〈p̂〉), is equal to
d. At this time, with the node 〈p̂〉 being a leaf node contain-
ing a sample point, we have the minimum distance ‖p̂−q‖2
in the heap. The nearest neighbor 〈p̂〉 is thus determined,
since the lower bounds of the distances from all the other
sample points to the query point q are already larger than
‖p̂ − q‖2.

Fig. 5 illustrates three intermediate stages of the heap that
are constructed during the search process, based on the LB-
tree example shown in Fig. 3. Given a query point q, the LB-

distances dLB(〈m0
1〉, q0) and dLB(〈m0

2〉, q0) for nodes 〈m0
1〉

and 〈m0
2〉 at level 0 are first calculated, respectively, and

used to construct a heap, as shown in Fig. 5(a). Suppose
dLB(〈m0

1〉, q0) is 6 and dLB(〈m0
2〉, q0) is 2. At this point, node

〈m0
2〉 is on top of the heap and will be replaced by its two

children: nodes 〈m1
2〉 and 〈m1

3〉. Next, suppose dLB(〈m1
2〉, q1)

is 8 and dLB(〈m1
3〉, q1) is 3. Then, the heap is rearranged

to maintain the heap property, and node 〈m1
3〉 will pop up

to the top of the heap, as shown in Fig. 5(b). Again, the
new top node (that is, 〈m1

3〉) is replaced by its children and
the heap is rearranged according to the LB-distances of the
nodes. Fig. 5(c) illustrates the heap at this stage, where the
LB-distances of the newly inserted nodes 〈m2

4〉 and 〈m2
5〉 are

9 and 4, respectively.

366 Y.-S. Chen et al. / Pattern Recognition 40 (2007) 360–375

Fig. 5. Three intermediate stages of the heap. (a) Given a query point q, the LB-distances for nodes 〈m0
1〉 and 〈m0

2〉 at level 0 are calculated and used

to construct a heap. (b) The node 〈m0
2〉 in (a) has the smaller LB-distance and is replaced by its children: nodes 〈m1

2〉 and 〈m1
3〉. (c) The node 〈m1

3〉 in

(b) has the smallest LB-distance and is replaced by nodes 〈m2
4〉 and 〈m2

5〉.

The proposed algorithm is summarized below:

Proposed Algorithm for nearest neighbor search
/∗ Preprocessing Stage ∗/

(1) Given a data set P = {pi ∈ Rd |i = 1, . . . , s}
(2) Construct the LB-tree of L + 1 levels for P

/∗ Nearest Neighbor Search Stage ∗/
(3) Given a query point q ∈ Rd

(4) Construct the (L + 1)-level structure of q
(5) Insert the root node of the LB-tree into an
(5) empty heap
(6) Let 〈p̂〉 be the root node of the heap
(7) while dim(〈p̂〉) < d do
(8) Delete node 〈p̂〉 from the heap
(9) Calculate the LB-distances for all the children
(9) of 〈p̂〉
(10) Insert all the children of 〈p̂〉 into the heap
(11) Rearrange the heap to maintain the heap
(11) property that the root node is the node having
(11) the minimum LB-distance
(12) Update 〈p̂〉 as the root node of the heap
(13) endwhile
(14) Output p̂

For conciseness of the above pseudo-code, the heap is ini-
tialized as the dummy root node of the LB-tree, instead of
the level-0 nodes. This will not affect the result since the
dummy root node is replaced immediately in the first itera-
tion of the loop by its children, that is, all the level-0 nodes.

Due to the adoption of the winner-update search strategy,
which is actually the best-first search strategy, the proposed
algorithm can be regarded as a special case of the A∗ al-
gorithm [33]. In our algorithm the path cost term is always
zero and the estimated distance to the goal node is the LB-
distance, which is a lower bound of the distance from a
sample point to the query point.

4. Other query types

With slight modification, the proposed algorithm can also
speed up the following three search tasks: (i) the progressive
search for k-nearest neighbors, (ii) the search for k-nearest

neighbors within a specified distance threshold, and (iii) the
search for neighbors that are close enough to the query,
compared with the nearest neighbor.

4.1. Progressive search for k-nearest neighbors

When the nearest neighbor is obtained by using the pro-
posed algorithm, there may be some other candidates in the
heap. Distance calculation for these candidates is partially
performed and we can continue the search process to de-
termine the next nearest neighbor without starting all over
again. In general, we can easily extend the proposed algo-
rithm to find the k-nearest neighbors, 1 < k�s, in the fol-
lowing way. Once the nearest neighbor p̂ is obtained by
using the algorithm described in Section 3, we can delete
it from the heap and continue the process until the second
nearest neighbor is obtained. By repeating the above proce-
dure, one can obtain the third nearest neighbor, the fourth
nearest neighbor, and so on, until all the desired k-nearest
neighbors are obtained. The following pseudo-code can be
merged into the original algorithm, in the designated line
number order, to provide k-nearest neighbors:

(6.5) for loop = 1, 2, . . . , k

(15) Delete node 〈p̂〉 from the heap
(16) Rearrange the heap to maintain the heap roperty
(16) that the root node is the node having the
(16) minimum LB-distance
(17) Update 〈p̂〉 as the root node of the heap
(18) endfor

Notice that these k-nearest neighbors are provided incremen-
tally. This feature is particularly useful when additional tests
on the obtained nearest neighbors are required, and hence,
the number k cannot be known before the query process be-
gins. Hjaltason and Samet [30] ascribed the capability of
incremental k-nearest neighbor search to the heap (priority
queue) employed in the algorithm. Arya et al. [27] adopted
a similar progressive approach which enumerates leaf cells
of their BBD-tree in increasing order of distance from the
query point and examines data points in the cells. Tradi-
tional methods such as Ref. [19] use an array to record the
first k candidates of k-nearest neighbors during the search
process. Each newly computed distance is compared against

Y.-S. Chen et al. / Pattern Recognition 40 (2007) 360–375 367

the elements in the array and is substituted for the largest
element in the array that is larger than the newly computed
distance. After the k-nearest neighbors are determined and
we find that more nearest neighbors are needed, the search
process has to be started all over again with a larger k. As a
result, there are wasteful, duplicated distance calculations.

4.2. Search for k-nearest neighbors within a distance
threshold

In many pattern recognition applications, a query object
is considered to be “recognized with high confidence” only
when it is sufficiently close to an object in the data set.
Therefore, the distance between the query point and its near-
est neighbor should be smaller than a pre-specified distance
threshold �T . For further speedup, the proposed algorithm
can be easily extended to meet this requirement by adding
the following two lines to the pseudo-code of Section 3:

(7.5) if the LB-distance of 〈p̂〉 is larger than �T stop
(13.5) if the LB-distance of 〈p̂〉 is larger than �T stop

When the k-nearest neighbors within the distance thresh-
old �T are needed, the additional pseudo-code for provid-
ing k-nearest neighbors, given in Section 4.1, can also be
added.

4.3. Search for neighbors close enough to the query
compared with the nearest neighbor

In some applications, all the points that are sufficiently
close to the query point, compared with the nearest neighbor,
should be considered as good matches. To achieve this goal,
all the points of distance smaller than (1 + r)‖p̂ − q‖2 have
to be identified, where p̂ is the nearest neighbor and r is
a small number. Our algorithm can be easily extended to
provide this functionality. After the nearest neighbor p̂ and
the minimum distance ‖p̂ − q‖2 are obtained, the methods
described in Sections 4.1 and 4.2 can be used to provide all
the points having distance smaller than �T , where k is set to
be s and the threshold �T is set to be (1 + r)‖p̂ − q‖2.

5. Construction of LB-tree

The LB-tree plays an important role in our algorithm. It
should be noted that there exists more than one method for
constructing the LB-tree described in Section 2.2. Although
many methods could be chosen for constructing the LB-tree,
some lead to better performance than others. Hence, it is
desirable to construct a “good” LB-tree in view of the need
for efficiency in nearest neighbor search. Since construction
of the LB-tree is performed in the preprocessing stage, its
computational cost is not a major concern here, hence the
efficiency of the resulting LB-tree is more important than
the speed of its construction.

To construct an LB-tree, the simplest way is to directly
use the multilevel structures of the sample points without
clustering. In this case, there are s nodes at each level l,
l = 0, . . . , L, in the LB-tree. Each node 〈ml

i〉, i = 1, . . . , s,
at level l contains exactly one level-l projection of a sample
point, say pl

i . Here, the mean point ml
i equals pl

i and the
radius rl

i is set to zero. All the internal nodes in the LB-
tree thus constructed have only one child node, with the
exception of the root, which has s child nodes.

Another method of LB-tree construction is to use k-means
clustering method [3] to hierarchically cluster the sample
points, similar to what was done in Ref. [19]. At level 0,
all the sample points are partitioned into k disjoint clusters
according to the distances between their level-0 projections.
For each cluster at level 0, the mean point and the radius of
the bounding sphere can be calculated and recorded by using
the level-0 projections of the sample points that belong to
the same cluster. Then, these sample points that belong to
the same cluster at level 0 can be further partitioned into k
disjoint sub-clusters according to the distances between their
level-1 projections. After partitioning all the clusters at level
0, all the obtained sub-clusters constitute the nodes at level
1 of the LB-tree. This process is repeated for the succeeding
levels until level-L is reached. The result is an LB-tree (but
maybe not the best one), in which every internal node has k
branches.

From Property 3 as defined in Section 2.2, given a query
point q, the LB-distance for each internal node (that is, the
LB-distance between an internal node and the level-l pro-
jection of q) is the lower bound of the distances between
q and all the sample points contained in the descendant
leaf nodes of this internal node. In order to obtain a tighter
lower bound and thus, in order to reduce the number of
distance calculations, the LB-distance of each internal node
should be as large as possible, which requires the radius of
the bounding sphere, rl

j , to be as small as possible in con-
sequence, according to Eq. (2). From this perspective, it is
suggestible to adopt the simplest construction method men-
tioned before, which directly uses the multilevel structures
of the sample points, since the radius of each internal node
is zero. However, the number of internal nodes is propor-
tional to the amount of memory storage and computation of
the LB-distance required, so we would also like the number
of internal nodes to be as small as possible. Although the
k-means clustering method can construct an LB-tree with
fewer internal nodes, the radius of the bounding sphere may
be very large since there is a chance that sample points
far away from each other are grouped into one cluster.
As a result, the trade-off between the number of internal
nodes and the radii of the associated bounding spheres
needs to be taken into consideration when constructing
an LB-tree.

In this work, we use an agglomerative hierarchical clus-
tering technique [3,34] to construct the LB-tree, in which
both the number of internal nodes and the associated radii
can be kept small. Details are given below.

368 Y.-S. Chen et al. / Pattern Recognition 40 (2007) 360–375

5.1. Multi-dimensional case for each level

Suppose that the level-l projections of all the sam-
ple points have been partitioned into sl clusters, Cl

j ,

j = 1, . . . , sl . (For instance, the example shown in Fig. 2
contains three clusters, C1

1 , C1
2 , and C1

3 , at level 1.) Each
cluster Cl

j at level l is to be further partitioned into sub-

clusters independently. Notice that cluster Cl
j is a set of

level-l projections. Denote the members of Cl
j as pl

ilj (k),
k = 1, 2, . . . , nlj , where nlj is the number of elements in
Cl

j . Consider the example shown in Fig. 2. For l = 1 and

j = 3, we have C1
3 = {p1

3, p1
4, p1

7} where n13 = 3, i13(1) = 3,
i13(2) = 4, and i13(3) = 7. Then, by using the multilevel
structures of pilj (k), k = 1, 2, . . . , nlj , we denote the set

of level-(l + 1) projections {pl+1
ilj (k)|k = 1, 2, . . . , nlj } by

Sl+1
j . For the above example (l = 1 and j = 3), we have

S2
3 = {p2

3, p2
4, p2

7}. Our approach is to partition Sl+1
j into

clusters by using an agglomerative method. In the example
of Fig. 2, S2

3 is then partitioned into C2
4 and C2

5 .
The agglomerative method begins with treating each point

as a distinct cluster, and successively merges clusters to-
gether until a stopping criterion is satisfied [3]. There are two
issues to be determined when adopting the agglomerative
method. The first concerns how to choose clusters for merg-
ing, and the other is the stopping criterion. Suppose X and

Y are two disjoint subsets of Sl+1
j . We define the between-

cluster distance, dl+1
max(X, Y), of X and Y as the maximum

Euclidean distance between every pair (xl+1, yl+1) of level-
(l + 1) projections, where xl+1 ∈ X and yl+1 ∈ Y . That is,

dl+1
max(X, Y) = max

xl+1∈X,yl+1∈Y
‖xl+1 − yl+1‖2.

The pair of clusters with minimum dl+1
max is chosen for con-

sideration to be merged because they are the closest clusters
in the sense of dl+1

max . The radius of the cluster obtained by
merging this pair is more likely to be small.

For the stopping criterion, we use the radius constraint
which requires that the radii of all clusters at level l are
smaller than a pre-specified radius threshold rl

T . When fur-
ther cluster merging cannot satisfy the radius constraint, the
agglomerative procedure is terminated. In this way we can
obtain a clustering result by gradually reducing the num-
ber of clusters via merging while the radius of each cluster
gradually increases, approaching the radius threshold. If we
raise the radius threshold, the number of clusters (and the
resulted number of nodes) at level (l + 1) will decrease. By
specifying a “good” radius threshold, the number of internal
nodes and their associated radii reach a compromise and a
good clustering result can be obtained.

For the set Sl+1
j = {pl+1

ilj (k)|k = 1, 2, . . . , nlj }, we initially
treat each of its member as a separate cluster. Then we cal-
culate and sort the between-cluster distances dl+1

max for every
pair of clusters. The pair of clusters with the minimum dl+1

max

is chosen for consideration of merging. If dl+1
max of this pair

is larger than twice the radius threshold rl+1
T , the radius of

the bounding sphere of the merged cluster will definitely be

larger than rl+1
T , and so violates the radius constraint. In this

case, clustering can be terminated because no further merg-
ing can satisfy the radius constraint. Otherwise, we tenta-
tively merge this pair of clusters by computing the mean of
the merged cluster and the radius of its bounding sphere. If
the newly computed radius is indeed smaller than the radius
threshold rl+1

T , this pair of clusters will actually be merged.
The between-cluster distances dl+1

max between this merged
cluster and all other clusters must be updated accordingly.
If the newly computed radius is not smaller than the radius
threshold, we do not merge this pair of clusters and instead
choose the pair with the second minimum dl+1

max for consid-
eration. This procedure is repeated until all the pairs are ex-
amined or the dl+1

max of the examined pair is larger than twice
the radius threshold rl+1

T .
All sample points whose level-(l + 1) projections are

grouped into the same cluster at level l + 1 can be further
partitioned at level l+2 by using the same method presented
above. This recursive clustering is applied until the bottom
level is reached, where each sample point is treated as a sep-
arate cluster of zero radius. In this way we can construct an
LB-tree satisfying the radius constraint with a specified ra-
dius threshold while trying to make the number of internal
nodes as small as possible.

5.2. One-dimensional case for level 0

If at level 0 the number of sample points, s, is large, the
number of between-cluster distances for every pair of initial
clusters can be very large (O(s2)). Hence, the agglomera-
tive clustering process can be very time-consuming at level
0. If there is only one dimension at level 0, as in this work,
we can reduce this problem with the following method. The
level-0 projections of all the sample points are first sorted.
Then, consider only pairs of neighboring level-0 projections
for merging because the minimum d0

max appears only be-
tween the neighboring level-0 projections. In this way, the
number of the cluster pairs to be considered can be reduced
from O(s2) to O(s). When a pair of level-0 projections with
minimum d0

max is merged, these two level-0 projections are
replaced with their mean in the sorted list. This process is
repeated until the radius of the bounding sphere (or rather,
the bounding segment) for the best merging is larger than
the radius threshold r0

T .

5.3. Selection of the radius threshold

The radius threshold rl
T for each level has a great influence

on the construction of the LB-tree and the resulting search
efficiency. Remember that a tighter LB-distance can save
more distance calculations. Toward the goal of achieving
tighter LB-distances, we have to lower the radius threshold

Y.-S. Chen et al. / Pattern Recognition 40 (2007) 360–375 369

rl
T at level l in order to obtain smaller radii rl

j for all internal
nodes at this level. However, a smaller radius threshold will
in general result in more clusters, which tends to increase
the computational cost of the proposed algorithm (because
more LB-distances have to be calculated). This is the trade-
off between choosing a smaller rl

j and choosing a smaller

sl , as mentioned in Section 5.1.
It is difficult to determine a good radius threshold be-

forehand because the choice depends on the distribution of
the sample points. Therefore, instead of specifying a radius
threshold r0

T , the experiments shown in this paper specify
the number of clusters s0 at level 0, where s0 < s. (For lev-
els other than level 0, we specify radius thresholds as de-
scribed below instead of specifying the number of clusters.)
Hence, the stopping criterion at level 0 has to be modi-
fied accordingly in the following. All level-0 projections are
merged agglomeratively until the number of clusters equals
s0. When the number of clusters reaches s0, the radius of
the latest merged cluster is recorded as r∗

T , and then used
to determine the radius thresholds of the other levels. For
each level l other than level 0, that is, l = 1, . . . , L − 1, the
radius threshold rl

T can be determined based on r∗
T . (Note

that there is no need to perform agglomerative clustering at
level L because each cluster contains only one point at this
level.) In this work, we simply use r∗

T as the radius threshold
at each level l, or rl

T = r∗
T , l = 1, . . . , L − 1.

6. Data transformation

This section explains how to further improve the effi-
ciency of nearest neighbor search by applying data trans-
formation. Recall that the Euclidean distance calculated at
level l in the LB-tree is the distance in the subspace of the
first 2l dimensions. If these dimensions are not discrimina-
tive enough, meaning the projections of the sample points on
this subspace are too close to each other, the distances may
be almost identical for different samples calculated in this
subspace, which will not help much in the search for nearest
neighbor. To alleviate this problem, we apply transforma-
tion to the data points, transforming them into another space
so that the anterior dimensions are likely to be more dis-
criminative than the posterior dimensions. The transforma-
tion will affect efficiency but not the final search result, for
the Euclidean distances calculated in both space should be
the same. Moreover, because this transformation is also ap-
plied to the query points during the query process, it should
be computationally inexpensive. The pseudo-code for data
transformation is as follows, which is to be joined with the
algorithm in Section 3:

(1.5) Transform each sample point pi , i = 1, . . . , s

(3.5) Transform the query point q

Depending on the characteristics of the data, one of the fol-
lowing two types of data transformation can be used. Wavelet

transform with orthonormal basis [35] is applied when the
data point represents an autocorrelated signal, like an audio
signal or an image block. The basis has to be orthonormal to
preserve Euclidean distances. Here we adopt Haar wavelets
for transforming the autocorrelated data, which is then rep-
resented in one of its multiple resolutions in each level in
the multilevel structure. Readers are referred to Ref. [35] for
computation method of Haar wavelets as well as the proof
that Haar wavelets form an orthonormal basis.

Another type of data transformation is the principal com-
ponent analysis (PCA). PCA finds a set of vectors ordered
in their ability to account for the variation of data projected
onto those vectors. The data point is transformed onto the
space spanned by this set of vectors so that the anterior di-
mensions become more discriminative. This transformation
is particularly useful for object recognition where not all
features are equally important.

7. Experimental results

In this section, we show some experimental results of
four algorithms: the exhaustive search algorithm (ES), the
searching-by-slicing (SBS) algorithm proposed by Nene and
Nayar [17], the BBD tree (BBDT) algorithm proposed by
Arya et al. [27], and the lower bound tree (LBT) algorithm
proposed in this paper. We obtained via FTP the software of
the SBS algorithm and the BBDT algorithm implemented
by Nene and Nayar [17] and Arya et al. [27], respectively.
In SBS, the initial distance threshold is set to be 0.1. To
guarantee that the nearest neighbor can always be found,
this threshold is enlarged gradually by adding 0.1 each time
no point is found, as recommended in Ref. [17]. Remember
that the BBDT algorithm can find the (1 + r)-approximate
nearest neighbor within a factor of (1 + r) of the distance
between the query point and its exact nearest neighbor. To
guarantee that the exact nearest neighbor can be found, we
set the parameter r to be 0 in the software. For the ES
algorithm and the LBT algorithm, we have implemented in
C programming language.

There are three different kinds of data distribution that
we used to examine the efficiency for these algorithms,
including a computer-generated set of autocorrelated data
(Section 7.1), a computer-generated set of clustered Gaus-
sian data (Section 7.2), and a real data set acquired from
an object recognition system (Sections 7.3–7.5). The exper-
iments were performed on a PC with a Pentium III 700 MHz
CPU. To compare the efficiency of different algorithms, we
use the execution time instead of the number of distances
calculated for the following two reasons. First, the insertion
and deletion of an element in the heap, rearranging the heap,
and updating node 〈p̂〉 results in our algorithm having some
overhead. Second, the computational cost of the LB-distance
of a node differs at different levels. To be specific, the com-
putational cost of the LB-distance for nodes increases from
the top level to the bottom level of the LB-tree.

370 Y.-S. Chen et al. / Pattern Recognition 40 (2007) 360–375

7.1. Experiments on autocorrelated data

We now demonstrate the efficiency of the proposed al-
gorithms by showing the result of three experiments as the
following three factors vary: the number of sample points in
the data set, s; the dimensionality of the underlying space,
d; and the average of the minimum distances between query
points and their nearest neighbors, �min. Autocorrelated data
points were randomly generated to simulate real signals. For
each data point, the value of its first dimension was cho-
sen from a uniform distribution with extent [−1, 1], and the
value of each subsequent dimension was assigned the value
of the previous dimension plus normally distributed noise
with zero mean and standard deviation 0.1. Beyond the ex-
tent [−1, 1], the value of each dimension was truncated. In
order to see how data transformation affects the search ef-
ficiency for autocorrelated data, we performed the nearest
neighbor search twice for the SBS, BBDT, and LBT algo-
rithms, with Haar transform applied to each data point only
in the second time. The LB-tree was constructed with its
number of clusters at level 0 specified as 45.

In the first experiment, we probed the algorithm efficiency
by varying the number of sample points, s, in the data set.
Seven data sets of s sample points, s = 800, 1600, 3200,
…, 51,200, were generated using the random process de-
scribed above. The dimension of the underlying space, d, was
32. Constructing the LB-tree spent 0.1, 0.5, 1.6, 7.8, 67.5,
730.8, and 6434 s for each data set, respectively. Another
set containing 100,000 query points were also generated us-
ing the same random process, and nearest neighbor search
was then performed for each query point. Fig. 6 shows the
mean query time for each algorithm, where both the Haar
transform, if applied, and the search process were taken into
account. It is apparent in Fig. 6 that the search efficiency of
the SBS, BBDT, and LBT algorithms (without Haar trans-
form), i.e., “SBS”, “BBDT”, and “LBT”, can be significantly
improved by applying the Haar transform, as denoted by
“SBS + Haar”, “BBDT + Haar”, and “LBT + Haar”. This
clearly demonstrates that the Haar transform can help to re-
duce more computational cost when the data set consists of
autocorrelated data. Among all the algorithms in this experi-
ment, the proposed LBT algorithm (the “LBT+Haar” case)
is the fastest one, which is 12.2 and 56.2 times faster than
the ES algorithm, when s is 800 and 51,200, respectively.
When s increases from 800 to 51,200, there are more sample
points scattered in the fixed space, so the average minimum
distance, �min, decreases from 0.73 to 0.53. When the mini-
mum distance is smaller, the LB-distance is then more likely
to be larger than the minimum distance of the query point q
to its nearest neighbor p̂, according to Property 4. That is,
more distance calculations can be avoided if �min is smaller,
which is why the speedup factor increases as s increases.

In the second experiment, we vary the dimensionality,
d, of the underlying space. Eight data sets of 10,000 sam-
ple points, where dimension, d = 2, 4, 8, . . . , 256, respec-
tively, were generated. The construction time of the LB-tree

was 3.1, 24.9, 26.7, 27.3, 28.5, 35.5, 37.3, and 51.8 s for
each data set, respectively. The same random process was
also used to generate eight corresponding sets of 100,000
query points, with matched dimensions d =2, 4, 8, . . . , 256.
Fig. 7 shows that the Haar transform can improve the search
efficiency, particularly when d is large. The proposed LBT
algorithm (the “LBT+Haar” case) outperforms the other al-
gorithms when d is larger than 4. Interestingly note that our
algorithm does not suffer from the curse of dimensionality
for autocorrelated data like the k-dimensional binary search
tree algorithm does, as reported in Refs. [16,17]. In fact,
the computational speedup of the proposed algorithm (the
“LBT + Haar” case) over the ES algorithm rises from 5.6
to 64.1 as d increases from 2 to 256. The increase of d also
increases the level number of the multilevel structure and of
the constructed LB-tree. Using the Haar transform causes
the anterior dimensions to contain more significant compo-
nents of the autocorrelated data, and so the lower bound
of the distance can be tighter when calculated at the up-
per level. Distance calculation can therefore be avoided for
more sample points by calculating only the LB-distances of
a few of their upper-level ancestors, with exception of a few
tough competitors. Without applying Haar transform (i.e.,
the “LBT” case), each dimension of the data point is equally
significant, and so the LB-distance at the lower level needs
to be calculated to determine the nearest neighbor, which
requires more computation and degrades performance. In
addition, data transformation causes the agglomerative clus-
tering from top to bottom to be more effective because the
anterior dimensions contain more significant components.
There are more internal nodes for the “LBT” case compared
to that of the “LBT + Haar” case, and thus efficiency is re-
duced. The increase of d amplifies this phenomenon, which
results in the dramatic drop of the speedup factor for the
non-transform case, but not for the transform case.

The third experiment demonstrates the efficiency of the
algorithms with respect to �min. We generated a data set of
10,000 sample points in a space of dimension d =32, where
each sample point was then used to generate a query point
by adding a uniformly distributed noise with extent [−e, e]
to each coordinate. As a result, when e is large the distance
between the query point and its nearest neighbor tends to be
large as well. In this case, the construction time of the LB-
tree is 29.6 s. In this experiment, eight sets of 10,000 query
points are generated, with e = 0.01, 0.02, 0.04, . . . , 1.28.
The mean query time versus the mean of the minimum
distances, �min, is compared among different algorithms in
Fig. 8. Again, the Haar transform improves the search effi-
ciency and the proposed LBT algorithm (the “LBT + Haar”
case) outperforms the other algorithms. As e increases from
0.01 to 1.28, �min increases from 0.033 to 3.838. The in-
crease in the computational cost of the LBT algorithm is due
to the fact that when the minimum distance of the nearest
neighbor is already very large, the LB-distance is less likely
to be larger than the minimum distance, so less distance
calculation can be saved. The speedup factor of the LBT

Y.-S. Chen et al. / Pattern Recognition 40 (2007) 360–375 371

800 1600 3200 6400 12800 25600 51200
10-2

10-1

100

101

s

m
ea

n
qu

er
y

tim
e

(m
s.

)

exhaustive
SBS
BBDT
LBT
SBS+Haar
BBDT+Haar
LBT+Haar

Fig. 6. Mean query time versus size, s, of the sample point set (d = 32).

2 4 8 16 32 64 128 256
10-2

10-1

100

101

102

d

m
ea

n
qu

er
y

tim
e

(m
s.

)

exhaustive
SBS
BBDT
LBT
SBS+Haar
BBDT+Haar
LBT+Haar

Fig. 7. Mean query time versus dimension of the underlying space, d (s = 10, 000).

algorithm (the “LBT + Haar” case), compared with the ES
algorithm, decreases from 570.4 to 0.63 in this case. Notice
that when the speedup factor becomes 0.63, the noise extent,
[−1.28, 1.28], is larger than the data extent, [−1, 1]. �min is
usually relatively small for most applications, and therefore
the case when the LBT algorithm does not outperform the
ES algorithm, shown on the right part in Fig. 8, does not
likely happen.

7.2. Experiments on clustered Gaussian data

This section shows the experimental results when the sam-
ple point set consists of clustered Gaussian data, which was
generated to simulate an object database. We first randomly
chose 100 cluster center points in a 32-dimensional space.
For each cluster center point, the value of each dimension
was randomly generated from a uniform distribution with

372 Y.-S. Chen et al. / Pattern Recognition 40 (2007) 360–375

0.033 0.065 0.13 0.26 0.52 1.017 1.928 3.838
10-2

10-1

100

101

εmin

m
ea

n
qu

er
y

tim
e

(m
s.

)

exhaustive
SBS
BBDT
LBT
SBS+Haar
BBDT+Haar
LBT+Haar

Fig. 8. Mean query time versus mean of the minimum distances, �min (s = 10, 000, d = 32).

extent [−1, 1]. Then, we generated 100 sample points for
each cluster. Each sample point was randomly chosen from
a Gaussian distribution with standard deviation � around the
cluster center point. That is, the value of each dimension of
a sample point was assigned the value of the corresponding
dimension of the cluster center point added by normally dis-
tributed noise with zero mean and standard deviation �. We
obtained a set of 10,000 sample points in this way. The LB-
tree construction time was 78.7, 80.5, 98.7, 114, and 89.7 s,
respectively, as � ranging from 0.02, 0.04, . . . , up to 0.1.

Around each of the same 100 cluster center points, we ran-
domly chose another 1000 data points from the same Gaus-
sian distribution with standard deviation �. These 100,000
points constituted the set of query points in the nearest neigh-
bor search process. We totally generated five sets of sam-
ple points and query points with different standard devia-
tion � ranging from 0.02 up to 0.1. Table 1 shows the mean
query time of nearest neighbor search by using the ES, SBS,
BBDT, and LBT algorithms. Numbers in parentheses denote
the speedup factor compared with the ES algorithm. Search
efficiency of the proposed LBT algorithm is the best, partic-
ularly when the clusters are compact (i.e., � is small). The
reason is that the minimum distance from the query point to
its nearest neighbor tends to be smaller, compares with the
distances from the query to the points in different clusters,
when the clusters are more compact.

7.3. Experiments on an object recognition database

The database adopted in the experiments described here
is the same as those in Refs. [1,17], which was generated

from 72 images of an object taken at different poses for a
total of 100 objects. Each of these 7200, 128 × 128 images
was represented in vector form, and each vector was nor-
malized to unit length. An eigenspace of dimension 35 can
be computed from those normalized vectors, so that by pro-
jecting onto the eigenspace, each vector can then be com-
pressed from 16,384 dimensions to 35 dimensions. In the
eigenspace, the manifold for each object can be constructed
using the 72 vectors belonging to the object. Each of the 100
manifolds was sampled to obtain 360 vectors, resulting in
a total of s = 36, 000 sampled vectors constituting the data
set, where each sample point has dimension d = 35.

To generate the set of query points, we first uniformly
sample the manifolds by sampling each of the 100 mani-
folds at 3600 equally spaced positions. Then we add to each
coordinate a uniformly distributed noise with extent [−e, e].
This yields a set of 360,000 query points.

The ES, SBS, BBDT, and LBT algorithms were used to
perform the nearest neighbor search. The initial distance
threshold of the SBS algorithm was selected to be 0.035
in this experiment. Table 2 shows the mean query time for
these algorithms when the noise extent e is 0.005, 0.01, and
0.015. Numbers in parentheses denote the speedup factor
compared with the ES algorithm. In this case the proposed
LBT algorithm can tremendously speed up the nearest neigh-
bor search process. When e is 0.005, the LBT algorithm is
1088 times faster than the ES algorithm. This performance
is roughly 13 times faster than the result attained by the SBS
algorithm and is roughly 1.7 times faster than the BBDT
algorithm. Furthermore, the speedup factors of the LBT al-
gorithm compared with the SBS and BBDT algorithms rise
as the noise extent e rises. The construction time of the

Y.-S. Chen et al. / Pattern Recognition 40 (2007) 360–375 373

Table 1
Efficiency comparison for clustered Gaussian data with different �

Algorithm � = 0.02 � = 0.04 � = 0.06 � = 0.08 � = 0.1

ES 11.938 ms
SBS 0.619 ms (19) 0.679 ms (18) 0.710 ms (17) 1.024 ms (12) 1.916 ms (6)
BBDT 0.236 ms (51) 0.243 ms (49) 0.249 ms (48) 0.265 ms (45) 0.289 ms (41)
LBT 0.047 ms (254) 0.052 ms (230) 0.077 ms (155) 0.082 ms (146) 0.115 ms (104)

Table 2
Efficiency comparison for an object recognition database

Algorithm e = 0.005 e = 0.01 e = 0.015

ES 50.048 ms
SBS 0.613 ms (82) 1.096 ms (46) 2.161 ms (23)
BBDT 0.079 ms (634) 0.164 ms (305) 0.281 ms (178)
LBT 0.046 ms (1088) 0.072 ms (695) 0.095 ms (527)

Table 3
Mean query time (ms) for k-nearest neighbor search

Algorithm k

2 4 6 8 10 12 14 16 18 20

BBDT 0.087 0.121 0.204 0.363 0.587 0.875 1.192 1.532 1.885 2.251
LBT 0.053 0.069 0.091 0.121 0.158 0.202 0.252 0.302 0.356 0.408

Table 4
Mean query time (ms) for �T -nearest neighbor search

Algorithm �T

0 0.012 0.024 0.036 0.048 0.060 0.072 0.084 0.096 0.108

LBT 0.023 0.040 0.060 0.078 0.096 0.114 0.134 0.154 0.174 0.193

LB-tree is 11,679 s using those 36,000 sample points of
dimension 35, and the number of clusters, sl , at level l of the
LB-tree are sl = 20, 245, 2456, 4684, 5716, 7019, 36,000,
l = 0, 1, . . . , 6. In this case, although the construction time
is acceptable, more work should be done when dealing with
a large sample point set to improve the efficiency of the LB-
tree construction. The average of the minimum distances of
all the sample points to their nearest neighbors is 0.017376.

7.4. Experiments for k-nearest neighbor search

This section presents the experiments for k-nearest neigh-
bor search using the BBDT algorithm and the LBT algo-
rithm modified as described in Section 4.1. These experi-
ments were performed with the object recognition database
described in Section 7.3, and the same LB-tree and query
point set with the noise extent e=0.005 were used. However,
instead of searching for only the single nearest neighbor, we
searched for the k-nearest neighbors of each query point.
Table 3 illustrates the mean query time for the k-nearest
neighbor search, k=2, 4, . . . , 20. As k rises to 20, the mean

query time using the LBT algorithm increases to 0.408 ms,
which is about 8.9 times larger than that for 1-nearest neigh-
bor search. When the BBDT algorithm is applied, the mean
query time increases to 2.251 ms as k rises to 20. That is,
the mean query time of 20-nearest neighbor search is about
28.5 times larger than that for 1-nearest neighbor search by
using the BBDT algorithm. This concludes that there exists
extra advantage if the proposed LBT algorithm is adopted
for k-nearest neighbor search.

7.5. Experiments of searching for k-nearest neighbors
within a distance threshold

This section presents the experiments for the LBT algo-
rithm that is modified as described in Section 4.2. Again,
the same LB-tree and query point set described in Section
7.3 were used. For each query point, at most the first 20 of
its nearest neighbors within the distance threshold �T were
obtained. As �T rises from 0 to 0.108 (�T = 0 implies the
requirement for a perfect match), the mean query time goes
from 0.023 to 0.193 ms, as shown in Table 4. As can be ex-

374 Y.-S. Chen et al. / Pattern Recognition 40 (2007) 360–375

pected, larger �T will result in more neighbors obtained, and
hence, more computation time. In this experiment, average
number of obtained neighbors for all query points increases
from 0 to 17.4.

8. Conclusions

In this paper, we have proposed a fast algorithm for nearest
neighbor search. By creating an LB-tree using the agglomer-
ative clustering technique and then traversing the tree using
the winner-update search strategy, we can efficiently find the
exact nearest neighbor. To further speedup the search pro-
cess, some data transformation is applied to sample points
and query points, such as Haar transform (for autocorre-
lated data) and PCA (for general object recognition data).
Moreover, the proposed algorithm can be easily extended
to provide k-nearest neighbors progressively, nearest neigh-
bors within a specified distance threshold, and close-enough
neighbors compared with the nearest neighbor, respectively.

From our experiments, the search process is dramatically
accelerated using the proposed algorithm, especially when
the distance of the query point to its nearest neighbor is rela-
tively small compared with its distance to most other sample
points. Our algorithm is particularly advantageous in many
object recognition applications, where a query point of an
object is close to the sample points of the same object, but
is far from the sample points of other objects. In this paper
we applied our algorithm to the object recognition database
used in Refs. [1,17], and the result is about 500 to 1000 times
faster than the exhaustive search. In addition, we believe
that the proposed algorithm can be very helpful in applica-
tions where each sample point represents an autocorrelated
signal, like applications concerning content-based retrieval
from a large audio, image, or video database, as those in
Refs. [9,36]. The dimension d and the number of sample
points s in these applications are both large, and hence, our
algorithm will become extremely appealing.

Acknowledgements

The authors would like to thank the helpful comments
and suggestions given by the reviewers. This work was sup-
ported in part by the Ministry of Economic Affairs, Taiwan,
under Grants 93-EC-17-A-02-S1-032 and 94-EC-17-A-02-
S1-032.

References

[1] H. Murase, S.K. Nayar, Visual learning and recognition of 3-D
objects from appearance, Int. J. Comput. Vision 14 (1995) 5–24.

[2] T. Hastie, R. Tibshirani, Discriminant adaptive nearest neighbor
classification, IEEE Trans. Pattern Anal. Mach. Intell. 18 (6) (1996)
607–616.

[3] A.K. Jain, M.N. Murty, P.J. Flynn, Data clustering: a review, ACM
Comput. Surv. 31 (3) (1999) 264–323.

[4] C. Tomasi, R. Manduchi, Stereo matching as a nearest-neighbor
problem, IEEE Trans. Pattern Anal. Mach. Intell. 20 (3) (1998)
333–340.

[5] Y.-S. Chen, Y.-P. Hung, C.-S. Fuh, Fast block matching algorithm
based on the winner-update strategy, IEEE Trans. Image Process. 10
(8) (2001) 1212–1222.

[6] C.-H. Lee, L.-H. Chen, A fast search algorithm for vector quantization
using mean pyramids of codewords, IEEE Trans. Commun. 43 (2/3/4)
(1995) 1697–1702.

[7] C.-H. Hsieh, Y.-J. Liu, Fast search algorithms for vector quantization
of images using multiple triangle inequalities and wavelet transform,
IEEE Trans. Image Process. 9 (3) (2000) 321–328.

[8] L.-Y. Wei, M. Levoy, Fast texture synthesis using tree-structured
vector quantization, in: Proceedings of SIGGRAPH, New Orleans,
LA, July 2000, pp. 479–488.

[9] M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang, B. Dom,
M. Gorkani, J. Hafner, D. Lee, D. Petkovic, D. Steele, P. Yanker,
Query by image and video content: the QBIC sytstem, IEEE Comput.
28 (9) (1995) 23–32.

[10] S. Berchtold, C. Böhm, B. Braunmüller, D.A. Keim, H.-P.
Kriegel, Fast parallel similarity search in multimedia databases, in:
Proceedings of the ACM SIGMOD International Conference on
Management of Data, Tucson, AZ, USA, May 1997, pp. 1–12.

[11] J.L. Bentley, Multidimensional binary search trees used for
associative searching, Commun. ACM 18 (9) (1975) 509–517.

[12] A. Guttman, R-trees: a dynamic index structure for spatial searching,
in: Proceedings of the ACM SIGMOD International Conference on
Management of Data, Boston, MA, June 1984, pp. 47–57.

[13] N. Katayama, S. Satoh, The SR-tree: an index structure for high-
dimensional nearest neighbor queries, in: Proceedings of the ACM
SIGMOD International Conference on Management of Data, Tucson,
AZ, USA, May 1997, pp. 369–380.

[14] D.A. White, R. Jain, Similarity indexing with the SS-tree, in:
Proceedings of the International Conference on Data Engineering,
New Orleans, LA, February 1996, pp. 516–523.

[15] S. Berchtold, C. Böhm, H.-P. Kriegel, The pyramid-technique:
towards breaking the curse of dimensionality, in: Proceedings of the
ACM SIGMOD International Conference on Management of Data,
Seattle, WA, June 1998, pp. 142–153.

[16] S. Berchtold, D.A. Keim, H.-P. Kriegel, T. Seidl, Indexing the
solution space: a new technique for nearest neighbor search in high-
dimensional space, IEEE Trans. Knowledge Data Eng. 12 (1) (2000)
45–57.

[17] S.A. Nene, S.K. Nayar, A simple algorithm for nearest neighbor
search in high dimensions, IEEE Trans. Pattern Anal. Mach. Intell.
19 (9) (1997) 989–1003.

[18] V. Ramasubramanian, K.K. Paliwal, Fast nearest-neighbor search
algorithms based on approximation-elimination search, Pattern
Recognition 33 (9) (2000) 1497–1510.

[19] K. Fukunaga, P.M. Narendra, A branch and bound algorithm for
computing k-nearest neighbors, IEEE Trans. Comput. 24 (1975)
750–753.

[20] S. Brin, Near neighbor search in large metric spaces, in: Proceedings
of the International Conference on Very Large Data Bases, Zurich,
Switzerland, September 1995, pp. 574–584.

[21] E. Vidal, New formulation and improvements of the nearest-
neighbour approximating and eliminating search algorithm (AESA),
Pattern Recogn. Lett. 15 (1) (1994) 1–7.

[22] J.H. Friedman, F. Baskett, L.J. Shustek, An algorithm for finding
nearest neighbors, IEEE Trans. Comput. 24 (1975) 1000–1006.

[23] M.R. Soleymani, S.D. Morgera, An efficient nearest neighbor search
method, IEEE Trans. Commun. COM-35 (6) (1987) 677–679.

[24] A. Djouadi, E. Bouktache, A fast algorithm for the nearest-neighbor
classifier, IEEE Trans. Pattern Anal. Mach. Intell. 19 (3) (1997)
277–282.

Y.-S. Chen et al. / Pattern Recognition 40 (2007) 360–375 375

[25] E.-W. Lee, S.-I. Chae, Fast design of reduced-complexity nearest-
neighbor classifiers using triangular inequality, IEEE Trans. Pattern
Anal. Mach. Intell. 20 (5) (1998) 567–571.

[26] J. McNames, A fast nearest-neighbor algorithm based on a principal
axis search tree, IEEE Trans. Pattern Anal. Mach. Intell. 23 (9)
(2001) 964–976.

[27] S. Arya, D.M. Mount, N.S. Netanyahu, R. Silverman, A.Y. Wu,
An optimal algorithm for approximate nearest neighbor searching in
fixed dimensions, J. ACM 45 (6) (1998) 891–923.

[28] A. Faragó, T. Linder, G. Lugosi, Fast nearest-neighbor search in
dissimilarity spaces, IEEE Trans. Pattern Anal. Mach. Intell. 15 (9)
(1993) 957–962.

[29] R. Fagin, L. Stockmeyer, Relaxing the triangle inequality in pattern
matching, Int. J. Comput. Vision 28 (3) (1998) 219–231.

[30] G.R. Hjaltason, H. Samet, Distance browsing in spatial databases,
ACM Trans. Database Syst. 24 (2) (1999) 265–318.

[31] Y.-S. Chen, Y.-P. Hung, C.-S. Fuh, Winner-update algorithm
for nearest neighbor search, in: Proceedings of the International
Conference on Pattern Recognition, Barcelona, Spain, vol. 2,
September 2000, pp. 708–711.

[32] K.-I. Lin, H.V. Jagadish, C. Faloutsos, The TV-tree: an index structure
for high-dimensional data, VLDB J. 3 (4) (1994) 517–542.

[33] P.H. Winston, Artificial Intelligence, third ed., Addison-Wesley,
Reading, MA, 1992.

[34] R.O. Duda, P.E. Hart, D.G. Stork, Pattern Classification, second ed.,
Wiley, New York, 2001.

[35] G. Strang, T. Nguyen, Wavelets and Filter Banks, Wellesley-
Cambridge Press, Wellesley, MA, 1996.

[36] H.D. Wactlar, T. Kanade, M.A. Smith, S.M. Stevens, Intelligent
access to digital video: informedia project, IEEE Comput. 29 (5)
(1996) 46–52.

About the Author—YONG-SHENG CHEN received his B.S. degree in computer and information science from National Chiao Tung University, Taiwan,
in 1993. He received an M.S. degree and a Ph.D. degree in computer science and information engineering from National Taiwan University, Taiwan, in
1995 and 2001, respectively. He is currently an assistant professor in the Department of Computer Science, National Chiao Tung University, Taiwan. His
research interests include biomedical signal processing, medical image processing, and computer vision.

About the Author—YI-PING HUNG received his B.Sc. in Electrical Engineering from the National Taiwan University in 1982. He received an M.Sc.
from the Division of Engineering, an M.Sc. from the Division of Applied Mathematics, and a Ph.D. from the Division of Engineering, all at Brown
University, in 1987, 1988 and 1990, respectively. He is currently a professor in the Graduate Institute of Networking and Multimedia, and in the
Department of Computer Science and Information Engineering, both at the National Taiwan University. From 1990 to 2002, he was with the Institute of
Information Science, Academia Sinica, Taiwan, where he became a tenured research fellow in 1997 and is now an adjunct research fellow. He received
the Young Researcher Publication Award from Academia Sinica in 1997. His current research interests include computer vision, pattern recognition,
image processing, virtual reality, multimedia and human–computer interaction.

About the Author—TING-FANG YEN received her B.S. in Computer Science and Information Engineering from National Chiao Tung University,
Taiwan, in 2004. She is currently a graduate student in Electrical and Computer Engineering at Carnegie Mellon University. Ting-Fang’s current research
mainly focus on software security, including issues in exploit detection and recovery, and evaluating the effect of software diversity in preventing
widespread attacks.

About the Author—CHIOU-SHANN FUH received the B.S. degree in computer science and information engineering from National Taiwan University,
Taipei, Taiwan, in 1983, the M.S. degree in computer science from the Pennsylvania State University, University Park, PA, in 1987, and the Ph.D. degree
in computer science from Harvard University, Cambridge, MA, in 1992. He was with AT&T Bell Laboratories and engaged in performance monitoring of
switching networks from 1992 to 1993. He was an associate professor in Department of Computer Science and Information Engineering, National Taiwan
University, Taipei, Taiwan from 1993 to 2000 and then promoted to a full professor. His current research interests include digital image processing,
computer vision, pattern recognition, mathematical morphology, and their applications to defect inspection, industrial automation, digital still camera, digital
video camcorder, and camera module such as color interpolation, auto exposure, auto focus, auto white balance, color calibration, and color management.

	Fast and versatile algorithm for nearest neighbor search basedon a lower bound tree
	Introduction
	Multilevel structure and LB-tree
	Multilevel structure of each data point
	LB-tree for the data set

	Winner-update search strategy and the proposed algorithm
	Other query types
	Progressive search for =k-nearest neighbors
	Search for =k-nearest neighbors within a distance threshold
	Search for neighbors close enough to the query compared with the nearest neighbor

	Construction of LB-tree
	Multi-dimensional case for each level
	One-dimensional case for level 0
	Selection of the radius threshold

	Data transformation
	Experimental results
	Experiments on autocorrelated data
	Experiments on clustered Gaussian data
	Experiments on an object recognition database
	Experiments for =k-nearest neighbor search
	Experiments of searching for =k-nearest neighbors within a distance threshold

	Conclusions
	Acknowledgements
	References

