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QSAR models for four skin penetration enhancer data sets of 61, 44, 42, and 17 compounds were constructed
using classic QSAR descriptors and 4D-fingerprints. Three data sets involved skin penetration enhancement
of hydrocortisone and hydrocortisone acetate. The other data set involved skin penetration enhancement of
fluorouracil. The measure of penetration enhancement is the ratio of the net permeation of the penetrant
with and without a common fixed concentration of enhancer. Significant QSAR models could be built using
multidimensional linear regression fitting and genetic function model optimization for all four data sets
when both classic and 4D-fingerprint descriptors were used in the trial descriptor pool. Reasonable QSAR
models could be built when only 4D-fingerprint descriptors were employed, and no significant QSAR models
could be built using only classic descriptors for two of the four data sets. Comparison analyses of the
descriptor terms, and their respective regression coefficients, across the pairs of the best QSAR models of
the four skin penetration enhancer data sets did not reveal any significant extent of similar terms. Overall,
the QSAR models for the penetration-enhancer systems appear meaningfully different from one another,
suggesting that there are distinct mechanisms of skin penetration enhancement that depend on the chemistry
of both the enhancer and the penetrant.

INTRODUCTION

The targeted enhancement of the skin permeability to a
particular drug or therapeutic agent represents an attractive
means for systemic drug administration. Thus, the develop-
ment of penetration enhancers as transport facilitators to
compounds of low percutaneous absorption continues to be
of high interest for delivery systems in both the cosmetic
and pharmaceutical industries. The stratum corneum (SC)
has been identified as the rate-limiting barrier in skin for
the percutaneous absorption of drugs and other organics. The
SC consists of dead cells surrounded by multilamellar lipid
bilayer membranes. Small hydrophobic or nonpolar mol-
ecules can partition into the SC and then diffuse across the
lipid bilayer membranes, the intercellular route. However,
hydrophilic (polar) molecules can penetrate the SC only
through the transcellular route or pre-existing aqueous
pathways associated with sweat gland ducts and hair follicles.
Many experimental studies1 have investigated the action of
chemical enhancers, and the following enhancement mech-
anisms have been suggested: (1) interaction with intercellular
lipids of the SC, resulting in disorganization of these highly
ordered structures and thus enhancing the paracellular

diffusivity through the SC; (2) interaction with intracellular
proteins of the corneocytes to increase transcellular perme-
ation; and (3) increasing partitioning of the drug into the
SC. Although experiments have suggested multiple mech-
anisms of enhancer action, detailed molecular modeling
studies based on the molecular structures of the chemical
enhancers are needed to elucidate the mechanisms of
enhancement and also to permit predict enhancement po-
tency.

Some experimental studies of penetration enhancement
have measured the lipophilicity [nonpolarity] of the enhanc-
ers and also investigated the corresponding relationships
between enhancer nonpolarity and penetration enhancement
potency.2 But in general there have been few molecular
modeling and QSAR studies of skin penetration enhancers.
One reason may be that each compound whose penetration
is to be enhanced produces a distinct structure or an activity
relationship for a given set of enhancers. Said another way,
a QSAR developed for one drug for a given class of skin
penetration enhancers may not apply to a second drug. Thus,
a unique QSAR model may be needed for each drug and
penetration enhancer data set, and generalizations from
molecular modeling may be limited. However, it does appear
that a common set of physicochemical properties governs
the penetration enhancement of nonpolar drugs which are
different from those of polar drugs.3

This paper reports the development of QSAR models and
affiliated findings and conclusions for four different skin
penetration enhancer data sets. Three of the data sets deal
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Table 1. Training Set 1: 61 Surfactant-like and/or Nonpolar Enhancers Using Hydrocortisone (HC) as a Master Reference Penetrator
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with the action of skin penetration enhancers for the nonpolar
and relatively large, highly planar-shaped hydrocortisone
(HC) and hydrocortisone acetate (HCA) molecules. The
fourth data set involves skin penetration enhancement for
the relatively small, polar fluorouracil (5FU) drug used in
cancer chemotherapy.4 The two objectives reported in this
paper are as follows: 1. Determine if a set of significant
QSAR models can be built across a relatively large range of
both skin penetration enhancement and reference penetrant
chemical diversity. 2. Determine if the descriptors of the
QSAR models for the penetrator enhancer systems are
meaningfully different from one another, so as to suggest
multiple mechanisms of skin penetration enhancement
governed by the chemistry of the enhancer and/or the
penetrant.

METHODS

1. Selection of Training Sets.A master data set of skin
penetration enhancers was constructed from literature data.
This master data set was first divided into three subsets,
namely the HC subset, HCA subset, and the 5FU subset,
based on the reference penetrant. Next, clustering analysis
was performed on each of the three subsets based on
the elements of the 2D-molecular similarity matrix of each
skin penetration enhancer in each subset. The hierarchical
agglomerative clustering method (HACM) of Ward,5

which employs a Euclidean distance (ED) as the sim-
ilarity metric, was used to construct the “clusters” within
each of the three subsets. Only the HC subset could
be meaningfully clustered into two optimized clusters,
while the other two subsets were found to be best represented
as single clusters in terms of 2D-molecular similarity.
The two HC clusters can be characterized as containing
nonpolar, surfactant-like enhancers in one cluster and
small, relatively polar enhances in the other cluster. Over-
all, the master data set of skin penetration enhancers
partitions into four distinct penetration enhancer training
sets, which are listed in Tables 1-4. References to the
original skin penetration enhancer data are also given in
Tables 1-4.

Training Set 1.The training set consists of 61 surfactant-
like and/or nonpolar enhancers for which penetration en-
hancement was measured using hydrocortisone (HC) as a
master reference penetrator.2,6-13 The measure of penetration
enhancement, denoted by ER(J), is the ratio of the HC
penetration with and without a common fixed concentration
of the test enhancer. The first ER(J) entry for these enhancers
in Tables 1-3 was used to build the QSAR models. These
measurements of ER(J) represent the most self-consistent

data because they come from the same lab or, at the very
least, from one common experimental protocol. Log ER(J)
is the actual representation for penetration enhancement used
in constructing the QSAR models. This training set is given
as Table 1.

The in vitro skin penetration enhancement measurement
method has been described in refs 2 and 6-13. The skin
permeation parameters were calculated by plotting the
cumulative drug amount permeated through the skin versus
the time. The slope of the linear portion of the permeation
curve provided the flux value (J, mg cm-2 h-1) at a steady
state. The ER(J) for flux was calculated as

where the flux for control denotes when the skin is untreated
with the enhancer.

Training Set 2.This training set consists of small, relatively
polar enhancers for which penetration enhancement was
measured using hydrocortisone (HC) as a master reference
penetrator.2,7,9-10,13-15 The measure of penetration enhance-
ment is the same as for training set 1. There are 44 skin
penetration enhancers in this data set, which are listed as
Table 2.

Training Set 3. This training set consists mainly of
surfactant-like and/or nonpolar enhancers for which penetra-
tion enhancement was measured using hydrocortisone acetate
(HCA) as a master reference penetrator.8,12-13,16-17 The
measure of penetration enhancement is the same as for
training set 1. There are 42 skin penetration enhancers in
this training set, which are given as Table 3.

Training Set 4. This training set consists of 17
terpene skin penetration enhancement compounds (polar
compounds) for which penetration enhancement was mea-
sured using the chemotherapy drug 5FU as the master
reference penetrator.18,19 The measure of penetration en-
hancement is the ratio of the penetration of 5FU with and
without a common fixed concentration of enhancer. ER(J)
is used to construct the QSAR models. This training set is
given in Table 4.

2. Generation of QSAR Descriptors.Two classes of
QSAR descriptors were generated for the skin penetration
enhancers of the training sets. One class can be characterized
as the “classic” intramolecular descriptors generally used in
QSAR studies. The second class includes the 4D-fingerprint
descriptors developed by the 4D-QSAR paradigm.20 These
two classes of QSAR descriptors, in turn, permitted the
development of three types of QSAR models: (a) QSAR
models constructed using only the classic QSAR descriptors,

Table l. (Continued)

ER(J) ) [flux for skin treated with enhancer]/
[flux for control] (1)
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Table 2. Training Set 2: 44 Small and Relative Polar Enhancers Using Hydrocortisone (HC) as a Master Reference Penetrator
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(b) QSAR models constructed using only the 4D-fingerprint
descriptors, and (c) QSAR models developed using both the
classic and 4D-fingerprint descriptors in the trial pool.

The set of classic QSAR descriptors used in this series of
studies is given in Table 5. There may be some descriptors
that other researchers consider “classic” which are not
included in Table 5, but those most often used in traditional
QSAR studies are listed and have been used in this work.
Table 5 is divided into intramolecular and intermolecular
descriptor sets as a reminder that, although these descriptors
are computed from methodology based solely on the structure
of an individual molecule, some are actually measures of
intermolecular interactions.

The theory and methodology of the universal 4D-
fingerprints have been presented in detail previously20,21and
are only summarized here. Universal 4D-fingerprints are
the eigenvalues of the molecular similarity eigenvectors
determined for a molecule from its absolute molecular
similarity main distance-dependent matrix (MDDM).
The eigenvectors capture the molecular information of
a molecule regarding composition of atom types, size,
shape, and conformational flexibility. The types of atoms
composing a molecule are currently defined as eight interac-
tion pharmacophore elements (IPEs), and their individual
definitions are given in Table 6. A unique MDDM is
constructed for each of the eight distinct and identical IPE

pairs. The elements of the MDDM are derived by inductive
derivation and found to be

The constantν in eq 2, set to 0.25, was selected so as to
maximize the difference in the sum of eigenvalues for any
two arbitrary compounds with the same number,n, of a
particular IPE type,m. The term<dij> is the Boltzmann
conformational average distance between the atom pairij
for IPE typesu andV

p(k) in eq 3 is the thermodynamic probability of conformer
statek, and it is computed from the ensemble of conforma-
tional energies determined for the molecule being studied.
dij(k) is the distance between atom pairi andj for IPE u and
V, respectively, for thekth conformer state.

Diagonalization of the MDDM yields its eigenvector and
constituent eigenvalues. If the members of an IPE pair are
the same (i.e.,u ) V), MDDM is a square upper/lower
triangular matrix, and it can be directly diagonalized. The
resulting eigenvalues of the diagonalization are normalized,
ranked in numerically descending order, and represented as
an eigenvector. Thenth normalized eigenvalue for IPE type

Table 2. (Continued)

E(V, dij) ) e(-V<dij>) (2)

<dij> ) ∑
k

dij(k)p(k) (3)
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Table 3. Training Set 3: 42 Surfactant-like and/or Nonpolar Enhancers Using Hydrocortisone Acetate (HCA) as a Master Reference Penetrator
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m of a compoundR, εmn(R), is obtained by scaling the non-
normalized eigenvalueεmn′(R) relative to the rank of its
MDDM

If the members of an IPE pair are not the same (i.e.,
u*V), the number ofu and V IPE elements can be dif-
ferent (nu*nV). In this case, MDDM will be rectangular,

Table 3. (Continued)

1142 J. Chem. Inf. Model., Vol. 47, No. 3, 2007 IYER ET AL.



Table 4. Training Set 4: The Terpene Training Set Using 5-FU as the Polar Reference Transport Molecule
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but the following two square MDDMs can still be con-
structed:

MDDM(u,u) and MDDM(V,V) have the same set of
eigenvalues because they have the same rank and trace. As
a result, for each IPE pairu*V

Each IPE pair corresponds to one MDDM from which
one molecular similarity eigenvector can be formed. Since

there are 36 distinct combinations of the currently defined
eight IPE types, 36 eigenvectors can be obtained for each
moleculeR. Dissimilarity between moleculesR and â is
given by

where i refers to theith eigenvalue in the corresponding
eigenvector of a specific IPE pair. Molecular similarity is
then defined as

whereæ ) |rank(R) - rank(â)|/(rank(R)+rank(â)). Since

Table 4. (Continued)

MDDM(u,u) ) MDDM(nunV) * MDDM( nu,nV)
T (5)

MDDM(V,V) ) MDDM(nVnu)*MDDM( nV,nu)
T (6)

ε(R)u,V ) {[ε(R)]MDDM(u,u)}
1/2 (7)

DRâ ) ∑
i

|ε(R)i - ε(â)i| (8)

SRâ ) (1-DRâ)(1-æ) (9)
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the rank of a MDDM matrix is the number of atoms of the
specific IPE type present,æ serves to reincorporate molecular
size information intoSRb. The normalized eigenvalues limit
the range of bothDRâ andSRâ between 0 and 1. When aDRâ

value is closer to 1, it means a higher degree of dissimilarity,
whereas anSRâ value closer to 1 means higher molecular
similarity.

The universal 4D-fingerprint descriptor set for molecule
R is composed of all eigenvalues of all eigenvectors derived
from all of the MDDM for R. Operationally, a threshold
cutoff value of 0.002 is applied to disregard normalized
eigenvalues less than the threshold.

Construction of the trial descriptor matrix for all training
set compounds is based on maximizing its information
content. For each compound in the training set, the number
of significant eigenvalues in the eigenvector for a particular
IPE pair (u,V) is first computed. Then, the maximum number
of significant eigenvalues,nmax(u,V), across the training set

is determined. Finally, all molecules in the training set are
assignednmax(u,V) eigenvalues from their corresponding
eigenvectors for the IPE pair (u,V). Eigenvectors containing
less thannmax(u,V) significant eigenvalues have these “miss-
ing” eigenvalues set to zero. For instance, ifnmax(3,5) is 10,
and the eigenvector for IPE pair (u,V) of compoundR has
only eight significant eigenvalues, the ninth and tenth
eigenvalues for IPE pair (u,V) of R are set to zero.

The total number of universal descriptors,ntotal, for each
compound in the training set will be the sum of thenmax-
(u,V) values for the 36 eigenvectors. Each such universal
descriptorεi(u,V) represents theith eigenvalue in the eigen-
vector for the IPE pair (u,V).

3. Construction of the QSAR Models.The skin penetra-
tion-enhancer models were built and optimized using mul-
tidimensional linear regression fitting and genetic function
approximation (GFA), which is a multidimensional optimiza-
tion method based on the genetic algorithm paradigm.22,23

Both linear and quadratic representations for each of the
descriptor values were included in the trial descriptor pool,
and QSAR models were built as a function of the number
of descriptor terms in a given model. Statistical significance
in the optimization of a QSAR model was judged jointly by
the correlation coefficient of fit,r2, and the leave-one-out
cross validation correlation coefficient,q2. In addition, GFA
uses the Friedman’s lack of fit (LOF) measure to resist
overfitting, which is a problem often encountered in con-
structing statistical models.24

4. Exploration and Validation of the QSAR Models.
Each of the four original training sets was repeatedly
subdivided, on a random selection basis, into a subtraining
set and a test set. Each test set was restricted to 15% of the
compounds in the original training set. Ten such subtraining
sets and test sets were constructed for each of the four
original training sets. QSAR models were constructed in
identical fashion as those in the original training set for each
corresponding subtraining set. Each resulting QSAR model
was then used to predict the corresponding test set com-

Table 5. Classic Set of QSAR Descriptors

Intramolecular
HOMO highest occupied molecular orbital energy
LUMO lowest unoccupied molecular orbital energy
Dp dipole moment
Vm molecular volume
SA molecular surface area
Ds density
MW molecular weight
MR molecular refractivity
N(hba) number of hydrogen bond acceptors
N(hbd) number of hydrogen bond donors
N(B) number of rotatable bonds
JSSA (X) Jurs-Stanton surface area descriptors
Chi-N, Kappa-M Kier and Hall topological descriptors
Rg radius of gyration
PM principle moment of inertia
PSA polar surface area
Se conformational entropy
Q(I) partial atomic charge densities

Intermolecular
F(H2O) aqueous solvation free energy
F(oct) 1-octanol solvation free energy
LogP 1-octanol/water partition coefficient
Ecoh cohesive packing energy
TM hypothetical crystal-melt transition temperature
TG hypothetical glass transition temperature

Table 6. Interaction Pharmacophore Elements, IPEs, Currently
Used in the 4D-QSAR Paradigm

IPE code IPE abbreviation IPE description

0 any all atoms in the molecule
1 np nonpolar atoms
2 p+ polar (+) atoms
3 p- polar (-) atomsa

4 hba hydrogen bond acceptor atoms
5 hbd hydrogen bond donor atoms
6 aro aromatic atoms
7 hs non-hydrogen atoms

a Sometimes a carbon or sulfur will end of having a relatively large
negative partial atomic charge [<-0.150] owing to the bonding
topology in which it is involved. In these cases the 4D-QSAR paradigm
considers the carbon or sulfur to be a polar negative IPE as opposed to
a nonpolar IPE.

εmn(R) )
εmn′(R)

rank(R)m

(4)

Table 7. Results of the Random Scramblings Experiments and the
Findings from the Test Set Predictions Studies for the Original Four
Training Setsa

data set <r2> <q2>

original training set 1:N ) 61 0.29 - scrambled
original training set 2:N ) 44 0.36 - scrambled
original training set 3:N ) 42 0.23 - scrambled
original training set 4:N ) 17 0.37 - scrambled
test training set 1:N ) 52 0.788- eq 11/-15% 0.711
test training set 2:N ) 37 0.802- eq 11/-15% 0.735
test training set 3:N ) 36 0.782- eq 11/-15% 0.744
test training set 4:N ) 14 0.856- eq 11/-15% 0.772
test set 1:N ) 9 0.68
test set 2:N ) 7 0.70
test set 3:N ) 6 0.67
test set 4:N ) 3 0.78

a The “test training sets” are those data sets constructed from
randomly extracting 15% of the compounds in the original
training set and using the resultant data set to build a QSAR model.
The “test sets” are the 15% of the compounds extracted from the original
training set and whose activities are predicted using QSAR models
built from the remaining 85% of the compounds in the original training
set.N in each case is the number of compounds in the data set. The
<r2> are for the 4000 random scrambling level as described in the
test.
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pounds. The averager2 andq2 of the subtraining set QSAR
models and the averager2 of prediction for the test set
compounds are reported in Table 7.

The dependent variables, ER(J), of each of the four
original training sets were randomly scrambled in increments
of 1000 beginning with 1000 random scramblings. In each
instance a QSAR model was constructed to test for chance
correlations. By the 4000 random scrambling level, there was
no meaningful change in the averager2 value, or its mean
deviation, across the QSAR models of the random scram-
blings as compared to the corresponding measures from the
models of 2000 and 3000 random scrambling levels for all
four training sets. The averager2 values, from the 4000
random scrambling experiments, across each of the four
training sets range from 0.23 to 0.37. Thus, 4000 random
scramblings are considered sufficient to establish that the
models generated in this study are not due to chance. The
results, in terms of the averager2 value across the QSAR
models of the random scramblings, at the 4000 random-
scrambling level, are also given in Table 7.

RESULTS

An attempt to recombine training sets 1 and 2, both using
HC as the reference penetrant to build a single composite
QSAR model, was not possible; no statistically significant
QSAR could be constructed for the combination of the two
training sets, thus suggesting that nonpolar, surfactant-like
penetrants [training set 1] may act by a different mechanism
of HC transport enhancement than is employed by the
relatively small, polar enhancers [training set 2].

Training sets 1 and 3 were also combined to see if a single
QSAR model could be built. The chemical structures of the
enhancers in these two training sets are generally similar but
do differ in that HC is the reference penetrant in training set
1, while HCA is the reference penetrant for training set 3.
Once again, no significant single QSAR model could be built
by combining training sets 1 and 3. This finding, again, may
be indicative of a somewhat different mechanism, or transport
path, of HC versus HCA through the stratum corneum.

The optimized QSAR models for training set 1, which
consists of surfactant-like and/or nonpolar enhancers with
HC as the master reference penetrator, are as follows: (a)
models constructed using only the classic QSAR descriptors,
(b) models constructed using only the 4D-fingerprint descrip-
tors, and (c) models developed using both the classic and
4D-fingerprint descriptors in the trial descriptor pool.

The definitions of the classic QSAR descriptors for all of
the optimum QSAR models are listed in Table 5, and the
IPE [atom types] of the 4D-fingerprint descriptors are defined
in Table 6.

The trial descriptor pools used to build the QSAR models
of training set 1 consisted of 79 classic QSAR descriptors
and 441 4D-fingerprint descriptors.

A. Classic QSAR Descriptors.

B. 4D-Fingerprint QSAR Descriptors.

C. Classic QSAR and 4D-Fingerprint Descriptors.

Regardless of which descriptors are used to build the
QSAR models, the optimal number of terms in a model, as
determined from GFA, is always six. The 4D-fingerprints
by themselves lead to a marginally better model than that
arising solely from classic QSAR descriptors. However, the
all-4D-fingerprint QSAR model, eq 11, has only linear
descriptor terms, while five of the six terms in eq 10 (the
classic descriptor QSAR model) are quadratic. This suggests
that the 4D-fingerprints better fit the Log ER(J) measures.
Equation 12, which is the QSAR model built from combining
the classic and 4D-fingerprint descriptors, proves marginally
better inr2 than eqs 10 and 11 but is more superior inq2

than the other two QSAR models. Moreover, all terms in eq
12 are linear, including those of the classic descriptors, and
only one descriptor from each of eqs 10 and 11 is found in
eq 12.

The optimized QSAR models derived from the second
training set are given below in the same format used to report
the QSAR models of training set 1. The trial descriptor pools
used to build the models consisted of 76 classic QSAR
descriptors and 357 4D-fingerprint descriptors.

Classic QSAR Descriptors.No significant QSAR model
could be constructed using only classic QSAR descriptors.

4D-Fingerprint QSAR Descriptors.

Classic QSAR and 4D-Fingerprint Descriptors- Same
as Eq 13.

In this part of the study, it was found that no significant
QSAR model could be built using only classic QSAR

Log ER(J) ) 2.013+ 0.039 * (ClogP- 8.329)2 -
0.0001* (HOMO+ 242.46)2 + 0.004 * (Kappa5-

10)2 - 0.008 * (FH20- 2.48)2 - 0.019 * (Kappa4-
15.71)2 - 3.259 * Dipole (10)

N ) 61, r2 ) 0.732,q2 ) 0.661

Log ER(J) ) 2.823- 2.415 * e2(p-,any)-
96.37* e7(any,any)- 137.8* e12(np,np)+

74.66 * e18(hs,hs)+ 216.9 * e16(any,any) (11)

N ) 61, r2 ) 0.743,q2 ) 0.673

Log ER(J) ) 1.143+ 48.27 * e18(hs,hs)+
34.75 *e4(hs,hs)+ 0.076 * FH2O- 0.155 * PSA-

384.7 * e22(any,any)+ 1.458 * e1(p+,hs) (12)

N ) 61, r2 ) 0.767,q2 ) 0.724

Log ER(J) ) 0.316- 2378. * (e4(any,any)- 0.056)2 -
59.19* (e3(any,np))2 - 270.1 * (e3(np,np)- 0.079)2 -
0.238* (e1(np,hba)- 1.00)2 + 4698. * (e16(any,np)-

0.014)2 + 7617 * (e37(any,any))2 (13)

N ) 44, r2 ) 0.772,q2 ) 0.710

Log ER(J) ) 0.316- 2378. * (e4(any,any)- 0.056)2 -
59.19* (e3(any,np))2 - 270.1 * (e3(np,np)- 0.079)2 -
0.238* (e1(np,hba)- 1.00)2 + 4698 * (e16(any,np)-

0.014)2 + 7617. * (e37(any,any))2 (14)

N ) 44, r2 ) 0.772,q2 ) 0.710
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descriptors, and when the classic and 4D-fingerprint descrip-
tor pools were combined, the resulting model was the same
as that built using only 4D-fingerprints. Once again the
optimal size of the QSAR model is six terms, all of which
are quadratic. Even though model construction seems more
demanding for this training set than for training set 1, ther2

andq2 of eq 13, respectively, are about the same as those in
eq 12.

The optimal QSAR models for training set 3 are based on
descriptor pools of 77 classic descriptors and 413 4D-
fingerprint descriptors. They are as follows:

Classic QSAR Descriptors.

4D-Fingerprint QSAR Descriptors.

Classic QSAR and 4D-Fingerprint Descriptors.

The optimal classic descriptor and 4D-fingerprint QSAR
models each contain seven descriptor terms. The
classic descriptor model is significantly better in terms
of r2 and q2 than the 4D-fingerprint model. However,
the classic descriptor model has five quadratic terms, while
the 4D-fingerprint model has none. It is worth noting
that 4D-fingerprint descriptors seem “resistant” to be-
coming quadratic descriptor terms. Perhaps the most sig-
nificant finding in this part of the study is that the comb-
ination of classic and 4D-fingerprint descriptors leads
to a good 6-term model, eq 17, as judged byr2 and q2,
even though this QSAR model does contain three quadratic
terms.

The fourth training set has only 17 compounds and
uses 5FU as the reference penetrant. Optimal QSAR models
for this small training set were based on 76 classic de-
scriptors and 334 4D-fingerprints and required
employing ER(J) directly, not log ER(J), as the dependent
variable.

Classic QSAR Descriptors.No significant QSAR model
could be constructed.

4D-Fingerprint Descriptors.

Classic and 4D-fingerprint Descriptors- Same as Eqs
18a and 18b.

It is difficult to build good QSAR models for training set
4 because (a) the inability to construct a significant model
employing only classic QSAR descriptors; (b) the optimal
linear 4D-fingerprint model, eq 18a, contains four descriptor
terms, which likely nears overfitting the data; (c) the need
to include all quadratic terms in a 3-term 4D-fingerprint
model, eq 18b; and (d) the large regression coefficients in
eq 18b and large constant term in eq 18a.

The results of the random scrambling and test set predic-
tion-validation studies are given in Table 7. The random
scrambling studies lead to models with averager2 values of
about 0.35 across the four training sets. The corresponding
r2 values of the optimum QSAR models built for the training
sets range from 0.767 to 0.883. Thus, the random scrambling
studies suggest that the QSAR models are significant and
not the result of chance correlations.

The test set validation studies indicate that test training
set models constructed from random samplings, using 85%
of the compounds from the original training sets, are quite
comparable in bothr2 and q2 to the optimum models
developed for the respective training sets [eqs 10-19].
Moreover, the ability to build consistent models across
subsets of the original training set suggests that all of these
models are stable and robust with respect to the range of
the chemistry sampled in the training set.

Finally, the averager2 of prediction across test set
compounds using the QSAR models built from the original
training sets is consistently about 8-15% less than the
correspondingr2 of the QSAR models. This indicates stable
and meaningfully predictive models.

DISCUSSION

The QSARs developed for each of the four training sets
are discussed below within the context that different penetra-

Log ER(J) ) 1.848- 0.002 *TG - 0.0002 * (PSA-

21.7)2 - 0.0001 * (LUMO- 111.2)2 - 0.00001 *

(TM - 444.7)2 - 2.519 * (Chi11- 0.27)2 +

0.781 * Dipole+ 0.011 * (Kappa5- 11.23)2 (15)

N ) 42, r2 ) 0.738,q2 ) 0.621

Log ER(J) ) 1.722- 172.3 *e41(any,np)+
57.58 * e48(np,np)- 263.6 *e13(np,np)+
132.1 * e21(any,np)+ 74.99 * e10(hs,hs)+

1.760 * e2(hba,hbd)- 2.072 * e3(hba,hs) (16)

N ) 42, r2 ) 0.626,q2 ) 0.473

Log ER(J) ) 1.957- 0.0002 * (LUMO- 109.5)2 -
0.112 * (Chi5- 6.992)2 + 1.236* Dipole+

31.42 * (e3(hba,hs)- 0.102)2 + 216.6 * e17(np,np)-
312.3 *e18(any,any) (17)

N ) 42, r2 ) 0.825,q2 ) 0.753

ER ) -8506*e6(hs,hs)- 837*e3(hs,hs)- 6410*e13
(any,any)- 694*e2(hs,hs)+ 900.14 (18a)

N ) 17, r2 ) 0.883,q2 ) 0.742

ER ) 1188551*[e6(hs,hs)- 0.038]2 +
14587691*[e14(np,p+) - 0.013]2 +

531759[e5(hs,hs)- 0.043]2 - 8.11 (18b)

N ) 17, r2 ) 0.930,q2 ) 0.702

ER ) -8506*e6(hs,hs)- 837*e3(hs,hs)- 6410*e13
(any,any)- 694*e2(hs,hs)+ 900.14 (19a)

N ) 17, r2 ) 0.883,q2 ) 0.742

ER ) 1188551*[e6(hs,hs)- 0.038]2 +
14587691*[e14(np,p+) - 0.013]2 +

531759[e5(hs,hs)- 0.043]2 - 8.11 (19b)

N ) 17, r2 ) 0.930,q2 ) 0.702

QSAR ANALYSES OF SKIN PENETRATION ENHANCERS J. Chem. Inf. Model., Vol. 47, No. 3, 20071147



tion enhancement mechanisms may play a role in both the
chemical structure of the enhancer and the penetrant.

QSAR Models of Training Set 1.The model using both
classic QSAR descriptors and 4D-fingerprint descriptors (eq
12) is the best model, but all three models (eqs 10-12) are
close in statistical significance. Three descriptor terms in eq
12 are also found in eqs 10 and 11, namely e18(hs,hs),{e22-
(any,any) versus e16(any,any)}, and FH2O. Thus, these terms
are judged to capture the most significant features for
nonpolar, surfactant-like skin penetration enhancers in
combination with relatively large, nonpolar penetrants like
HC. A possible composite interpretation of these descriptors
is as follows: (a) As aqueous solubility (FH2O and PSA)
increases, skin enhancer “potency” decreases. (b) There is a
definitive optimum size and likely shape for the best-
performing enhancer, as judged by the positive contribution
to ER(J) from e18(hs,hs) and the negative contribution from
e22(any,any). (c) The less exposed the polar surface of the
enhancer is in the membrane, the more effective the enhancer,
(PSA). (d) The short-range distribution [3-5 Å] of polar-
positive atoms over the enhancer (e1(p+,hs)) can contribute
to increasing potency, which may be indicative of a specific
membrane-enhancer “binding” interaction.

QSAR Models of Training Set 2.The QSAR model using
the 4D-fingerprint descriptors, eq 13, is the best model. No
meaningful model could be built using only classic QSAR
descriptors, and when the classic descriptors were combined
with the 4D-fingerprint descriptors the resulting optimal
QSAR model was identical to eq 13. The inability to
construct a significant QSAR model using only classic QSAR
descriptors may be indicative of the enhancement mechanism
involving local regions of the enhancers (a pharmacophore),
as opposed to the entire molecule. That is, the classic QSAR
descriptors may generally determine whole molecule features
and propertiessnot information about specific parts of a
molecule. The all-4D-fingerprint model, given by eqs 13 and
14, is composed completely of quadratic descriptor terms.
Quadratic 4D-fingerprint terms may reflect the need for
forced nonlinear data-fitting. A possible mechanistic inter-
pretation of the descriptors of eq 13 is as follows: (a) The
short-range [3-5 Å] joint distribution of hydrogen-bonding
groups and nonpolar groups over the enhancer (e1(np,hbd))
can contribute to increasing enhancer potency, which may
indicate a specific “binding” interaction involving the
enhancer with sites in the strateum corneum of the skin. (b)
Nonpolar groups and their distribution over an enhancer
generally decreases skin enhancer “potency” (e3(np,np), e3-
(any,np), and e16(any,np)). (c) Short-range shape steric
restrictions on these polar enhancers may be reflected by
e4(any,any).

QSAR Models of Training Set 3. This QSAR model, eq
17, which uses both classic QSAR descriptors and 4D-
fingerprint descriptors, proves the best overall and, somewhat
surprisingly, is considerably more significant than the
optimum QSAR models built solely from classic QSAR
descriptors, eq 15, and 4D-fingerprint descriptors, eq 16. The
r2 andq2 values for eq 17 may approach the highest possible
values without overfitting the training set data. Two of the
three classic QSAR descriptor terms of eq 17 [LUMO and
Dipole] are also found in eq 15, the QSAR model based
solely on classic QSAR descriptors. A possible mechanistic
interpretation of the descriptors of eq 17 is as follows: (a)

As the dipole moment of the skin penetration enhancer and
its corresponding “dipole-dipole binding” to a site in the
stratum corneum, such as the head groups of membrane
phospholipids, increases, so does the skin penetration
enhancer “potency”. (b) An optimum size and likely shape
for the best performing enhancer exists as judged by the
negative contribution to the Log ER(J) from e18(any,any)
and the negative contribution from Chi5. (c) The optimum
size and shape reflected by e18(any,any) are intimately
related to the long-range distribution of nonpolar groups over
the enhancer as captured by e17(np,np), indicating the
aliphatic “tails” of the enhancers may be inserting into the
assemblies of the membrane phospholipids, including cellular
membrane monolayers. (d) The short-range distribution of
hydrogen bond acceptors over the enhancer (e3(hba,hs)) can
contribute to increasing enhancer potency. This may reflect
a specific membrane-enhancer “binding” interaction, and this
term may denote the near equivalent type of interaction
characterized by e1(p+,hs) in eq 12 as described training
set 1. (e) The role of the LUMO term in eq 17 is unclear
but does suggest this nonground descriptor captures some
important features of the penetration enhancement process,
perhaps related to chemical reactivity.

QSAR Models for Training Set 4. All but one 4D-
fingerprint of the terpene-5FU enhancer system is of the (any,
any) or (hs, hs) pairs of atom types. The 4D-fingerprint
QSAR models of the other skin penetration enhancer systems
[training sets 1-3] also contain 4D-fingerprints from the
(any, any) and (hs, hs) atom pair types. These QSAR models,
however, also contain a significant number of 4D-fingerprint
descriptors from nonpolar (np) atom types. Thus, it appears
that steric and/or molecular shape interactions govern the
terpene-5FU system with no significant nonpolar or elec-
trostatic interactions.

A comparison analysis of the descriptor terms and their
respective regression coefficients across the pairs of the best
QSAR models [eqs 12, 13, 17, and 18a] from the four skin
penetration enhancer data sets does not reveal any significant
similar terms. Even allowing for a generous degree of
assumed commonality among the descriptors, especially for
the 4D-fingerprints, it is impossible to formulate a near-
common mechanistic model for penetration enhancer action
for any pair of the four data sets. Thus, the QSAR models
for the penetrator enhancer systems are judged meaningfully
different from one another. This suggests multiple mecha-
nisms of skin penetration enhancement, dependent on the
chemistry of both the enhancer and the penetrant.

We will further discuss the QSAR analyses and mecha-
nistic modeling of skin penetration enhancers in our next
paper, focusing on the results of using membrane-interaction
(MI)-QSAR analysis to model the behavior of skin penetra-
tion enhancers in phospholipid membrane assemblies.
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