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Abstract

Because product demand is very volatile and machine and process technologies are advanced at a rapid pace, capacity

planning, and investment in the semiconductor industry is a challenging task. Many studies have addressed mid- and short-

term machine portfolio planning tasks of capacity planning. However, capacity planning should be considered in a

framework of strategy planning in order to address the whole problem. This paper describes a method of analysis for

adapting capacity strategy to changing business environment. The paper has three major parts. In the first part, empirical

data analysis of a case study company yields predictive formulas for production and capacity costs. The uncertainty of

demand is also calibrated using the geometric Brownian motion process. In the second part, experiments are designed to

simulate demand and profit scenarios for comparing two capacity strategies. In the third part, the resultant data of

simulation are analysed to gain insights to the relative performance of the two strategies in various scenarios. The analysis

method provides a framework for formulating capacity strategy and for integrating capacity planning with business

planning.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Capacity planning and investment is a challen-
ging task in the semiconductor manufacturing
industry. The industry supplies integrated circuit
devices to many end-product industries such as
computer, communications, and electronics, which
have dynamic market demands themselves. Due to
the bullwhip effect of the supply chain (Geary et al.,
front matter r 2006 Elsevier B.V. All rights reserved
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2006), the demand as faced by semiconductor
manufacturers is very volatile and the industry is
plagued with repeating cycles of over- and under-
capacity. Furthermore, machine and process tech-
nologies are advanced (and become obsolete) at a
rapid pace. The cycle time of one generation of
technology is no more than 3 years, yet it takes at
least 9 months to incrementally add capacity to an
existing plant and at least a year to equip a bare
clean room of the factory to produce the first wafer.
Complicating the matter of capacity investment is
the capital cost of capacity. A modern semiconduc-
tor wafer fabrication plant requires a capital
.

www.elsevier.com/locate/ijpe
dx.doi.org/10.1016/j.ijpe.2006.05.006
mailto:ychou@ntu.edu.tw


ARTICLE IN PRESS
Y.-C. Chou et al. / Int. J. Production Economics 105 (2007) 591–606592
investment of 2–3 billion US dollars and equipment
depreciation accounts for approximately 70% of the
total production cost. Investing in one single factory
is a high financial risk for even the largest
companies in the industry.

Volatile demand, risk of technology obsolescence,
long lead time, and high investment cost contribute
to making capacity investment an overwhelming
decision-making task for which a satisfactory
planning methodology has not been found. Fig. 1
shows the historical data of aggregate capacity and
wafer output of a major semiconductor manufac-
turing enterprise over a period of 10 years. The
aggregate capacity increased by 10 times. The
growth rate was higher in earlier years, during
which times the trend was also largely predictable.
However, in the later half of the period the growth
rate stabilized and began to show significant
oscillation. The reasons for stabilization can be
attributed to market saturation and poor return on
capacity investment. The reason for oscillation is
attributable to the volatile nature of demand in the
industry.
0

200

400

600

800

1000

1200

Q
1-

94

Q
3-

94

Q
1-

95

Q
3-

95

Q
1-

96

Q
3-

96

Q
1-

97

Q
3-

97

Q
1-

98

Installed Capacity

Wafer Output

Fig. 1. Growth in capacity and output

Fig. 2. Trends of total assets a
Fig. 2 is the quarterly total assets and the return
on equity (ROE) of the company from 1994 to 2003.
While the capacity continued to increase, the ROE
has a decreasing slope for the trend line. The ROE
of the company is at a level no better than what can
be commonly found in many matured industries.
This phenomenon is not unique to any particular
company in the industry; there are actually many
worse performers (Liang and Chou, 2003). Figs. 1
and 2 also illustrate a pattern of life cycle similar to
what is exhibited in the growth process of many
high-tech industries and corporations. At the initial
stage of growth, product demand increases rapidly
and profit margins are high. Most companies are
naturally inclined to pursuing a strategy of aggres-
sive expansion. However, as competition intensifies
or the market begins to saturate, profit margins will
decrease and the ROE will settle down to certain
equilibriums. A conservative strategy of expansion
would increasingly be justifiable, especially when the
market is volatile. In fact, a higher level of volatility
might call for a more conservative strategy. If the
industry enters the matured stage with slowed
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Table 1

Capacity planning tasks and objectives

Objective Tasks

Short-term Order fulfillment Order rescheduling

Alternative routing

Mid-term Machine portfolio

optimization

Machine purchase

Machine

decommission

Long-term Supporting business planning in technology

development and product planning
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growth but the company strategy remains aggres-
sive, aggressive expansion will put the company in
great financial risk.

Capacity planning has received significant atten-
tion in the literature and in practice. Because the
lead time of capacity provisioning is long, capacity
planning tasks can be classified by their planning
horizon (Table 1). In the short-term, the overall
capacity is largely fixed, but with some room for
adjustment through equipment set-up change-over
(i.e., alternative routing). Therefore, capacity plan-
ning problems are mainly about capacity allocation
among job orders and alternative routing planning.
The granularity of capacity requirement analysis is
at the machine and process step level. In the
medium term, capacity can be changed by tool
purchase and decommission. It should be noted that
capacity is expanded in small increments, by
gradually populating the factory with more ma-
chines. Capacity planning in this time frame is
mainly a tool portfolio1 configuration problem. The
granularity of planning is at the critical machine and
major process stage level (Nazzal et al., 2006). In the
long term, the objective of capacity planning is to
prepare for plant transition in anticipation of new
process technology and new product and to support
strategic plans of business.

A core issue of capacity planning is to configure
the tool portfolio. There is a combinatorial optimi-
zation aspect to this problem. The computation of
tool portfolio in semiconductor manufacturing
surpasses that of other manufacturing systems in
complexity. A wafer fabrication plant contains
hundreds of tools which are used to process tens
or hundreds of product types (called process flows).
1Machines are called tools in this industry. The cost of a single

tool could be as high as 10 million US dollars. In this paper, the

words machine, tool and equipment are used interchangeably.
The manufacture of a product requires several
hundred steps in its process flow, with a tool visited
in each step. Most of the studies in the literature
address the problem of tool portfolio optimization.
Swaminathan (2000) addressed the tool procure-
ment decision over a planning horizon of multiple
time periods. The uncertainty of product demand is
modelled by a set of demand scenarios. A large
integer programme was used to minimize the
expected stock-out cost over all demand scenarios.
Hood et al. (2003) followed the stochastic program-
ming approach under demand uncertainty. The tool
purchase, wafer starts, and work assignment deci-
sions are formulated as a large mixed-integer
programme. Ahmed (2002) used multi-stage sto-
chastic programming instead of two-stage stochastic
programming to better model the flexibility of tool
purchase in later time periods bestowed by occur-
rence of new events. The paper compares the
relative merit between two-stage and multi-stage
stochastic programming, and finds that the merit
increases with the number of stages and the number
of decision branches per stage. Christie and Wu
(2002) used a stochastic programming formulation
for tool portfolio planning at the multiple-plant
level.

A few papers addressed long-term and process
issues related to capacity planning. The plant-sizing
problem is addressed by Benavides et al. (1999).
Product demand is assumed to follow a geometric
Brownian motion (GBM) process. The timing
decisions are modelled as an optimal stopping
problem. The paper shows that optimal trade-off
between economics of scale and flexibility can be
reached by a sequential deployment of modular
plants. Karabuk and Wu (2001) considered the
coordination problem between production manager
and marketing management within one firm, that is,
to blend the two forces that drive the decisions on
capacity planning. Two types of uncertainties are
modelled: one is capacity estimation and the other is
demand volatility. Stochastic programming is used
to solve the optimal capacity plan.

There are four models of tool portfolio and
capacity planning in the literature: (1) spreadsheet
models, (2) multi-criteria search procedures, (3)
mixed-integer mathematical programming models,
and (4) stochastic programming models. The
objective functions typically include terms of
revenue, inventory cost, outsourcing cost, equip-
ment cost, shortage cost, and machine utilization.
Spreadsheet models are often used in practice
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(Neudorff, 1999; Witte, 1996; Wu et al., 1998). They
are used to compute utilization and throughout.
Since flow time is also an important performance
measure of tool portfolio, multi-criteria search
procedures can also be used to find the optimal
tool portfolio (Chou and Wu, 2002). In
the literature, the most common models for
capacity planning are to use mixed-integer pro-
gramming or stochastic programming to optimize
tool portfolio decisions. Stochastic programming is
a probabilistic optimization approach for many
kinds of planning problems. The uncertainty is
usually modelled by a finite number of scenarios.
Due to different structures of the decision process,
the stochastic programs are either formulated as
two-stage or multi-stage. Depending on application
or focus, the decision variables range from machine
to plant, and the scope may cover one or multiple
time periods and one or multiple plants. In the
literature, the conventional logic of capacity plan-
ning is to have sufficient capacity which will
satisfy product demands. The goal is typically to
maximize the profit, without considering the asso-
ciated risk.

Two capacity strategies can be identified in the
literature: reactive and conservative. Liang and
Chou (2003) utilized the real-option theory in
determining capacity level. Capacity decisions are
made by taking into consideration the option of
waiting for more demand information to materi-
alize. This method amounts to a conservative
strategy. An alternative strategy is to reactively
adjust the capacity plan according to changes in
demand forecast. If the demand is volatile, or
capacity investment is irreversible, or the lead time
of capacity expansion is long, this strategy could
easily lead to imbalance between the capacity and
demand.

The two strategies have their respective strength;
their relative performance will depend on the
circumstance. In practice and in the literature, the
reactive strategy is the dominant strategy. Even
though demand is known to be uncertain, the
common objective of capacity planning is still to
‘‘satisfy’’ the demand. This inclination can be seen
from the objective function of mathematical models
for tool portfolio planning. The objective functions
are primarily to maximize the revenue (or profit)
subtracted by penalty for capacity shortage. This
strategy is a logical consequence of the corporate
structure of many enterprises. For example, in the
so-called integrated design and manufacturing
companies, product plans and demand plans are
developed first. A capacity plan must support their
execution. Consequently, the demand forecast that
is implicit in product and business plans will be used
as the input to capacity planning. Although the
uncertainty must have been taken into considera-
tion in business planning, the context is likely to be
lost in transferring the demand data to capacity
planning.

The four planning tasks identified in Table 1 have
not fully addressed the challenges posed by the
uncertainties in demand, technology, and the return
on investment. In industries in which manufacturing
capacity is flexible and requires little capital invest-
ment, business planning of product lines, marketing,
and pricing does not have to be tightly integrated
with capacity planning. Capacity planning can be
done sequentially after business planning is com-
pleted. However, if capacity investment requirement
is large and investment is irreversible, capacity
planning must be integrated with business planning;
otherwise, financial well-being would be subjected
to serious risk. Capacity investment in semiconduc-
tor manufacturing is huge; it has a direct impact on
the subsistence of manufacturing capability. There-
fore, the corporate business strategy must be
translated to, supported by, and integrated with its
capacity strategy. In addition, capacity strategy
must be adjusted to the life cycle of product,
enterprise, and even the industry. It is well known
that products and processes usually have a life cycle.
As revealed in Fig. 1, manufacturing enterprises
also have a life cycle, although in a slightly different
way. In the initial stages of rapid growth, capacity
strategy should be more aggressive in order to
secure market share. As the market matured, the
capacity strategy should be more conservative in
order to avoid technology obsolescence. However, it
remains to be determined what the trigger condition
is for a shift of strategy.

The focus of this paper is on the problem of
adapting capacity strategy according to the char-
acteristics of demand and business plan. The
treatment of the problem will complement the four
tasks of Table 1 in addressing the problem of
capacity planning. The problem background—un-
certainties, high investment cost, long lead time of
capacity provisioning, etc.—are not unique to the
semiconductor industry. Other emerging high-tech
industries, such as the liquid crystal display
industry, also face similar challenges. The semicon-
ductor industry has a mass production history of
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approximately 30 years. It has gone through several
economic cycles and competition is fierce. Fig. 3
shows the worldwide microchip sales over the last
30 years in billions of dollars (the last data point is
an estimate). The trend before 1995 appeared
predictable, but the industry seemed to enter an
era of great volatility after 1995. Semiconductor
manufacturing as a case study offers unparallel
opportunities to study modern challenges of capa-
city planning and investment.

In this paper, a framework of analysis and design
of capacity strategies in an uncertain environment
of demand and technology is described. The frame-
work is supported by empirical data analysis in
semiconductor manufacturing. The remainder of
this paper comprises of four parts. In Section 2,
results of empirical data analysis for the character-
istics of demand, production cost, and revenue
trend of semiconductor manufacturing are pre-
sented. Then, scenario design for strategy analysis
is described in Section 3. In Sections 4 and 5, two
strategies of capacity planning are analysed and
compared by using statistical methods. Finally,
Section 6 concludes the discussions.
Fig. 3. Worldwide m

Fig. 4. The fixed cost per un
2. Data analysis

Capacity planning usually takes into considera-
tion market share, revenue, profit, ROE, and
industry trend. In the first four subsections of this
section, the financial and capacity data of a case
study company are first analysed in order to
estimate the trends of the fixed assets cost, material
and labour costs (ML), operating expenses (OE),
and average selling price (ASP). Then, in Section 2.5,
worldwide demand of several market segments is
analysed to characterize the variability of product
demand. The analysis yields surprising results which
make it possible to analyse different strategies of
capacity. The data of the case study company covers
a period of 10 years (from 1994 to 2003).

2.1. Capacity cost

The fixed cost of semiconductor manufacturing is
primarily incurred by investment in machines and
equipment. It is largely irreversible and is reflected
in the fixed assets and accumulated depreciation in
the financial statement. Fig. 4 is the historical
icrochip sales.

it capacity per quarter.
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capacity cost per capacity unit (200mm quarterly
wafer equivalent). A trend of increasing cost could
be easily observed. It also appears that a linear
trend line is a good approximation. Using the first
quarter of 1994 as the base period, Eq. (1) is the
resultant regression equation for the fixed cost per
capacity unit ðR2 ¼ 0:689Þ

FCðtÞ ¼ 6374:95þ 127:25t. (1)

The cost increases by approximately 2% per
quarter (127.25/6374.95) at the base period. Con-
sidering that prices are affected by many factors,
this result that capacity cost can be reasonably
predicted with a linear trend line is quite surprising;
some explanation of its possible cause is warranted.
The technology content of processing equipment in
semiconductor manufacturing is very high. Equip-
ment providers must continue to invest heavily in
research and development (R&D). As the technol-
ogy is advanced, the cost of developing new
machines also increases. For each type of processing
machines, there are only a few providers world-
wide—and mostly in the developed countries.
Because the equipment market is an oligopoly with
strong competition, it is logical to expect that the
profit margin and cost of R&D would maintain
their stable rate of increase. Therefore, the cost of
manufacturing capacity is likely to also maintain
similar appreciation.

2.2. Direct materials and labour costs

By definition in cost accounting, direct materials
and labour (M&L) costs are proportional to
production output. Fig. 5 shows the average M&L
costs per wafer that is manufactured. Similar to
capacity cost, the direct M&L costs can also be
reasonably modelled by a linear trend. Eq. (2) is the
Fig. 5. The direct materials an
regression equation:

ML ¼ 406:28þ 3:37t ðper wafer outputÞ. (2)

The cost increases by approximately 0.83% per
quarter at the base period. Direct materials, i.e., raw
wafers and labour are mostly sourced locally.
Comparing Eqs. (1) and (2), the slope and the
increase in percentage of the ML costs are much
smaller than those of the capacity cost.

2.3. Operating expenses

OE include advertisement, marketing, and R&D
costs. OE are proportional to the scale of opera-
tions, which could be measured by the capacity level
or the output of production. The correlation
coefficient between the OE and capacity and
between OE and output turns out to be 0.94 and
0.88, respectively, indicating high level of correla-
tion. Fig. 6 is a graph validating that it is more
accurate to use capacity level than to use production
output to estimate the unit OE. A second support-
ing argument can be gleaned from data in Fig. 1.
The production output is immediately influenced by
the ups and downs of the economic cycles, but OE
are more resilient to economic fluctuations. In fact,
some components of OE, such as R&D expenditure
might be immune to short-term fluctuations of
market demand. Thus, using the production output
as the denominator to compute the unit OE is more
likely to result in distortion.

Eq. (3) is the resultant regression equation for
unit OE. It turns out that the average operating
expense per unit of capacity could be reasonably
treated as a constant.

Operating expenses ¼ 131:44 ðper unit of capacityÞ.

(3)
d labour costs per wafer.
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Fig. 6. Operating expenses per unit of capacity and output.

Fig. 7. Average selling price and its trend.

2Computed by dividing the total revenue by the total output in

wafers.
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Since one would normally expect that any cost to
increase at a rate that is at least equal to the
inflation rate in the long term, rather than to stay at
a constant, we will offer an explanation. It is
plausible that the effect of inflation is cancelled out
by the increase in the scale of production. (Note: The
average operating expense per wafer output does
have a regression line of positive slope. However, the
slope is mere $1.93 USD per quarter.)

Contrary to common belief, R&D cost is not
significant as a percentage of the total cost. In Fig. 6,
R&D expense is one of three components of the OE.
The explanation is quite simple. Although R&D
cost is not insignificant in absolute term. It is paled
by the cost of capacity. Note that one single
machine could cost 10 million US dollars and
R&D work is done on production equipment.

2.4. Average selling price

As shown in the previous three subsections, the
fixed costs, direct M&L costs, and OE have very
predictable trends. By using Eqs. (1)–(3), the cost of
future capacity plans could be estimated with
accuracy. In comparison, the ASP manifests an-
other phenomenon. Fig. 7 is the ASP2 of the case
study company over the same 10-year duration. It is
rather surprising to observe that no significant
progress was made in the ASP, while the company
has made significant progress in technologies and
has became an industry leader in her sphere of
business. Semiconductor manufacturing companies
are compelled to continuously advance their process
technologies. However, the ASP is under tremen-
dous market pressure; it is not very easy to make
progress in this aspect. This fact is in stark contrast
to the increasing trend of capacity cost and it plays a
major role in exacerbating the need to adapting
capacity strategy.

Two trends can be gleaned from data in Fig. 7.
First, linear regression can be used to construct a
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long-term trend line over the entire duration:

ASPðtÞ ¼ 1370þ 5:28t. (4)

Because the technology cycle time is 2–3 years on
average but different companies’ progress might not
be in sync, a company might gain advantage in
technology temporarily. But, over the long run the
advantage might or might not be sustainable.
Therefore, an alternative visualization of the ASP
trend is possible. In addition to Eq. (4), the ASP
could be alternatively modelled as a step function.
The ASP remains flat over medium term. For
instance, the ASP is approximately $1200 between
1997 and 2000; it then increased to $1600 after 2000.
Both long-term and step function trends are
relevant in capacity planning, as the life time of
equipment falls somewhere in between. In the next
section, both scenarios are included in the analysis
of strategy. Also, we will further justify flat ASP (in
the short run) by analysing the relative ASP of
multiple companies.
2.5. Demand variation and modelling

That the variation of demand is very high in the
semiconductor industry is well known. However,
how to measure the variability and incorporate the
variability factor in capacity planning remains to be
studied. GBM models have frequently been used to
model the movement of stock prices, a best-known
example of variability. The valuation formula for
stock options that were derived by Black and
Scholes (1973) is based on the assumption of
GBM processes. Benavides et al. (1999) also used
a GBM process to model the demand of semicon-
ductor products. The formula of the GBM model
adopted in this paper is first summarized in the next
paragraph, followed by calibration of its parameters
using industry data.
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Let qt be the demand of time t. If qt follows a
GBM process, then the change in demand can be
expressed by the equation dqt ¼ mqt dtþ sqt dwt,
where dwt ¼ �t

ffiffiffiffiffi
dt
p

, and et follows the standard
normal distribution. The m is called the drift
parameter which can be ‘‘roughly’’ interpreted as a
measure of the long-term growth rate and s is the
volatility parameter. Let the base period be t0. The
logarithm of the drift parameter rt will follow a
normal distribution with mean ðm� s2=2Þt and
variance s2t (Tsay, 2002):

rt ¼ ln
qt0þt

qt0

� �
¼ lnðqt0þtÞ � lnðqt0

Þ,

rt�N½ðm� s2=2Þt;s2t�. (5)

In the Industry Economic Model (International
SEMATECH, 2002), the worldwide demands of
semiconductor integrated circuits (IC) are classified
by process type and technology level into several
categories: leading edge memory, leading edge logic,
other leading edge, other IC, and other semicon-
ductor circuits. Historical data and forecasts for the
demands of the five market segments are attached in
the Appendix. It can be easily observed that there
is significant variation in demand. In order to
calibrate the variation, we first applied the Dickey–
Fuller test to the five time series. At the significant
level of 0.05, the p-value is far greater than 0.05 for
all five time series, indicating that they are non-
stationary. Next, the original time series are
converted to time series of logarithmic growth rt.
The resultant time series are stationary (left figure of
Fig. 8), with a p-value of 0.0011, 0.0018, 0.0006,
o0.0001, and 0.0009, respectively. Furthermore, the
logarithmic growth has a bell-shaped histogram
(right figure). The objective of this study is not
about developing a model for demand forecast.
Instead, we are interested in finding a mathematical
tool that is reasonably accurate in calibrating the
20
06
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variability. Based on the empirical evidence of
Fig. 8, we believe that the GBM process is a
reasonable choice.

3. Designing scenarios for strategy analysis

In order to integrate capacity planning with
business planning, we will first describe some
specificity of the industry and the industrial practice
in order to define the problem. In this industry, the
‘‘shell’’ and clean room of the factory is built first
and machines are installed gradually over time.
Depending on the market condition, it usually takes
2–3 years to build up a factory to its full capacity.
Thus, capacity expansion is usually a ‘‘continuing’’
and dynamic process of small increments (as shown
in Fig. 1). This is quite different from capacity
expansion of most other industries, in which
expansion projects have well-planned schedule and
size. We believe that this continuous nature
warrants some rethinking of investment analysis
which is addressed in this section.

The semiconductor manufacturing industry is
normally associated with high technology. How-
ever, it is rather ironic that companies with
advanced process technology are not guaranteed
to be the winners. Over the last 10 years, many
companies in this category chose to either exit from
the industry or scale down production and to
outsource manufacturing to foundry manufac-
turers. But, if technology is not the sole sufficient
condition of surviving, then what are the other
conditions? Because the volatility in demand and
the high cost of capacity create great financial risk,
our hypothesis is that a sound strategy of capacity
investment is one of them and good financial
performance is the other and these two factors are
closely related. Another characteristic of the in-
dustry is that companies in the industry must have
the will and resources to stay in the industry for the
long haul in both technology development and
capacity investment. The entry and staying power
barriers are high. Therefore, we argue that the
normal criteria of investment analysis are not
sufficient. Before we continue, we will first define
the concept of perpetual manufacturing capability.

Definition (Perpetual manufacturing capability).
Perpetual manufacturing capability is the capability
of a company to continuously thrive in high-
technology manufacturing for the long run. This
capability will include the ability to continuously
develop new manufacturing technologies and to
have sufficient financial resources to continuously
invest in modern manufacturing facility. The
emphasis of this definition is on perpetuality.
Outsourcing management is excluded from manu-
facturing capability.

We next stipulate the requirements on the returns
on capacity investment for perpetual manufacturing
capability. Because technologies (including ma-
chines and processes) are advanced in a rapid pace
in the industry, all companies have little option but
to continue investing in R&D and in new technol-
ogy; technology laggards will quickly be forced to
make a decision to exit the industry. In most
industries, investment decisions are justified by
some forms of ROI analysis. A project is deemed
economically feasible, if its expected ROI exceeds a
certain threshold level. Because of the perpetual
nature, capacity investment in this industry should
not be evaluated by using the one-time ROI analysis
alone; more stringent requirements need to be
devised.

Investment projects can normally be funded by
raising capital, through debt or equity. However,
the capacity cost in this industry has another
escalating cost facet, beside an increasing trend.
The industry is at the juncture of migrating from
older 200mm-wafer to 300mm-wafter fabrication
plants. A 200mm-wafer plant requires an invest-
ment of $1 billion dollars while a 300mm wafer
plant requires $2–3 billion dollars. This creates a
quantum hurdle for perpetual capability. (Some
companies have tried to share the cost through joint
venture. But this business model has not produced
success stories.)

Because of the perpetuality requirements, we
argue that investment on capacity must generate
sufficient net cash flow and show good performance
on returns. New investment must be at least
partially funded by retained cash flow. Also, the
expected performance on accounting measures must
be sound; otherwise, it would be very difficult to
raise capital for the next generation of capacity,
given the tremendous risk and poor track records of
the industry.

Because capacity decision has a direct effect on
total fixed assets and the depreciation of fixed assets
accounts for a high percentage of the production
cost, we propose that operating income (OI) and
return on fixed assets (ROFA) be used as the
performance measures for evaluating capacity
strategies. OI is computed by subtracting ML, OE
and depreciation cost (DC) from revenue (R),
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as shown in the following equation. By including
DC, the OI measure we used is therefore a modified
measure of OI:

OIt ¼ Rt �MLt �OEt �DCt

¼ ASPtOt �MLt �OEt � FAt=l,

ROFAt ¼ OIt=FAt, (6)

where Ot is the production volume, FAt is the fixed
assets, l is the life time, and t is the time index. OI is
essentially the net cash flow with some minor
adjustment to cash outflow due to equipment
purchase. Because the unit cost of equipment could
be very significant, cash outflow normally has high
level of fluctuation. In Eq. (6), equipment expense is
spread over the equipment life time. We chose to use
ROFA as the second performance measure, instead
of the more common ROE, in order to have a more
direct link between capacity decision and financial
performance.

The OI and ROFA measures are complimentary.
OI can be regarded as a surrogate measure for
market share (since the majority of the costs are
sunken), whereas ROFA is a surrogate measure for
the ROE. Having a large market share does not
guarantee a higher ROFA. In fact, the contrary
might to be true in the problem setting that is under
discussion here. We will use a numerical example to
show the computation of the threshold to demon-
strate how the perpetuality requirement can be
translated into requirements on ROFA and OI.

Numerical Example: ROFA and OI.
The equipment life time is 5 years on average by

the industry norm. We could postulate that if a
company owning a 200mm plant is to migrate to a
300mm plant in 5 years, its equity must show an
increase commensurate with the increase in the
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factory cost. Otherwise, the company will not be
able to survive in the industry. Therefore, to achieve
the perpetual capability, and considering capacity
expansion is continuous, the ROFA should be at
least 2.0 in 5 years, or 3.53% per quarter:

ð1þROFAÞ20X2:0) ROFAX3:53%.

Assume a current initial capacity of one million
wafers per quarter (Fig. 1). That capacity will have a
remnant value of zero after 5 years of depreciation.
Based on the trend of capacity cost, the unit cost of
capacity will be $14,000 in 5 years. Therefore, it can
be computed that a total of 14 billions of OI must be
accumulated over the 5 years in order to replenish
the capacity.

We will now describe the business scenarios in
which competing capacity strategies are compared.
The scenarios are defined by the variable factors of
demand and profit. In this study, the GBM process
has been used to calibrate the uncertainty of
demand. As the demand is beyond the control of
any single company, the drift and volatility para-
meters are treated as endogenous variables. It has
been shown in previous section that the ASP can be
modelled as a linear function of time or as a step
function. Both models suggest that the ASP could
be treated as constant during the life time of
equipment. Fig. 9 shows the recent ASP of major
competitors of the industry. This industry is an
oligopoly with strong competition between firms.
Microchips are used in numerous computer, com-
munications, and consumer electronic products. But
they account for a small part of the total cost of the
end products. Pricing at the semiconductor manu-
facturing stage usually does not have a large impact
on the demand of end products in the long run.
Therefore, price is usually not a management lever
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to influence demand. (An exception might be CPU
products. But, CPU business is unique and is not
within the scope of this paper.) Instead, the
competitive factors are manufacturing technology
and engineering and manufacturing services (such
as design services, responsiveness, capacity plan,
supply reliability, and order flexibility). The latter
has become more important in the supply chain of
semiconductor manufacturing. As shown in Fig. 9,
although there is significant difference in prices, the
relative prices are remarkably stable over the years.
Therefore, in our scenario design, we will treat both
demand and price as exogenous and independent
factors. The difference in prices can be attributed to
gaps in both technology and services, which cannot
be closed in the short term. Therefore, pricing is not
included as a decision variable in capacity require-
ment analysis.

Based on the empirical data analysis of Section 2,
nine demand scenarios of Table 2 are used in the
strategy analysis. The parameter m will be alterna-
tively referred to as the demand growth rate, and
the parameter s as the demand volatility.

The profit scenario is further defined by fixed cost,
M&L costs, OE, and ASP, by using Eqs. (1)–(4),
Table 2

Nine demand scenarios

s m

0.23 0.28 0.33

0.25 # 1 # 2 # 3

0.33 # 4 # 5 # 6

0.41 # 7 # 8 # 9

Table 3

Factors of profit scenarios

Factors FC

By capacity

Intercept 11,465

Slope 127

Factors ASP

Step improvement

Step 1 Step 2 Step 3

Intercept 1600 1800 2000

Slope 0 0 0
which are summarized in Table 3. More ASP
scenarios have been added in order to include other
possible improvements in ASP. Eq. (4) is a linear
regression for the time series of ASP. The quarterly
rate of improvement is $5. However, more complex
patterns could be identified by a closer examination
of the time series. Because the scale of production
increased by 10-folds in 10 years. The scale of
production in earlier years was quite small. The
company was a player in a niche market and
enjoyed a higher profit margin. As the market size
grew, the profit margin decreased. If the data before
1997 are disregarded, the time series could be
modelled by a line or a step function of two levels.
The linear line has a slope much greater than 5.0. If
viewed as a step function, the ASP was kept at the
level of $1200 for approximately 3 years and at
$1600 for another 4 years. By hypothesizing all
possible courses of ASP improvement, three levels
of the step functions and three slopes of the
regression line are included in Table 3. Based on
Tables 2 and 3, there are nine demand scenarios and
six profit scenarios. The total number of compound
scenarios is 54.
4. Computation procedures for capacity strategies

In this section, the computation procedures for
the reactive and conservative strategies are outlined.
The GBM process is a continuous process. To
derive the numerical solution, the binomial lattice
approximation is frequently used in the literature
(Luenberger, 1998). The approximation was first
proposed by Cox et al. (1979). Jarrow and Rudd
(1983) improved the binomial lattice model. In this
ML OE

By output By capacity

537.71 131.44

3.37 0

Linear improvement

Growth 1 Growth 2 Growth 3

1581.2 1581.2 1581.2

5 10 15
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paper, the Jarrow and Rudd model is adopted. Let
the demand at time t0 be qt0

, the demand in time

t0 þ Dt be qþt0þDt or q�t0þDt with equal probability of

0.5. Then qþt0þDt and q�t0þDt are given by

qþt0þDt ¼ qt0
eu; u ¼ ðm� s2=2ÞDtþ sDt,

q�t0þDt ¼ qt0
ev; v ¼ ðm� s2=2ÞDt� sDt,

where u and v are the up and down growth rates of
the logarithm of demand, and m and s are the
parameters of the underlying GRM process.

4.1. The reactive strategy

Let the current time be t, the capacity level be Ct,
and the lead time of capacity deployment be d. The
current decision is to determine the capacity level at
time tþ d. Because capacity is irreversible, the
capacity decision is equivalent to determining the
capacity increment Dct. Eq. (5) is the stochastic
model for the demand. Let qt be the demand at time
t. The expected values of the drift parameter rt and
the demand qt are

r̄tþd ¼ ðm� s2=2Þd,

q̄tþd ¼ qte
r̄tþd .

The basic concept of the reactive strategy is to
compare the capacity level and expected demand. If
the expected demand of a future period ðq̄tþdÞ is
higher than the then existing capacity ðCtþd�1Þ, then
the capacity is expanded. Therefore, the capacity
increment initiated in time t is

Dct ¼MAXð0; q̄tþd � Ctþd�1Þ

and the capacity trajectory is described by
Ctþ1 ¼ Ct þ Dct. This strategy represents a now-
or-never decision for each time period ðtþ dÞ.
Without considering all possible realizations of
future demands, it is also a myopic strategy.

4.2. The conservative strategy

When demands are uncertain, the value of a given
capacity depends on the demands that will be
realized over the life time of the capacity. That part
of capacity that exceeds the demand will not
contribute any revenue. The conservative strategy
utilizes the real-option theory to evaluate the value
of capacity in the environment of uncertain
demand. The demand is represented by a binomial
lattice model. Let the demand in scenario s of time t
be represented as qs
t and the probability that

scenario s will occur be pt
s. For notation brevity,

pt
s is simplified as ps with time t implicitly included in

s. By this notation, a state s is sometimes expressed
as s(t) to make the time stage explicit. Under the
conservative strategy, the capacity expansion deci-
sion is made by considering all possible demand
realizations over the equipment life time. Let the
current time be t0. Given the binomial lattice model
of demand, the formulas of determining capacity
increment Dct0 have four major parts:
(1)
 Compute the expected revenue for a given Dct0

over its life time. The effective capacity incre-
ment (ECI) of Dct0 when evaluated against a
particular demand realization qs

t is defined as
that part of capacity increment that can
effectively generate revenue:

ECIðDct0 ;Ct�1; q
s
tÞ ¼MIN½Dct0 ;maxðqs

t � Ct�1; 0Þ�.

The expected value of ECI with respect to all
scenarios s of time period t is then

dt0;tðDct0 ;Ct�1; q
s
tÞ ¼

X
s2S

psECIðDct0 ;Ct�1; q
s
tÞ,

where the set S contains all demand states of
time t . The revenue that can be generated over
the life time [t0+d , t0+d+l] is

Rt0 ðDct0 ;ASP;PC; d; lÞ ¼
Xt0þdþl

t¼t0þd

e�rðt�ðt0þdÞÞ

� ðASP� PCÞdt0 ;tðDct0 Þ,

where PC is the production cost and r is the
discount rate. The Rt0 ðDct0 Þ is also called the
current value of Dct0 .
(2)
 Optimize the capacity increment based on net
cash flow. From Eq. (1), the fixed cost of Dct is
FCðtÞDct. Therefore, the optimal capacity in-
crement at time t0 and a certain state s(t0) is

Dc�t0;sðt0Þ ¼ Argmax
Dct0

½Rt0 ðDct0Þ � FCðt0ÞDct0 �.

(7)

The corresponding net cash flow is

p�t0;sðt0Þ ¼ Rt0ðDc�t0 Þ � FCðt0ÞDc�t0;sðt0Þ.
(3)
 Steps 1 and 2 are repeated for each node ðt; sÞ of
the binomial lattice. In steps 1 and 2, the value
of waiting is not included in the optimization of
capacity increment and its associated net cash
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flow. Let F�t0;sðt0Þ be the total value of D�ct0 ,
including the value of the waiting option. Then,

F�t0;sðt0Þ ¼ e�rEs½maxfp�t0þ1;s;F
�
t0þ1;s
g�,

where the expectation E is taken over all states
in time t0+1.
(4)
 When p�t0;sðt0Þ is greater than F�t0;sðt0Þ, the capacity
is expanded at time t0, otherwise, the expansion
decision is postponed to time t0+1.
The industry practice is to use 4 years as the normal
life time of process equipment and 1 additional year
to account for the salvage value. That is, the life time
is 5 years. In computing the total value of a capacity
increment, the value beyond its life time is zero and
the computation is performed backward. As the
capacity cost is spread evenly over the life time (in
calculating OI), the remaining useful life of capacity
at the end of analysis period is taken care of.

5. Performance analysis and comparison

The findings in Section 2 that production costs
are predictable provide a good basis for inferring
the relative behaviour of capacity strategies in the
uncertain environment of demand. In this section,
the experimental results are summarized and dis-
cussed. In each experiment (i.e., compound scenar-
io), 10 demand paths are generated using Monte
Carlo simulation. The two capacity strategies are
applied in order to simulate capacity expansion
trajectories. The performance measures ROFA and
OI are then computed for each strategy. The
performance of the reactive strategy is computed
using the demand paths. The performance of the
conservative strategy is computed using a binomial
lattice emanating from each node of the demand
paths. The step improvement and linear improve-
ment scenarios of ASP are analysed separately.

5.1. The step improvement scenario of ASP

A step growth of ASP represents the scenario of
leaps in manufacturing technology. The regression
formulas that correlate performance measures with
endogenous variables are shown in Eqs. (8)–(11).

Expected performance of the conservative strategy:

OI ðmillionsÞ ¼ � 10; 670� 243; 336m

þ 156:552mp� 10:368sp, ð8Þ

ROFA ð%Þ ¼ �7:39þ 0:00652p� 0:00074sp. (9)
Expected performance of the reactive strategy:

OI ðmillionsÞ ¼ � 3; 107� 163; 581m

þ 141:742mp� 165; 530ms, ð10Þ

ROFA ð%Þ ¼ �10:267þ 0:00850p� 0:00363sp.

(11)

If the regression analysis is applied to the difference of
performance between the two strategies, the formulas
are shown in Eqs. (12) and (13). The difference is
computed by subtracting the OI and ROFA of the
conservative strategy from those of the reactive
strategy.

DOI ðmillionsÞ ¼ �7491þ 28; 256s, (12)

DROFA ð%Þ ¼ 4:42mþ 5:04s� 0:00372mp. (13)

Insights can be gleaned from the formulas by
comparing corresponding coefficients. It should be
noted that the magnitude of the prices is in thousands.
Therefore, all terms of the above formulas are equally
significant in magnitude; no terms should be deleted
for insignificance.

Insight (1): OI is affected by the combined effect
of the growth rate and price (Eqs. (8) and (10)), not
by the growth rate alone. In fact, if the trend of
price is ignored in capacity planning, it is possible
that a higher growth rate could lead to a lower OI.
Take Eq. (8) as an example, if p is less than the ratio
of 243336/156.552, OI will actually decrease with an
increase in m. This pitfall (that the growth in
demand is necessarily beneficial) should be avoided
in capacity planning.

Insight (2): For either strategy, ROFA is not
affected by the growth rate (Eqs. (9) and (11)).
Instead, it is determined by the price, subtracted by
the joint effect of demand volatility and price.

Insight (3): The detrimental effect of the demand
volatility is very significant. It is the deciding factor
in choosing between the alternative capacity strate-
gies (Eqs. (12) and (13) to some extent).

Insight (4): For the conservative strategy, OI is
negatively affected by the interaction between the
price and volatility parameter (�10.368). In con-
trast, the reactive strategy is negatively affected by
the interaction between growth rate and volatility
parameter (�165530). The conservative strategy will
necessitate a closer attention to the price trend and
the reactive strategy will necessitate active monitor-
ing of the demand volatility.

Insight (5): The volatility parameter has a
negative effect on both performance measures. Its
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effect is about 5 times more profound with the
reactive strategy (0.00363–0.00074).

5.2. The linear growth scenario of ASP

A linear growth of ASP represents stable ad-
vancement in manufacturing technology. The re-
gression formulas are shown in Eqs. (14)–(19). The
parameter r represents the rate of increase of ASP in
dollars per quarter (Table 3)
�
 Expected performance of the conservative strat-
egy

OI ðmillionsÞ ¼ 8; 821� 8; 581s

þ 3; 281mr� 813sr, ð14Þ

ROFA ð%Þ ¼ 2:10þ 0:11212r. (15)
�
 Expected performance of the reactive strategy

OI ðmillionsÞ ¼ 2; 173þ 59; 132m

þ 2; 235mr� 161; 521ms, ð16Þ

ROFA ð%Þ ¼ 2:92� 6:09sþ 0:12495r. (17)
�
 Difference (the conservative strategy subtracted
from the reactive strategy)

DOI ðmillionsÞ ¼ �25; 466mþ 103; 386ms, (18)

DROFA ð%Þ ¼ � 0:257� 1:57mþ 5:73s

� 0:04695mr. ð19Þ

Insight (6): It should be noted that, besides the
slope of price improvement (r), the level of price has
an impact on OI and ROFA. The effect of the
intercept of the prices is implicit in the constant
Fig. 10. The feasible region of scen
term of the above formulas. Taking this observation
into consideration, the two sets of formulas (8)–(13)
and (14)–(19), have strikingly similar composition.
Insights similar to those in Section 5.1 can be
derived, including (1) OI is affected by the combined
effect of demand growth and price, (2) ROFA is not
affected by the growth rate of demand, (3) the
volatility parameter is the crucial factor (with
negative coefficients in Eqs. (14)–(16)); (4) demand
volatility is more detrimental to the reactive strategy
than to the conservative strategy (Eqs. (15) and (17))
and the conservative strategy outperforms the
reactive strategy when s is large (Eqs. (18) and (19)).
5.3. Adapting capacity strategy

Eqs. (8)–(19) provide useful information for
adapting the capacity strategy in various scenarios
of demand and ASP. Cross-over points could be
determined by solving a set of linear inequalities as
shown in Fig. 10. In the three-dimensional space of
m, s and ASP (level), the feasible region of scenarios
that satisfy the two perpetual capability conditions
is marked with the word ‘‘Positive’’: (1) ROFA4
3.53% and (2) OI414 Billions. For instance, if the
conservative strategy is adopted and the ASP is only
maintained at $1600, the objective of perpetual
manufacturing capability cannot be achieved.
Fig. 10 provides a useful planning tool for adapting
capacity strategy in the uncertain environment of
demand, while taking into consideration the ASP
trend embedded in business plans.
6. Conclusions

Capacity planning and investment is a strategic
issue in the semiconductor manufacturing industry.
arios for perpetual capability.
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In this paper, a new analysis method is presented for
adapting capacity strategy in the environment of
uncertain demand and expected growth in ASP.
This method is supported by empirical data analysis
of the production and capacity costs of a major
semiconductor manufacturer and by calibration of
the uncertainty in demand in the industry. Many
insights are gained in identifying the relative
strength of conservative and reactive capacity
strategies in various scenarios. There are several
important findings: (1) Growth in demand is not
necessarily beneficial in the uncertain industry
environment. Volatility in demand is one of the
crucial factors in adapting capacity strategy. How-
ever, it cannot be said that volatility alone is the
deciding factor. Capacity strategy should be chosen
by considering the combined effect of demand
growth and volatility. (2) The future trend of ASP
is a more important factor than the growth in
demand. (3) The corporate goals of increasing
market share and increasing the return of equity
are not necessarily coherent. In fact, we have
observed in the industry that corporate goals do
switch between them. Since the two goals have a
direct impact on the choice of capacity strategy, the
method described in this paper provides a frame-
work for integrating capacity planning with busi-
ness planning.

There are many other capital-intensive industries.
See Luss (1982) for capacity expansion problems in
heavy process industries, communication network
and public services (electric power, water resources,
schools, etc.) The basic capacity expansion problem
consists of determining the sizes, timing, and
locations of the facilities. Semiconductor manufac-
turing differs from those application areas in the
severity of demand volatility and the new require-
ment of perpetual manufacturing capability. This
paper identifies those differences, defines a new facet
of perpetual capability, and develops a method for
evaluating alternative capacity strategies.
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Appendix:. Worldwide demands of semiconductor

ICs

Data from 1991 to 2002 are historical data in
millions of wafers. Data after 2003 are forecasts
made by market research. All data are courtesy of
the Industry Economic Model (Fig. 11).
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