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Abstract

This paper considers the situation in which some characteristic is to be measured on each of several specimens. For instance, it
may be the concentration of lead or arsenic in water or soil samples and a laboratory may routinely analyze samples from different
sources. In the measurement process, there may be some serial correlation among measurement errors, but it is hard to detect or
to have a reliable estimation for this existing phenomenon. Therefore, it may be desired to make statistical inference on the true
values of unknown specimens without estimating this possible correlation. To help adjust the instrument readings in a process,
standards are frequently interspersed among unknown specimens at appropriate intervals. A systematic method of arranging the
order of the measurements of unknown specimens and standards is provided. One is able to avoid the difficulty of estimating the
possible correlation and still has good estimates of the parameters of interest using the proposed measurement designs. In addition,
a simulation study is carried out to evaluate the sensitivity of the measurement designs, showing that they are robust to the existence
of various error processes.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The calibration of measurement procedures is commonly required in many areas. Typical application situations
include industrial processes where product quality needs to be routinely monitored and measurement laboratories
where customer specimen are measured on a daily basis. A measurement process is subject to errors which may be
generally classified as random errors only or a combination of both random errors and systematic errors. Here random
errors are defined to have a zero expected value and systematic errors are defined to be due to biases in the measurement
process. In a typical measurement process, standards, which have known true values traceable to a national standards
laboratory (e.g. NIST in the United States), are frequently used to monitor the errors. In other words, one is capable of
observing the errors whenever a standard is measured. Furthermore, in common practice, the random errors are usually
assumed to be independent random variables, but it is often more realistic to acknowledge that the measurement process
is serially correlated. However, it may be hard to detect this kind of serial correlation when it is weak or to have a
good estimate for it when the number of standards measured is small. The main interest of this study is to develop a
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systematic approach to arranging the order of measurements so that one is able to make accurate statistical inference
on the unknowns even without reliable estimates of the serial correlation.

The calibration problems for estimation procedures have been extensively studied. The reader is referred to the
textbooks of Fuller (1987) and Brown (1993). But, the issues related to the order of measurements in a calibration
process are rarely discussed in the literature. Earlier literature pertaining to the measurement design, particularly
regarding the arrangement of the order of measurements, can be found in Pepper (1973) and Perng and Tong (1977).
More recently, Liao et al. (2000) consider A-optimal balanced measurement designs for an additive model under the
assumption that random errors arise from a first-order autoregressive process (AR(1)).

Zhou (2001) presents a design criterion for evaluation of the robustness to possible correlation among observations
in general experiments. In the same paper, the criterion has been only proven successful in estimating the slope of the
simple linear regression by a simulation study. Moreover, Zhou (2001) discusses the construction of robust run order
for two-level factorial designs based on the criterion, but the robustness property of the obtained designs has not been
thoroughly investigated. However, her work motivates us to explore applicability of the design criterion to measurement
processes.

The rest of the article is organized as follows. Section 2 first introduces the design criterion presented by Zhou (2001).
Then the problem of interest in this study is formulated based on this criterion. Section 3 develops an exhaustive search
method for the robust balanced measurement designs. Some practical designs are also reported. Section 4 includes a
simulation study for investigating robustness of the obtained designs to various autocorrelation structures. Concluding
remarks are presented in Section 5.

2. Design criterion and the problem of interest

Zhou (2001) proposes an experimental design criterion for evaluation of the robustness to possible correlation among
the observations. Suppose the design model of interest is assumed to be

y = X� + ε,

where � is the unknown parameters vector whose OLSE (ordinary least squares estimator) is �̂ = (X′X)−1X′y. The
random errors ε are serially correlated with covariance matrix V ar(y) = �2P for some correlation matrix P. Without
knowing P, one may intend to use the OLSE for �. Let d be the design used. The proposed criterion is based on the
change of variance function, abbreviated as CVF, given by

CVFa(d, P) = a′[V (P) − V (I)]a
a′V (I)a

, (2.1)

where a′� is the parameter of interest; V (P) is the covariance matrix of the �̂ under the assumption that V ar(y)=�2P.
That is,

V ar(�̂) = V (P) = �2(X′X)−1X′PX(X′X)−1. (2.2)

Moreover, V (I) = �2(X′X)−1 is the covariance matrix of �̂ assuming homogeneous variances. Then the robust run
order design with respect to P, denoted by d∗, is defined as the design minimizing |CVFa(d, P)|, the absolute value of
the CVF, among all possible competing designs. When multiple parameters are of interest, say a′

1�, a′
2�, . . . , a′

k�, the
criterion is modified as

d∗ = min
d

k∑
i=1

|CVFai
(d, P)|. (2.3)

Zhou (2001) also suggests that it may be reasonable to assume MA(1), a first-order moving average, error process in
construction of the robust designs for practical use.

In this study, we are interested in determining robust measurement designs when the response variable obeys the
following model

zi = � + �i,0�0 +
m∑

j=1

�i,j �j + �i , (2.4)
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where i = 1, 2, . . . , N and N denotes the total number of measurements; � is the systematic error; �0 is the known true
value of the standard; �1, �2, . . . , �m are the true values of the m unknowns; �i are random errors; the indicator �i,0 is 1
if the ith measurement is the standard, and 0 otherwise; �i,j is 1 if the ith measurement is unknown j, and 0 otherwise.
Since �0 is known, let

yi =
{

zi − �0 if observation i is of the standard,

zi otherwise.

Hence, model (2.4) can be rewritten as yi = � + ∑m
j=1�i,j �j + �i or in matrix presentation

y = X� + ε, (2.5)

where X is of size N × (1 + m) defined by

xi,k =
{

1 if k = 1,

�i,k−1 if k > 1,

and �=[�, �′]′ where �=[�1, �2, . . . , �m]′. The main objective of this study is to search for a robust design d∗ satisfying
(2.3) for a′

i� = �i , i = 1, 2, . . . , m.

3. Robust balanced measurement designs

To construct a robust measurement design, we also consider that the random errors �i of (2.5) arise from an MA(1)
process. Namely, the random errors vector ε = [�1, �2, . . . , �N ]′ has a distribution with a zero mean vector and a
covariance matrix �2P, where P = {pi,j }, for i, j = 1, 2, . . . , N , is a positive definite matrix with elements pi,i = 1,
pi,i−1 = pi−1,i = � = �/(1 + �2) and pi,j = 0 otherwise. Here −1 < � < 1.

Before computing the corresponding CVF under our setting, some parameters related to the measurement design are
introduced below.

3.1. Design parameters

A measurement design will be described in terms of “batches”. A batch is defined to be (i) the set of all measurements
of unknowns between two successive measurements of the standard; or (ii) the set of all measurements (if any) of
unknowns before the first measurement of a standard; or (iii) the set of all measurements (if any) of unknowns after the
last measurement of a standard. Empty batches are permissible. As a consequence, b − 1 observations of a standard
give rise to b batches. Moreover, let T = ∑m

i=1 ti , where ti denotes the number of unknown i and b − 1 denotes the
number of the standard. Thus, the total number of measurements N =T + (b−1). The following definitions are related
to the arrangement of measurements.

b0 the number of empty batches.
ei the number of times unknown i is the first observation plus the number of times unknown i is the last

observation. ei = �1,i + �N,i and
∑m

i=1 ei = 0, 1 or 2.
qi the number of times two consecutive observations are of the unknown i. qi = ∑N−1

k=1 �k,i�k+1,i .
ri,j the number of times unknowns i and j occur as neighboring pairs in the design.

The following example is given to illustrate the above definitions.

Example 3.1. Consider the following sequence of the observations.

U1U3S U1U3U3U3U2U1U2U2S S,
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where Ui denotes unknown i and S denotes the standard. In this case, there are b = 4 batches. Of these four batches
b0 = 2 are empty. And t1 = 3, t2 = 3, t3 = 4, so N = T + (b − 1) = 10 + 3 = 13. Also

e1 = 1 (the first observation is of U1).
e2 = 0 (neither the first nor the last observation is of U2).
e3 = 0 (neither the first nor the last observation is of U3).
q1 = 0 (no two consecutive observations are of U1).
q2 = 1 (due to observations (10 and 11)).
q3 = 2 (due to the pairs of observations (5 and 6) and (6 and 7)).
r1,2 = 2 (due to the pairs of observations (8 and 9) and (9 and 10)).
r1,3 = 2 (due to the pairs of observations (1 and 2) and (4 and 5)).
r2,3 = 1 (due to observations (7 and 8)).

3.2. Calculating the CVF

From (2.2), based on the MA(1) error process, the covariance matrix of �̂, denoted by VP(�̂) = �2{	i,j }, for i, j =
1, 2, . . . , m, is given by

	i,j =

⎧⎪⎨
⎪⎩

(hi,i + g)� + 1

N − T
+ 1

ti
if i = j,

(hi,j + g)� − 1

N − T
if i �= j,

where

hi,i = 2

(N − T )ti

⎛
⎝ m∑

k �=i

ri,k + 2qi + ei

⎞
⎠ + 2qi

t2
i

,

g = 2

(N − T )2

⎛
⎝ m∑

k=1

m∑
l �=k

rk,l +
m∑

k=1

qk +
m∑

k=1

ek − N − 1

⎞
⎠ ,

hi,j = 1

(N − T )ti

⎛
⎝ m∑

k �=i

ri,k + 2qi + ei

⎞
⎠ + 1

(N − T )tj

⎛
⎝ m∑

k �=j

rj,k + 2qj + ej

⎞
⎠ + ri,j

ti tj
.

Similarly, let VI(�̂) = �2{
i,j }, for i, j = 1, 2, . . . , m, denoting the covariance matrix of �̂ under the assumption of
homogeneous variance. Then we have


i,j =

⎧⎪⎨
⎪⎩

1

N − T
+ 1

ti
if i = j,

−1

N − T
if i �= j.

Hence, the CVF of (2.1) associated with �i can be equivalently expressed as

CVF�i
(d, P) = 	i,i − 
i,i


i,i

. (3.1)

It may be inefficient and costly to search for robust measurement designs through a complete enumeration, even
for moderate values of design parameters. Therefore, we primarily consider the situation where the parameters
�1, �2, . . . , �m are equally important, and hence we need all CVF�i

(d, P) of (3.1) to be equal. The following lemma
describes conditions that must be satisfied by the design parameters ei, qi, ti and ri,j in order for a measurement design
to have equal CVF�i

(d, P) for every unknown. A measurement design is said to be balanced hereinafter provided it
has the same CVF�i

(d, P) for i = 1, 2, . . . , m.
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Lemma 3.1. A measurement design is balanced for all values of �, where �=�/(1 +�2) and −1 < � < 1, if and only
if, for all i and j, ti = t , qi = q, ei = e and ri,j = r . Also the CVF in this case is given by

CVF(d, P) = �
{[m(m − 1)(2q − r) − 2(N + 1)]t2 − 2N [(m − 1)(2q − r) − e]t + 2N2q

}
t (N − mt)[N − (m − 1)t] . (3.2)

The proof involves straightforward algebra and is omitted.
Consequently, the problem of searching for d∗ of (2.3) is reduced to finding the combinations of the design parameters

which minimize the absolute value of (3.2) for given N and m. Importantly, the search for the robust design is free of the
autocorrelation parameter �. We present the steps of exhaustive search for the robust balanced measurement designs
in the following.

3.3. Searching for the desired designs

Proposition 3.1 gives some constraints on the design parameters, which are direct consequences of the definitions.

Proposition 3.1. For fixed values of N and m, the following describes some interrelationships among the design
parameters.

(i) r = 0 for m = 1.
(ii) (m2 )r + mq = mt − (b − b0).

(iii) 0�e� max{0, 3 − m}.
(iv) 0�q � t − 1.
(v) max{2 − me, b − mt} + mt − b�mq + (m2 )r �mt − 1.

It is now possible to enumerate all possible combinations of the design parameters satisfying the above constraints
in a practical range of N and m. These combinations are called eligible designs hereinafter. The following steps are
implemented to search for the robust balanced measurement designs.

Step 1: Input N and m.
Step 2: Calculate b = (N + 1) − mt for 1� t ��(N − 1)/m�, where �a� is the largest integer less than or equal to a.
Step 3: For each combination of b and t generated from Step 2, search all possible combinations of e, q and r satisfying

(i), (iii), (iv) and (v) of Proposition 3.1.
Step 4: For each combination of (b, t, e, q, r) generated from Step 3, calculate b0 = (m2 )r + mq − mt + b. This is

according to (ii) of Proposition 3.1.
Step 5: Compute the absolute value of (3.2) with � = 1 for each eligible design and select the robust design d∗ which

has the minimum one.

Some robust balanced measurement designs are reported in Table 1. It is worth noting that the resulting designs may
not be unique for a set of given N and m. In practice, one may determine the final design according to the measurement
cost of unknowns and standard. More interestingly, it is not uncommon to obtain ideal designs, i.e. those which have
zero CVF(d, P) in (3.2).

3.4. Arranging the order of measurements

For fixed values of N and m and a given robust balanced measurement design with parameters (t, b, e, q, r, b0), we
would directly use the algorithm presented in Liao et al. (2000) to arrange the order of measurements. Their algorithm
is mainly based on a special class of Latin squares which is considered by Kiefer and Wynn (1981) and Cheng (1983)
in the study of equineighbored designs. Structurewise, a difference between these two classes of designs is that the
measurement designs usually turn out to be non-binary and unequal block-size designs if considering the “batches”,
defined in Section 3.1, as the classical blocks.

Liao et al. (2000) provide detailed construction steps separately for three cases: (A) r = 0, (B) r > 0 with (m − 1)r

being even and (C) r > 0 with (m−1)r being odd. Even the algorithm is considered for m�3, it can easily be modified
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Table 1
Some robust balanced measurement designs

Design m N NED (t, b, e, q, r, b0)

d11,1–d11,2 1 10 74 (3,8,0,1,0,6) (7,4,2,4,0,1)
d12,1–d12,2 20 299 (1,20,1,0,0,19) (19,2,1,18,0,1)
d13,1–d13,2 50 1874 (7,44,0,1,0,38) (43,8,2,36,0,1)
d14,1–d14,2 100 7499 (33,68,0,11,0,46) (67,34,2,44,0,11)
d21,1

a 2 10 50 (4,3,0,2,3,2)

d22,1
a–d22,7

a 20 375 (4,13,0,1,1,8) (4,13,1,0,4,9) (5,11,0,0,7,8)
(6,9,0,0,6,9) (8,5,0,6,1,2) (8,5,0,0,14,3)
(8,5,1,2,8,1)

d23,1
a–d23,10

a 50 5500 (10,31,0,3,0,17) (10,31,1,2,3,18) (16,19,0,0,24,11)
(20,11,0,12,8,3) (20,11,0,6,21,4) (20,11,0,0,34,5)
(20,11,1,14,2,1) (20,11,1,8,15,2) (20,11,1,2,28,3)
(24,3,0,12,23,2)

d24,1
a–d24,26

a 100 42875 (10,81,1,1,1,64) (20,61,0,5,4,35) (20,61,0,1,21,44)
(20,61,1,4,7,36) (20,61,1,0,24,45) (24,53,0,6,11,28)
(25,51,0,8,7,24) (25,51,0,5,17,28) (25,51,0,2,27,32)
(25,51,1,7,9,24) (25,51,1,4,19,28) (25,51,1,1,29,32)
(30,41,0,3,35,22) (30,41,1,9,17,16) (32,37,0,16,6,11)
(40,21,0,26,11,4) (40,21,0,20,24,5) (40,21,0,14,37,6)
(40,21,0,8,50,7) (40,21,0,2,63,8) (40,21,1,28,5,2)
(40,21,1,22,18,3) (40,21,1,16,31,4) (40,21,1,10,44,5)
(40,21,1,4,57,6)(48,5,0,36,21,2)

d31,1
a–d31,2

a 3 20 22 (4,9,0,0,3,6) (5,6,0,1,3,3)
d32,1

a–d32,2
a 50 372 (5,36,0,0,3,30) (10,21,0,4,1,6)

d33,1
a–d33,7

a 100 3128 (20,41,0,6,5,14) (25,26,0,16,1,2) (25,26,0,11,7,5)
(25,26,0,6,13,8) (25,26,0,1,19,11) (30,11,0,18,9,2)
(32,5,0,16,15,2)

d41,1 5 20 2 (1,16,0,0,0,11)
d42,1 50 40 (7,16,0,1,2,6)
d43,1 100 330 (13,36,0,1,4,16)

d51,1 10 50 4 (1,41,0,0,0,31)
d52,1 100 29 (1,91,0,0,0,81)

In the table, the abbreviation NED denotes the number of eligible designs for the settings.
aIndicates the ideal designs whose CVF values are equal to zero.

for the simpler situations m = 1 and 2. Note that when m�3, e = 0, but e can be non-zero for m = 1 and 2. In the
following, we just present the measurement sequences for some designs of Table 1 obtained from the algorithm. The
interested reader may consult Liao et al. (2000) for details regarding the process.

Example 3.2. For design d11,2, m = 1, N = 10, t = 7, b = 4, e = 2, q = 4, r = 0 and b0 = 1. One measurement order
obtained from Case (A) is given by

UUUSSUUSUU .

Example 3.3. For design d21,1, m = 2, N = 10, t = 4, b = 3, e = 0, q = 2, r = 3 and b0 = 2. From Case (C), one
required sequence is given by

S U2 U2 U2 U1 U2 U1 U1 U1 S.

Example 3.4. For design d31,2, m = 3, N = 20, t = 5, b = 6, e = 0, q = 1, r = 3 and b0 = 3. A measurement order
satisfying these parameters obtained from Case (B) is given by

S U3U1U3U1U1SS U1U2U1U2U2S U2U3U2U3U3 S.
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Example 3.5. For design d42,1, m = 5, N = 50, t = 7, b = 16, e = 0, q = 1, r = 2 and b0 = 6. A desired sequence of
measurements for this design is given by

S U5 U1 U4 U1 S U1 U5 U5 S S U1 U2 U5 U2 S U2 U1 U1 S

S U4 U5 U3 U5 S U5 U4 U4 S S U2 U3 U1 U3 S U3 U2 U2 S

S U3 U4 U2 U4 S U4 U3 U3 S.

Example 3.6. For design d51,1, m = 10, N = 50, t = 1, b = 41, e = 0, q = 0, r = 0 and b0 = 31. A robust run order of
the measurements satisfying these design parameters is given by

S S S S U1 S S S U2 S S S S U3 S S S U4 S S

S S U5 S S S U6 S S S S U7 S S S U8 S S S S

U9 S S S S U10 S S S S.

4. Simulation study

To evaluate performance of the obtained robust balanced measurement designs, the following simulation study is
conducted by constructing a 100(1 − �)% confidence interval for �i . Recall that the motivation of the robustness study
is to avoid the difficulty of obtaining a reliable estimate for possible correlation among the measurements, and still able
to make statistical inference on the unknown parameters under the usual assumption of the homogeneity of variance.
Therefore, we calculate a 100(1 − �)% using (4.1) for each simulated data set:

�̂i ± t�/2,N−m−1�̂

√
1

N − mt
+ 1

t
, (4.1)

where �̂i is the OLSE of �i , t�/2,N−m−1 is the 100(1 − �/2)th percentile of the Student’s t distribution with N − m − 1
degrees of freedom and �̂ is the square root of MSE (mean square error).

The robust designs obtained in the present study are derived by assuming an MA(1) error process. Hence, we first
evaluate the robustness to this error process. The simulated coverage probability for 90% confidence interval of (4.1)
is computed for �1 using 10,000 simulated data sets for each simulation setting. The results of some designs listed in
Table 1 along with a “bad” design are displayed in Table 2. The bad design whose design parameters (t, b, e, q, r, b0)=
(3, 12, 2, 9, 9, 0) has the largest absolute value of CVF among all eligible designs with m = 3 and N = 20.

For most of the settings, the robust balanced measurements are successful in maintaining the simulated coverage
probabilities close to the nominal level 0.90. By contrast, the bad design d31,b, compared with d31,2, cannot have
satisfactory performance.

Table 2
The simulated coverage probability for an MA(1) error process with �i = �i + ��i−1

Design �1

0.4 0.3 0.2 0 −0.2 −0.3 −0.4

d11,2 0.8747 0.8928 0.8978 0.9057 0.9086 0.9055 0.9127
d13,2 0.8981 0.8989 0.9022 0.8983 0.9042 0.9004 0.9089
d21,1 0.8873 0.8847 0.8922 0.9040 0.9085 0.9128 0.9172
d24,26 0.9022 0.8985 0.9015 0.8954 0.8972 0.9040 0.9032
d31,2 0.8891 0.8955 0.8965 0.8966 0.9001 0.9053 0.9026
d33,7 0.9013 0.9002 0.8952 0.8973 0.9016 0.9031 0.9029
d41,1 0.9071 0.9081 0.9030 0.9017 0.8939 0.9030 0.8965
d43,1 0.8995 0.9023 0.8952 0.8989 0.9031 0.9005 0.8976
d52,1 0.9001 0.9015 0.9019 0.8996 0.9067 0.9036 0.8970

d31,b
a 0.8013 0.8339 0.8522 0.8908 0.9355 0.9560 0.9715

The first autocorrelation �1 = �/(1 + �2
).

ad31,b denotes the “bad” design in the class of designs with m = 3 and N = 20.
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Table 3
The simulated coverage probability for an AR(1) error process with �i = �i + �i−1

Design �1

0.9 0.5 0.3 0 −0.3 −0.5 −0.9

d11,2 0.9293 0.9074 0.8931 0.8995 0.9190 0.9382 0.9820
d13,2 0.9823 0.9178 0.9023 0.9023 0.9057 0.9114 0.9773
d21,1 0.8351 0.8725 0.8895 0.8970 0.9121 0.9202 0.9555
d24,26 0.8464 0.9041 0.9006 0.9006 0.9082 0.9093 0.9209
d31,2 0.9275 0.9049 0.8975 0.8966 0.9111 0.9233 0.9258
d33,7 0.7799 0.8907 0.8987 0.8942 0.9040 0.9008 0.8630
d41,1 0.9381 0.9055 0.9034 0.9019 0.9014 0.9015 0.9423
d43,1 0.9134 0.9188 0.9043 0.8985 0.9037 0.9112 0.9774
d52,1 0.9024 0.8967 0.8984 0.8988 0.9021 0.9003 0.9177

d31,b
a 0.7092 0.7865 0.8306 0.9029 0.9577 0.9763 0.9958

The first autocorrelation �1 = .
ad31,b denotes the “bad” design in the class of designs with m = 3 and N = 20.

Table 4
The simulated coverage probability for an MA(2) error process with �i = �i + �1�i−1 + �2�i−2

Design (�1,�2)

(0.6,0.3) (−0.6,−0.3) (−0.6,0.3) (0.5,0.1) (−0.5,−0.1) (−0.5,0.1)
[0.54,0.21] [−0.29−0.21] [−0.54,0.21] [0.44,0.08] [−0.36,−0.08] [−0.44,0.08]

d11,2 0.9182 0.8858 0.9410 0.8931 0.9031 0.9214
d13,2 0.9040 0.8913 0.9149 0.9019 0.8982 0.9140
d21,1 0.8655 0.9189 0.9109 0.8790 0.9197 0.9154
d24,26 0.8891 0.9035 0.8952 0.8906 0.9026 0.8969
d31,2 0.9046 0.8951 0.9155 0.8971 0.9070 0.9096
d33,7 0.8930 0.9059 0.8922 0.8953 0.9014 0.9036
d41,1 0.9135 0.8938 0.9025 0.9090 0.8961 0.8979
d43,1 0.9149 0.8944 0.9139 0.9028 0.9017 0.9073
d52,1 0.9032 0.9016 0.8973 0.9011 0.8970 0.9004

d31,b
a 0.7511 0.9621 0.9866 0.7907 0.9692 0.9770

The first and second autocorrelations �1 = (�1 + �1�2)/(1 + �2
1 + �2

2) and �2 = �2/(1 + �2
1 + �2

2) are displayed in the square brackets.
ad31,b denotes the “bad” design in the class of designs with m = 3 and N = 20.

Table 5
The simulated coverage probability for an AR(2) error process with �i = �i + 1�i−1 + 2�i−2

Design (�1,�2)

(0.6,0.3) (−0.6,−0.3) (−0.6,0.3) (0.5,0.1) (−0.5,−0.1) (−0.5,0.1)
[0.86,0.81] [−0.46,−0.02] [−0.86,0.81] [0.56,0.38] [−0.45,0.13] [−0.56,0.38]

d11,2 0.9352 0.9099 0.9773 0.9156 0.9243 0.9545
d13,2 0.9786 0.9083 0.9799 0.9339 0.9063 0.9218
d21,1 0.8527 0.9305 0.9461 0.8674 0.9237 0.9256
d24,26 0.8419 0.9089 0.9162 0.8935 0.9091 0.9116
d31,2 0.9203 0.9077 0.9093 0.9100 0.9135 0.9200
d33,7 0.7574 0.9181 0.8598 0.8875 0.9088 0.8938
d41,1 0.9215 0.8945 0.9388 0.9135 0.8926 0.9017
d43,1 0.9068 0.9061 0.9801 0.9275 0.9029 0.9199
d52,1 0.9033 0.9029 0.9232 0.9014 0.9035 0.8996

d31,b
a 0.7473 0.9875 0.9836 0.7842 0.9786 0.9750

The first and second autocorrelations �1 = 1/(1 − 2) and �2 = 1�1 + 2 are displayed in the square brackets.
ad31,b denotes the “bad” design in the class of designs with m = 3 and N = 20.



C.T. Liao, T.Y. Lin / Computational Statistics & Data Analysis 51 (2007) 3235–3243 3243

To check sensitivity of the obtained robust balanced measurement designs to other error processes than MA(1),
the same simulation study is repeated for AR(1), AR(2) and MA(2) error processes. The results are displayed in
Tables 3–5.

From Tables 3–5, almost all the obtained robust balanced measurement designs, regardless of the number of unknowns
and the total number of measurements, are robust against the various error processes provided that the absolute value
of the first or the second autocorrelation is not quite large. For example, from Table 3, some of designs cannot have
satisfactory performance when the first autocorrelation is fixed at 0.9 or −0.9, but all the designs perform quite well for
the remaining first autocorrelation values. Similar results can be found in Table 5. Notice that the comparison results
between d31,2 and d31,b in the tables indicate the importance of design choice for a measurement process.

5. Concluding remarks

In this article, the approach we have taken is to ignore the correlation structure of errors and use the ordinary least
squares estimators for the unknowns. To compensate for this, we choose an appropriate design under which the variance
of the estimates under the working model are close to that under the correct model. Also, the final judgment of the
goodness of the chosen designs is according to the actual coverage of the confidence intervals for the unknowns. On
the other hand, it might be of interest to consider a criterion for the robust measurement designs that directly based on
such coverage probabilities along with the expected lengths of confidence intervals.

We have proposed a systematic method of constructing the robust balanced measurement designs based on the
assumption of the additive model with an MA(1) error structure. The resulting designs are shown to be only minimally
impacted by the error structure and are robust to various assumed structures, indicating that they can be recommended
for practical use. Nonetheless, in practice, it is not uncommon to encounter more complicated calibration models, such
as nonlinear and multiplicative models. For example see Lin and Liao (2005). We will investigate a possible extension
to these calibration models in a future study.
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