
112 IEEE Transactions on Consumer Electronics, Vol. 43, No. 2, MAY 1997 

DSRA: A BLOCK MATCHING ALGORITHM FOR NEAR-REAL-TIME VIDEO ENCODING 
Chun-Hung Lin', Ja-Ling Wu'>* and Yi-Shin Tung' 

'Communication and Multimedia Lab. 
Department of Computer Science and Information Engineering 

National Taiwan University, Taipei, 106, Taiwan, R.O.C. 
*Department of Information Engineering 

National Chi Nan University 
Puli, 545, Taiwan. R.O.C. 

ABSTRACT - 
The correlations of motion vectors between neigh- 

boring image blocks have long been applied to  im- 
prove the  efficiency of block matching algorithms. In  
this paper, a block matching algorithm with a dy- 
namic search range is presented. The search range is 
adjusted based on the correlations of the  motion vec- 
tors between neighboring blocks. It is shown by sim- 
ulation results tha t  the proposed method can speed 
an MPEG-1 encoding system u p  to  a ratio of 13.3 
and increases the  bit-rate only of 0 025 bpp, in aver- 

age. It is therefore beneficial t o  embed the  proposed 
method into a motion-based encoding system. 

1 INTRODUCTION 

Because of the promotion of the computing power, 

gcncral-purpose CPUs have been largely applied for 

realizing real-time software-based video players (de- 

coders). So far, there are many commercial products of 

soft,wsre-hmed MPEG-1 [l] players available in the mar- 
ket. They are used to display MPEG-l encoded video 
sequences in real-time without any additional hardware 

support,. The major advantages of using pure software 

video codecs are: ( 1 )  t,he cost, is quite low while com- 

pa.ring with the hardware solutions, (2) the portability 

of softSWare makes them easier to be transported to dif- 
ferent pla.t,forms. Due to the rapid progress of the per- 
fovma,nce of general-purpose CPUs, it is a current trend 

to implement the video codec by using software only. 

The most important three functional blocks of a typi- 

cal video encoding system are motion estimation (ME), 
discrete cosine transform (DCT), and variable length 

coder (VLC). Lots of methods have been proposed [2]- 

[5] for implementing the DCT. The computational corn- 

plexity of the DC'l  is therefore not a. major concern of 

the whole encoding process. As for the VLC, because it 
is basically realized by using look-up-t,able operations, 

the space for improving the coding performa.nce is lim- 
ited. When the computational complexity of the other 
two components has been well controlled, the most. im- 
portant issue for real-time software-based video encod- 

ing becomes to enhance the efficiency of the ME com- 

ponent. For example, in DEC's implementation of an 
MPEG software-based encoder, the computational com- 

plexity of ME is more than 40% of that of the overall 

encoding system [6]. The reduction of the computa- 
tional complexity of ME is, therefore, the main subject 
of this paper. 

While developing a pure-software video encoding sys- 

tem, it is impossible to apply the full search algorithm 

(FSA) lor irnplernentirig the ME cornporierit because of 

its high computational complexity. Many fast ME al- 
gorithms have been proposed in the literature. Most of 
the traditional block matching algorithms (BMAs) 171- 
[la], by means of heuristic searching, are based 011 

the assumption that matching errors increase monon- 

ically from the minimum within a fixed search range. 

Among these algorithms, three-step search (TSS) and 
two-dimensional logarithmic search (TDL) are often 
used. However, the performance of these algorithms is 

not as good as expected because the above assu-mption 
is not always true. There still exists space for finding 

more efficient BMAs. 

The high correlation between neighboring blocks in 

an image has been invesligated to improve the per€or- 
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mance of va.rious kinds of coding algorithms. It is also 

observed that tfhe motion vectors of neighboring blocks 

are very similar because each object in the vidco scene 

usually covers many irnage blocks. Some previously pro- 

posed algorit,hms, based on inter-block motion vector 
correlations, were proved to be very efficient. [13]-[15]. 
In tjhese a.lgorithms, severa.l candidate motlion vectors, 

which are selected from the estimated mot.ion vectors 

of the neighboring blocks, are checked and the one with 

the minimum matching error is chosen to be a feasible 

solution. If the matching error of the feasible motion 

vector is 1a.rger t2han a predefined threshold, a refine- 
ment stage has to be employed. In Hsieh’s work [13], 
a full search centered at the feasible motion vector is 

performed. Unfortunately, in this approach, it is diff- 

cult to determine an appropriate search range. If the 

search range is large, a long execution tjime is unavoid- 

able (which makes the BMA inefficient); however, if the 

search range is too small, the estimation result will be 

poor. In [15], the image blocks are classified into three 
different groups. Different selection schemes of neigh- 
boring blocks are applied in each group of blocks for 
determining the candidate motion vectors. In the re- 

finement st,age. a local search scheme (which is similar 

t.o the work proposed in [16]) is performed around the 
feasible motion area. Although the performance of the 
algorithms i s  shown to be impressive, the system com- 

plexity of these algorithms is much higher than that, of 
the ot,her BMAs. Therefore, it is difficult to implement 
these algorithms in hardware, or even in software. 

In t,his paper, based on a similar strategy, an effi- 

cient BMA (called the dynamic search range algorithm 

(DSRA)), is proposed. In the DSRA, a full search is per- 
forrned around the feasible rnotion area but the search 
range can be dynamically adjusted so that the estima- 

tion performance will not degrade much while the com- 

putational complexity is reduced largely. 

2 DYNAMIC SEARCH RANGE AL- 
GORITHM 

In the DSRA, a full search centered at the initial search 
point is performed. The search range is dynamically ad- 

justed in block-by-block sense so tha.t, the true motion 

can be found wit)hin a. limitled number of block ma.t,ch- 

ing. 

Let m = ( i jz .Uy)  represent tlhe init-ial motion vect,or, 
and r = (b,, b y )  be the search range of the current, est,i- 
mat,ed block B .  The best motmion vcct,or can be resolved 
by performing a full search within tjhe search area spec- 

ified by riz and r .  The best motion vectjor m is defined 

as 

and 

SXD(%,.uy) = c [ I n ( i , j )  - I n - l ( i + , u , , j + u y ) l ,  
(i,j) € B  

( 2 )  
where I n ( i , j )  denotes the int,ensity of tJhe pixel at, 1oca.- 

tion ( i , j )  in the 71th frame. 

In the previously proposed algorit,hms which ha.ve 
taken motion correlation into account, the ca.ndida.te 
mot,ion vectors were usually se1ect)ed from t,he mot,ion 

vectors of the neighboring blocks. Each of the randi- 
date motion vedors is examined. and the one wit,h the 

minimum matching error is chosen as tjhe iiiit,ial mo- 

tion vector r iz. The number of  candidatme mot,ion vectors 

dominates t,he required block mat>ching number for de- 

ciding fi. It, is expeckd that m will approach t~he true 
motion vector and tlhe required block ma.tching niimber 
in the refinement &age would be small. so t,ha.t. the t20t,al 

computational load is not high. 

In the DSRA, iiz is directly assigned to be the motion 

vector of the most recently estjimatled neighboring block. 
Because a full search with an appropriate search range 

will be performed later in the refinement sta.ge, it is un- 
necessary to examine a lot, of candidat,e motion vectors. 

While for slow- to medium-motion video sequences, the 
average block matching number for each block could 
be considerably reduced. Moreover, only a few previ- 

ously estimated motion vectors have to be stored in the 

buffer as compared to the traditional correlation-based 

approaches. 
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The init,ial mot,ion vector of the ( i ,  j ) t h  block, in the 
DSRA. is selected as 

where p represents the index of the most recently esti- 

ma.tec1 neighboring block, i.e., 

( i  - l , j ) ,  i > 0, { ( i , j  - l) ,  i = 0, P ( t )  = (4) 

where t = ( i , j ) .  

In order to capture the true motion within an eco- 

nomical block matching number, the search range has 
to be adjusted according to the violence level of mo- 

tion. In a. slow moving or motion-homogeneity region, 
the sea.rch range is shrunk to reduce the computational 

complexity. Whereas, in a violently moving or motion- 

ext,raneoirsness region, where 6. might, be far from the 
true mot,ion. t,he sea.rch range is st,retched to catch the 

t, 1’11 e mot ion 

The search range, in the DSRA, is adjusted as 

where D, and Dy represent range difference values of 
t,he z- and y- axes, respectively. In a violently moving 
region, the range difference values should be higher than 

that, of a. slow moving region. In our implementation, 

the range difference values are set as 

and 

1, b - P I  =Y> 
A ( @ , p , r )  = 0, I.-PI =y+1, (9) i -1, l @ - P I > r + 1 ,  

where (.Uz, 3 ,  GyI  3 )  denotes the motion vector of the 
( i ,  j ) t h  block. 

While computing the matching error between the cur- 

rent block and the corresponding block of the testi- 

fied motion vector, the absolute difference of every two 

matched pixels contributes t80 the matching error. Each 
time a difference value is added to  the computed match- 

ing error, the currently accumulated value is checked. 

If the currently accumulated matching error is larger 

than the minimum matching error obtained so far, the 
computation of the matching error a.ga.inst the test*ified 

block is stopped and the computation of the matching 
errur for the next block is proceeded. This ‘early jump 
out’ t,echnique will speed up the searching process a lot. 

The pseudo codes of this technique can be listed as fol- 

lows: 

current-error = 0 

for each pixel ( i j )  E testified block B 
begin 

current-error = current-error + 
I l n ( z , j )  - In-1(2 + V X > J  + w y ) l  

if current-error 2 min-error 
go to  EJO 

end 
min-error = current-error 
best motion vector iii = ( t ~ , .  T J , )  
EJO: 
proceed to  the  next motion vector 

Whereas, the typical block matching is proceeded as 
follows: 

current-error = 0 

for each pixel ( i j )  E B 
current-error = current-error + 

I In(2,J)  - I r Z - l ( Z  + V x , J  + .y)l 

if current-error < min-error 
begin 

min-error = current-error 
best motion vector lr?. = (wz, uY) 

end 
proceed t o  the next motion vector 

When t,he full search is completed, the so-obtained 
minimum matching error is compared to  a predefined 
threshold. If the minimum matching error is smaller, 
the corresponding motion vector is selected as the solu- 
tion. Otherwise, another full search with a predefined 
maximum search range is performed to find the true 

motion vector, where an alternating pixel subsampling 
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scheme [17] is applied to reduce the computational com- 

plexity. 

The whole algorithm is depicted in Fig. 1 and is sum- 

marized as follows: 

1) Init,ially, the search range is set to be (bc ,  by)  = ( 1 , l )  
and the previous motion is set to be zero, that is 

(G, Cy) = (0,O). 

2) The matching errors of the zero motion vector (0,O) 

and the other candidate motion vectors (6, + 
d,,.iry + d,);where - b ,  5 d,  5 b, and -by 5 
d ,  5 b y ,  are calculated. Let, e l  represents the min- 

imum matching error among them. If e l  is larger 
than the threshold T ,  go to Step 4. 

3) Adjust t,he search range of the next block according 

to (5) and (6), and go to Step 6. 

4) In order to find the true motion, a full search with 

an alt#ernating 4 : 1 pixel subsampling [17] is per- 
formed, where the search range is set to be a pre- 

defined value. 

5 )  The search range of the next block is set to be 

(bc,by) = (L1) .  

6) Proceed to  the next block and go to Step 2. 

3 EXPERIMENTAL RESULTS AND 
DISCUSSIONS 

To compare the performance of the proposed algorithm 
with the other ones, six standard video sequences are 
testled. The basic information of the sequences is listed 

in Ta.ble 1. In the simulations. four different BMAs: the 

FSA, the TSS, the spatial-2 algorit,hm (S2. which was 

briefly described in Section 1) [15], and the proposed 
DSRA are implemented for comparison. The estimated 

block size is 16 x 16 pixels, and the predefined maximum 
search range of the DSRA and the other BMAs are -16 
to 16 pixels. 

In Table 2, the average block matching numbers re- 

quired for each algorithm are shown. For most of the se- 

quences, the block matching numbers of the DSRA are 

always less t,han that of the other methods. It can be 

seen from Table 3 that a large amount of block match- 

ing numbers have been saved by applying the DSRA. 

While comparing with t,he FSA, t-he DSRA needs, in a.v- 

erage, only 1.75% block matching of t,he previous one. 

In the TSS, the average block matching numbers are 

stable and ranged from 30 to 31. This is because the 
searching pattern is static and basically independent, of 

the content of the video sequences. Whereas, in the 

other two fast algorithms, which have taken t,he cor- 

relations of neighboring motion vect,ors int,o account, 
the block matching numbers depend largely on the con- 

tent of the test video sequences. For most, of t h e  wst 
video sequences. fewer block matching numbers are re- 
quired due to the assistlance of the rorrelat,ion of the 
neighboring motion vectors. The only except,ion is t,he 

“Football77 sequence. In tjhat sequence. tjhere are many 

objects moving violently; therefore, the correlation of 

motion vectors between neighboring blocks is not high. 

In this case, the computations will not, be reduced. Fur- 
thermore, it can be seen from Table 4 that, the average 
PSNR values of the predicted “Foot,ball” fra.mes ob- 
tained by using the other two fast BMAs are worse than 
that of the TSS. Nevertheless, because the difference 

values of the corresponding pixels in the two matched 

blocks are not all calculated both in the S2 and the 

DSRA, the execution time of these two met,hods is al- 
ways less than that of t2he TSS, as shown in Table 5. 

It is known from Tables 2 and 4 that the DSRA needs 
less block matching, and the average PSNR values of the 
predicted pictures using the DSRA is very close to or 

even better than those of the other two fast, algorithms. 
Especially, for the sequences with monotonous motion, 

where the correlation of motion vectors beheen  neigh- 

boring blocks is very high, the benefit of tjhe DSRA 
becomes very prominent. For example, in tjhe “Mobile” 
sequence, the average block matching number is only 
10.47 while the average PSNR. is only 0.12 dB less than 
that of the FSA. 

To compare the computational complexities of differ- 

ent BMAs, in addition to  block matching numbers, the 

control overheads have to be considered. However, it is 

not easy to  compare the control overheads of different 
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algorithms because they depend heavily on the practi- 
cal implementation. In our simulations, the BMAs are 

implemented on a SUN IJltra SPAR,C-167 workstation. 

The speed-ups of different, fast algorithms against the 

FSA are shown in Table 5. It can be seen that. the 

speed-ups of the DSRA are higher than the other algo- 
rithms for most of the test sequences. 

Beca.use a video encoder consists of some other com- 
ponent,s besides ME, the performance of different BMAs 
might, be different when they are applied to a whole 

video encoding system. In a video encoding system, 

the referenced frames of ME are usually generated from 

the decoder. The decoded/reconstructed frames are not 
the same a.s tjhe original ones due to quality degradation 

caused by compression, so the correlations of neighbor- 
ing mot,ioii vectors are different,. Moreover, the esti- 
mated result,s of ME will affect the computational com- 
p1exit)y of t,he other components in a video encoding 

syst,em, such as block-type classification and variable 

length coding. It might be possible that the overall com- 

put,a.t,ional complexity of the encoding system increases 
because of the increasing computational complexity for 

t,he other component,s, which is caused by the reduction 
of the computa.toions of ME. 

In order to see the practical efficiency of different 
BMAs, they are embedded into two MPEG-1 encoders: 

encoder-I1 constructed on a SUN Ultra SPARC-167 

ta.t,ion and encoder-112 constructed on a Pentium 

180 personal comput,er. The encoding parameters are 

a.djust,ed to ensure that the picture qualities of the de- 
coded video ,in t,he individual encoder by applying dif- 
ferent RMAs a.re nearly the same. The experimental re- 
sult,s of t,he encoding frame-rate and bit-rate are shown 
in Tables 6-9. 

Because t,he MPEG encoding method is not speci- 

fied in the MPEG video standard [l], different MPEG 

encoders (with different coding strategies) can be im- 

‘MPEG-1 video software encoder, developed by L. A. Rowe, 

E(. Gong, K .  Patel, and D. Wallach, Computer Science Division- 

EECS, Univ. of Calif. a t  Berkeley. 
’MPEG-1 video software encoder, developed by Communica- 

tion and Multimedia Lab., Department of Computer Science and 

Information Engineering, National Taiwan University. 

plemented to produce valid MPEG bitstreams. The 
simulations are therefore performed on two different en- 

coders. 

On the other hand, the efficiency of the encoding 

programs depends largely on the environments of‘ t,he 

operating systems and the program compilers. Hence, 
two different platforms with different compilers (GNU 

C compiler versions 2.7 and Microsoft VC++ compiler 
versions 4.2) are used in our simulations. In encoder-11, 
the BMAs with candidate matched blocks of succeeded 

indices are easier to be optimized by the compiler. It 

can be seen from Tables 6 and 7 t,hat the FSA and the 

DSRA gain more from the optimizer. 

There are many differences between the coding strate- 

gies of the two adopted encoders. For example, an 
“open-loop” structure is adopted in encoder-I, that is, 

the referenced frames of ME are directly taken from the 
original video sequences, while the “close-loop” struc- 

ture is applied in encoder-I1 where the decoded frames 

are taken as the references of ME. When the decoded 

frames are referenced, the motion correlations of neigh- 

boring motion vectors degrade, so the estima.tion ac- 
curacy of the BMAs by means of such correla.tions de- 
creases. As shown in Table 9,  tjhe bit>-ra.t,es of a.pply- 
ing S2 and the DSRA are more than that of the TSS. 
Whereas. in encoder-I (as shown in Table 8) ,  more bit’- 

rates are required for the TSS. Nevertheless, the predic- 
tion error is accumulated when tshe open-loop structure 

is used, which brings much quality degradation to the 

rear frames of each group-of-picture unit. 

In addition to the coding structures, the classification 
strategies of block types are also different in the two en- 
coders. In encoder-I, a more delicate strategy is used 
so that more blocks can be classified as P- or B-type 

blocks. Fewer bit-rates are hence required in encoder- 

I. Especially, for the hea.d-and-shoulder sequences (e.g. ; 

“Salesman” and “Miss America”); where almost half of 

a picture belongs to the background area and therefore, 
most blocks are classified to be the skipped blocks, so 

that many computations are saved. As for the other se- 
quences, the computations needed to classify the block 
types become an overhead. It can be seen from Table 6 
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tjhatj the frame-ra.tes of the head-and-shoulder sequences 

are much higher than the other sequences. 

From Ta.bles 6 and 7, it can be seen that the coders 

embedded witjh the DSRA are always faster than the 
other ones. As shown in Table 6(b),  the encoding 

frame-rate of encoder-I (on the SUN workstation) by 
applying the DSRA can reach nearly 30 frames per sec- 

ond for the head-and-shoulder video sequences. In Ta- 

ble 7(b), the encoding frame-rate of encoder-ll (on PC) 

can reach above 17 frames per second for different video 
sequences. Because t,he computing power of CPUs will 

be improved continuously (for example, Pentium Pro 
200 and MMX have recently been released), it is ex- 

pected that a real-time software-based MPEG encoder 

(by applying the DSRA) will be constructed in the near 

fut,ure. 

While comparing witah the TSS, the frame-rate of ap- 

plying the DSRA is better. In encoder-I, the speed-ups 
of applying the DSRA in CIF and QCIF resolutions are 

0.94 and 4.40 higher tjhan their TSS counterpa.rts, and 
the encoded bit-rates are 0.0306 bpp and 0.0008 bpp 
less. In encoder-11, the speed-ups of applying the DSR.A 
are 2.49 and 9.54 higher, while the bit-rates are 0.2072 

bpp and 0.1525 bpp more (this comes from the differ- 

ent implementatlion strat,egies adopted in encoder-11, as 

mentioned above). 

The bit#-rates generated by the S2-based coder are 
lower than that of the DSRA-based one but the former 
requires inore execution time. In average, the bit-rates 
of the coder using S2 are 0.0318 bpp less than that of 
the DSRA, while the speed-up of the later is 3.35 higher 

than the former. Because the control complexitmy of the 

DSRA is much lower than that of the S2, the DSRA 

gains much from the program compiler in encoder-II. 
This expla.ins why the encoding frame-rate of the DSRA 
is much higher than that of the S2 in encoder-11, as 
shown in Table 7. 

On implementing a “real-time” software-based coder, 

the coding speed may be more important t,han the gen- 

erated bit-rate. It will be a good deal to sacrifice sev- 

eral bit-rates for speeding up the coder. In summary, 

the implementation complexity of the DSRA is much 

lower t,han that of the S2 and is very close to  t,hat, of 

the TSS; moreover, the DSRA does not need a large 

buffer to save the previously estimated motion vectors 

as the S2 does. Because the system complexity of the 

DSRA is much lower, the DSRA is easy to  be imple- 
mented in hardware and is also easy to be optimized by 
the compiler while implemented in software. 

4 CONCLUSION 

Because the rapid progress of the IC technologies, it, be- 

comes possible to implement a real-time decoding sys- 
tern on a general-purpose processor. For most, of tjhe 

multimedia coding systems, where the complexity of a.n 

encoder is always higher than tha.t of a. decoder, e.g. in 

the MPEG-1 coding. this exphins why it, is still very 

difficult to implement a pure-soft,wa.re real-time enc-od- 

ing system. In order to speed up an encoding system. 

a very efficient block matjchiiig a.lgorit,hni (witjh dynam- 

ically adjusta.ble search range) is proposed which t,a.kes 
advanta.ges of t,he correlat,ion of motlion vect,ors between 
neighboring blocks. It is shown by simula.t,ions t,ha.t t,he 

proposed algorithm can reduce the coniplrxity of a stman- 

dard video encoding syst,em. The a.verage bit,-ra.t.e of trhe 

coder using the proposed a.lgorit,hm is also lower than 

the coder using some tradit,ional heiirist,ic search mPt,h- 

ods. It is believed that the proposed metJhod can be 
applied to improve the efficiency of an encoding systjem 
and make the software-based real-time video encoding 

more feasible. 
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I I I 

I 

Figure 1: The block diagram of the DSRA. 

Sequence Name I Resolution # of Frames Picture Characteristic 

Salesman 

Miss America 
Football 

Flower Garden 

Mobile Calendar 

Table Tennis 

352 x 288 149 head-and-shoulder 

352 x 288 150 head-and-shoulder 
352 X 240 125 violent motion 

352 x 240 115 Pan 

352 x 240 140 pan 

352 X 240 112 zoom and scene change 

Table 1. The basic informatton of the test d m  sequmcps 
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sales miss football garden mobile tennis 

FSA 984.92 984.92 973.70 973.70 973.70 973.70 

TSS 30.62 30.91 30.44 30.59 30.38 30.46 

S2 11.00 23.68 35.52 20.43 12.49 11.74 

DSRA 10.42 18.76 34.74 17.83 10.47 10.39 

average 

977.44 

30.57 

19.14 

17.10 

TSS 
S2 

DSRA 

Table 3: The ratios (%) of the requzred block matchzng numbers for dzfferent fast BMAs to that for  the FSA: BMN 
of fast algorithm / BMN of FSA.  

sales miss football garden mobile tennis average 

3.11 3.14 3.13 3.14 3.12 3.13 3.13 

1.12 2.40 3.65 2.10 1.28 1.21 1.96 

1.06 1.90 3.57 1.83 1.08 1.07 1.75 

FSA 

TSS 
S 2  

DSRA 

sales miss football garden mobile tennis average 

36.44 37.83 23.98 23.73 22.42 32.10 29.42 

36.21 37.50 23.17 21.59 21.71 31.10 28.55 

36.12 36.87 22.65 23.13 21.44 28.83 28.17 

36.40 37.73 22.07 23.01 22.30 28.98 28.42 

TSS 
5 2  

DSRA 

. ,  
sales miss football garden mobile tennis 

0.83 0.79 1.03 

16.69 23.50 9.59 9.54 9.52 12.03 

15.53 20.23 10.88 11.47 11.26 12.94 

sales miss football garden mobile tennis ! average 

30.75 30.99 28.57 30.11 35.63 28.61 30.78 

132.77 55.10 59.96 119.02 156 160.58 113.91 

157.89 63.99 59.23 102.36 160.33 237.05 130.14 

average 

1.34 

13.48 

13.72 

17.88 

sales miss football garden mobile tennis 

FSA 0.39 0.28 0.17 0.18 0.18 0.24 

TSS 4.38- 3.22 2.32 2.37 2.31 3.04 

S2 ,4.76 3.97 2.78 3.16 3.17 3.61 

DSRA 5.96 3.69 2.94 3.20 3.36 4.10 

Table 6: Comparisons of the frame rates (frame/sec) of the MPEG encoder-I using different BMAs: ( a )  CIF, (b)  

average 

0.24 
2.94 

3.58 

3.88 

Q CIF 
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FSA 
TSS 
s2 

DSRA 

sales miss football garden mobile tennis average 

0.40 0.47 0.42 0.44 0.42 0.44 0.43 
2.37 2.94 2.22 2.28 2.11 2.44 2.39 

3.81 4.86 2.54 3.52 3.43 3.23 3.57 
4.48 5.65 4.75 4.75 4.49 5.14 4.88 

Table 7: Comparisons of the frame rates (frame/sec) of the MPEG encoder-11 using different BMAs: ( a )  CIF. f b )  
QCIF. 

FSA 

TSS 
S2 

DSRA 

sales miss football garden mobile tennis average 

1.57 1.79 1.74 1.73 1.74 1.83 1.73 
8.69 10.16 9.12 8.91 8.79 10.45 8.77 
11.43 12.14 8.90 10.05 10.79 10.85 10.69 

17.84 20.19 17.99 17.42 17.11 19.28 18.31 

Table 8: The average bit-rates of the MPEG encoder-I using different BMAs: ( a )  CIF, (b) QCIF. 

FSA 

TSS 
S2 

DSRA 

sales miss football garden mobile tennis ~ averagv 

0.1098 0.0632 0.4937 0.5985 0.6103 0.2308 [ 0.3511 

0.1129 0.0678 0.5404 0.7223 0.7468 0.2695 I 0.4100 

0.1111 0.0616 0.5081 0.6066 0.6134 0.2471 1 0.3580 

1 0.1128 0.0660 0.5470 0.6542 0.6423 0.2543 I 0.3794 

Table 9: The average bit-rates of the MPEG encoder-11 using diflerent BMAs: (a) CIF, (6) QCIF. 

sales miss football garden mobile tennis 

FSA 0.1474 0.0570 0.8889 0.9714 1.1540 0.3609 

TSS 0.1480 0.0584 0.9078 1.0470 1.1835 0.3914 

52 0.1478 0.0690 0.8937 0.9778 1.1575 0.3752 

DSRA 0.1494 0.0571 0.9382 1.0270 1.1808 0.3791 

average 

0.5966 

0.6227 

0.6035 

0.6219 

sales miss football garden mobile tennis 

FSA 0.1412 0.0892 0.6763 0.9151 1.2749 0.3756 

TSS 0.1418 0.0891 0.6860 0.9274 1.2852 0.3862 

S2 0.1426 0.0852 0.8184 1.4861 1.4897 0.4355 

DSRA 0.1476 0.0933 0.8364 1.6181 1.6272 0.4365 

average 

0.5787 

0.5860 

0.7429 

0.7932 

sales miss football garden mobile tennis 

FSA 0.3247 0.1487 1.0388 1.3260 1.8604 0.5608 

TSS 0.3250 0.1485 1.0418 1.3346 1.8708 0.5646 

S2 0.3261 0.1688 1.1313 1.7678 1.9741 0.6180 

DSRA 0.3302 0.1536 1.1462 1.9067 2.0520 0.6118 

average 

0.8766 

0.8809 

0.9977 

1.0334 
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