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Abstract

The transient response of piezoelectric bi-materials subjected to a dynamic anti-plane concentrated force or electric
charge with perfectly bonded interface is examined in the present study. The problem is solved by using the Laplace trans-
form method and the inverse Laplace transform is evaluated by means of Cagniard’s method. Exact transient full-field
solutions of the contribution for each wave are expressed in explicit closed forms. The transient behavior of field quantities
is examined in detail by numerical calculations. The existence condition of a propagating surface wave along the interface
is discussed in detail. A surface wave can be guided by the interface of two semi-infinite materials in contact if one, at least,
of these two materials is piezoelectric. The propagation velocity of the surface wave is explicitly expressed and is found to
be less than the lower shear wave velocity of the two materials. The existence of the surface wave for piezoelectric–piezo-
electric bi-materials is restricted to the situation that the shear waves of the two piezoelectric materials are very close. The
possibility for the existence of the surface wave for piezoelectric–elastic bi-materials is much greater than that of the pie-
zoelectric–piezoelectric bi-materials.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The propagation of stress waves through an unbounded material is not a difficult subject. A half-space
bounded by one plane surface is the simplest model for observing elastic waves in solid. Many applica-
tions of electrodynamics begin with the model of a half-space. The classical analysis in this area was first
proposed by Lamb (1904); he considered the elastic half-space subjected to point and line loads on the
surface of a semi-infinite half-space. Since this early analysis of Lamb, a great many contributions have
appeared, pertaining to what is commonly referred to as Lamb’s problem. de Hoop (1960) and Cagnard
(1962) proposed a general method to evaluate the inverse Laplace transforms, which made the solving of
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elastic wave propagation problem become possible. The generalized ray theory was developed since 1939
when Cagniard studied the transient waves in two homogeneous half-spaces in contact. In his monumental
work, he had shown that by going through a sequence of contour deformations and changes of integra-
tion variables, one is able to find the inverse Laplace transforms of the expressions for each ray. A review
of this theory was given by Pao and Gajewski (1977). Spencer (1960) used the generalized ray method to
investigate the surface response of a stratified half-space to the radiation from a localized source. The
method leads to an infinite series of the generalized ray integral constructed in the Laplace transform
domain by assembling the source function, reflection and transmission coefficient, the receiver function,
and the phase function. The method therefore obviates the necessity for solving a tedious boundary value
problem. The time function associated with each ray integral is obtained by using the Cagniard method.
Ma and Huang (1993) have constructed the exact transient solution of buried dynamic forces for elastic
bi-material problem. Buried source problems develop considerable interests in seismology and have been
studied by many investigators. All the research works mentioned above are concerned with isotropic elas-
tic materials.

Piezoelectric materials possess the important property of linear coupling between mechanical and electrical
fields, which renders them useful in many areas of modern technology. These materials have thus been widely
used for a long time as electromechanical transducers, filters, sensors and actuators, to mention only a few. In
recent years, they are finding new applications in non-destructive evaluation, ultrasonic medical imaging,
smart structures and active control of sound and vibration. In this endeavor, composite materials, consisting
of combinations of two or more different piezoelectric and non-piezoelectric material phases, have been
designed to meet specific technical needs. Such composites permit the tailoring of special properties, unavail-
able in homogeneous phases, and therefore they are becoming increasingly important in diverse areas of mod-
ern technology. Quite recently, a new class of highly advanced composites, where the material properties vary
continuously in a particular direction, has been fabricated and introduced for aerospace applications. They
have been termed functionally gradient materials and they are expected to play even a more important role
(Yamanouchi, 1990).

The study of wave propagation in piezoelectric materials is a rather involved problem. The situation
is even more formidable when non-homogeneity has to be taken into account. It is, therefore, not sur-
prising that only scant information regarding transient wave propagation problems has been available.
As in the case of the Stoneley wave, whose mechanical displacements are in the sagittal plane, the ampli-
tude of this wave decreases with distance away from the interface into both media (Stoneley, 1924).
Bleustein (1968) and Gulayev (1969) simultaneously discovered that there exists a shear horizontal
(SH) electro-acoustic surface mode in a class of transversely isotropic piezoelectric media, which is
known today as the BG wave. The BG wave is a unique result in the repertoire of surface acoustic wave
(SAW) theory, because it has no counterpart in purely elastic solids. As a matter of fact, since then, the
BG wave theory has become one of the cornerstones for the modern electro-acoustic technology. It is
shown that BG wave can exist in cubic crystals of �43m and 23 classes, along [11 0] direction on the
ð�110Þ plane and their equivalent orientations. The velocity equations for piezoelectric surface wave
and elastic surface wave were derived and their characteristics were discussed by Tseng (1970). A pure
shear elastic surface wave (MT wave) can propagate along the interface of two identical crystals, in class
6 mm, when the z-axis of these crystals, both parallel to the interface and perpendicular to the propa-
gation direction, are in opposite directions (Maerfeld and Tournois, 1971). The general equations and
the fundamental piezoelectric matrix were derived for the anti-plane wave motion and Floquet theory
was applied to obtain the passing and stopping bands in a periodically layered infinite space by Honein
and Herrman (1992). Taking into account both optical effect as well as the contribution from the rota-
tional part of electric field, the solutions obtained were not only valid for any wave speed range, but
also provide accurate formulas to evaluate the acousto-optic interaction due to piezoelectricity. As the
wave speed is much less than the speed of light, the solution degenerates to the well-known BG wave
or MT wave (Li, 1996).

The surface acoustic wave (SAW) can be excited and detected efficiently by using an interdigital trans-
ducer (IDT) placed on a piezoelectric substrate and a vast amount of effort was invested in the research
and development of SAW devices for military and communication applications, such as delay lines and
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filters for radar. The propagation mode in most devices is the Rayleigh wave on a free surface of a pie-
zoelectric substrate. Since SAWs concentrate their energy near the substrate free surface, their propagation
surface should be sufficiently flat and free of contamination. This means that devices based on SAWs must
be put into a package for protection against surface disturbance. The packages are usually much larger
than the substrate and account for most of the cost of the device. Hence it is difficult to satisfy the
requirement for smaller device and reliability.

With the fast evolution of passive high frequency filtering requirements, much effort has been devoted
to the improvement of classical SAW. Among possible new devices, the use of interface surface waves
(ISWs) in place of SAWs has been proposed. As one of the families of such ISWs, Stoneley waves,
which basically consist of longitudinal and shear-vertical displacement components, have been most
extensively discussed in the past. Because of the very restricted range of existence of Stoneley waves
and this acoustic wave can not be excited by interdigital transducers in such nonpiezoelectric media,
it has been rather difficult to find practical device applications. Hence a piezoelectric material must
be chosen as one or both media. Recently, some technologies appeared that allow one to create a direct
contact between two previously grown piezocrystals of different symmetry (Dvoesherstov et al., 2002).
Accordingly, interest in the development of interface surface waves has grown considerably. Camou
and Laude (2003) used a interdigital transducer at the interface for the excitation of the ISW. The
application of interface surface waves in acousto-electronic devices can give a number of important
advantages over the common SAW. One of the most cited advantages of ISW devices as opposed to
SAW devices is the natural protection of the excitation interface, which is isolated from, and hence
insensitive to, external disturbances, such as dust or wetness. This should lead to a simplification of
packaging requirements, especially at high frequencies. Furthermore, in some cases, the phase velocity
of transverse ISWs can be higher than that of SAWs. By choosing specific piezoelectric media, one
can also improve the parameters of the wave, namely, raise the electromechanical coupling coefficient
and improve the thermal stability of the wave simultaneously (Irino et al., 1988; Irino and Shimizu,
1989). It was pointed out by Yamashita et al. (1997) that the penetration depth of shear-horizontal type
of ISWs into the bulk is small. Hence the substrate thickness needed for practical applications can be
reduced to several wavelengths. This suggests that the direct wafer bonding technique could be applied
to realize the structure.

A lot of engineering applications mentioned above are involved with wave propagations through the pie-
zoelectric components, and hence their dynamic or transient behaviors are the primary concern in design as
well as in performance. In this paper, an analysis is presented to study the transient behaviors of a transversely
isotropic piezoelectric material under anti-plane mechanical and in-plane electrical line sources, which is con-
sidered as one of the fundamental important problems in electro-elastodynamics. This problem exhibits the
distinct feature of piezoelectricity, which is different from the behaviors of ordinary elasto-dielectric solids.
The analysis presented in this study provides a sound theoretical ground and interesting physics for a better
understanding of the transient behaviors of piezoelectric materials. The results obtained in this study will be
useful for the design and application of ISWs devices. This article is divided into five sections. Following this
brief introduction, Section 2 outlines the basic equations needed to formulate the problem. The exact full-field
transient solutions for piezoelectric bi-materials are presented in explicit forms. The possibility that there exists
a piezoelectrically-induced electromagnetic surface wave propagating along the interface between two materi-
als is discussed in detail in Section 3. Then, a number of numerical results of transient behaviors for interesting
cases and the surface wave velocity along the interface of bi-materials are examined in Section 4. Finally we
conclude the paper in Section 5.
2. The transient solutions for piezoelectric bi-materials

In a piezoelectric material, the interdependence of electric and mechanical fields implies coupling elastic and
electromagnetic waves. Because elastic waves in a typical material are five orders of magnitude slower than
electromagnetic waves, so the piezoelectrically coupled electric field is assumed to be quasi-static. Maxwell’s
equations therefore reduce to (Hayt and Buck, 2001)
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Di;i ¼ qs; ð1Þ
Ei ¼ �U;i ð2Þ
where Di, Ei, U and qs are electric displacement, electric field, electrostatic potential and free charge density,
respectively, and the comma denotes differentiation in the usual tensor notation. The piezoelectric material is
assumed to be a perfect insulator so that qs is zero, then (1) reduces to the Laplace’s equation
U;ii ¼ 0 ð3Þ
Consequently, the propagation of elastic and electromagnetic waves can be treated separately. The mechanical
field quantities must satisfy Newton’s stress equation of motion which, in absence of internal body forces,
becomes
sij;j ¼ q€ui ð4Þ
where sij, ui and q are stress tensor, mechanical displacement and density, respectively, and the dot denotes the
differentiation with respect to time. Infinitesimal strain tensor Sij is defined by
Sij ¼
1

2
ðui;j þ uj;iÞ: ð5Þ
The above relationships are coupled through the piezoelectric equations of state
sij ¼ cijklSkl � ekijEk; ð6Þ
Di ¼ eiklSkl þ eikEk; ð7Þ
where cijkl, ekij and eik are the elastic, piezoelectric and permittivity tensors of the material, respectively. Substi-
tuting (2)–(5) into (6) and (7), the second-order coupled differential equations of the system for ul and U are
obtained (Royer and Dieulesaint, 2000)
cijklul;jk þ ekijU;kj ¼ q€ui; ð8Þ
ejklul;jk � ejkU;jk ¼ 0: ð9Þ
In what follows, the wave polarized in the z-direction, propagating in the x–y plane of a hexagonal crystal in
class 6mm will be analyzed. The x, y and z axes are aligned with the crystal axes X, Y and Z, respectively. In
this configuration, the boundary value problem simplifies considerably because there exists the anti-plane dis-
placement uz, which couples only with the in-plane electric fields Ex and Ey, such that
uz ¼ wðx; y; tÞ; Ex ¼ Exðx; y; tÞ; Ey ¼ Eyðx; y; tÞ: ð10Þ
This is the so-called anti-plane problem, upon substituting these relations into (8) and (9), we are led to
c44r2wþ e15r2U ¼ q€w; ð11Þ

e15r2w� e11r2U ¼ 0; ð12Þ
where $2 is the two-dimensional Laplacian operator and r2 � o2

ox2 þ o2

oy2. The constitutive equations can be sim-
plified as
syz ¼ c44

ow
oy
þ e15

oU
oy
; ð13Þ

Dy ¼ e15

ow
oy
� e11

oU
oy
; ð14Þ

sxz ¼ c44

ow
ox
þ e15

oU
ox
; ð15Þ

Dx ¼ e15

ow
ox
� e11

oU
ox
: ð16Þ
We define a function w by
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w � U� e15

e11

w: ð17Þ
The solutions of (11) and (12) can be obtained from the solutions of the following two uncoupled equations
r2w ¼ q
�c44

€w; ð18Þ

r2w ¼ 0; ð19Þ
where �c44 � c44 þ
e2

15

e11
is the piezoelectrically stiffened elastic constant. The constitutive equations are reduced to

the form of
syz ¼ �c44

ow
oy
þ e15

ow
oy
; ð20Þ

Dy ¼ �e11

ow
oy
; ð21Þ

sxz ¼ �c44

ow
ox
þ e15

ow
ox
; ð22Þ

Dx ¼ �e11
ow
ox
: ð23Þ
2.1. The transient solutions for applying a dynamic anti-plane concentrated force

In this problem, the system of coordinates (x, y, z) is chosen so that perfectly conducting plane is described
by the equation y = 0, as shown in Fig. 1. This is also an interface between two half-spaces of piezoelectric
materials. The piezoelectric bi-material is initially undisturbed. Material (1) is subjected to a dynamic anti-
plane concentrated force at x = 0, y = d with magnitude p at time t = 0. The jump condition for the shear
stress is
sð1
þÞ

yz jy¼d � sð1
�Þ

yz jy¼d ¼ pdðxÞHðtÞ; ð24Þ
where d(x) is the delta function of x and H(t) is the Heaviside function of t. The continuous conditions are
Dð1
þÞ

y jy¼d � Dð1
�Þ

y jy¼d ¼ 0; ð25Þ

wð1
þÞjy¼d � wð1

�Þjy¼d ¼ 0; ð26Þ

Uð1
þÞjy¼d � Uð1

�Þjy¼d ¼ 0; ð27Þ

sð1
�Þ

yz jy¼0 ¼ sð2Þyz jy¼0; ð28Þ
Fig. 1. The geometric configuration of a piezoelectric bi-material and the coordinate system.
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Dð1
�Þ

y jy¼0 ¼ Dð2Þy jy¼0; ð29Þ

wð1
�Þjy¼0 ¼ wð2Þjy¼0; ð30Þ

Uð1
�Þjy¼0 ¼ Uð2Þjy¼0: ð31Þ
Note that, the superscripts (1) and (2) indicate materials (1) and (2), respectively. This problem can be solved
by the application of integral transforms. The one-sided Laplace transform over time t and the bilateral La-
place transform on the spatial variable x for (18) and (19) can be represented of the form
d2 �w�

dy2
� ðb2 � k2Þs2 �w� ¼ 0; ð32Þ

d2 �w�

dy2
� ðe2 � k2Þs2 �w� ¼ 0; ð33Þ
where s which is the Laplace transform parameter is a positive real number, large enough to ensure the con-
vergence of the integral and k is a complex variable. Where b ¼

ffiffiffiffiffi
q

�c44

q
is the slowness of the shear wave and

e! 0+. The overbar symbol is used denoting the transform on time t and the star symbol is used denoting
the transform on the spatial variable x. The general solutions of (32) and (33) represented in the matrix form
are
�w�ð1
þÞ

�w�ð1
þÞ

" #
¼ Y�1 A1

C1

� �
þ Y

B1

D1

� �
; ð34Þ

�w�ð1
�Þ

�w�ð1
�Þ

" #
¼ Y�1 E1

G1

� �
þ Y

F 1

H 1

� �
; ð35Þ

�w�ð2Þ

�w�ð2Þ

" #
¼ Y��1 I1

K1

� �
þ Y�

J 1

L1

� �
; ð36Þ
where
Y ¼
esay 0

0 esby

� �
; Y�1 ¼

e�say 0

0 e�sby

� �
; Y� ¼ esa�y 0

0 esby

� �
; Y��1 ¼ e�sa�y 0

0 e�sby

� �
;

aðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

1 � k2
q

; bðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 � k2

p
; a�ðkÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

2 � k2
q

; b1 ¼
ffiffiffiffiffiffiffi
qð1Þ

�cð1Þ44

s
; b2 ¼

ffiffiffiffiffiffiffi
qð2Þ

�cð2Þ44

s
:

The coefficients A1, B1, C1, D1, E1, F1, G1, H1, I1, J1, K1 and L1 are determined by satisfying the jump and
continuous conditions. The solutions of the mechanical and electric fields presented in the Laplace transform
domain are
�w�ð1Þ

�w�ð1Þ

" #
¼ �1

2s2
ðY�1RD�1M�1Zþ BM�1ZÞ; ð37Þ

�w�ð2Þ

�w�ð2Þ

" #
¼ �1

2s2
Y�QTD�1M�1Z; ð38Þ

�s�ð1Þyz

�D�ð1Þy

" #
¼ 1

2s
ðM1UY�1RD�1M�1ZþM1UBM�1ZÞ; ð39Þ

�s�ð1Þxz

�D�ð1Þx

" #
¼ �1

2s
ðM1kaY�1RD�1M�1ZþM1kbBM�1ZÞ; ð40Þ
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�s�ð2Þyz

�D�ð2Þy

" #
¼ �1

2s
N1VY�QTD�1M�1Z; ð41Þ

�s�ð2Þxz

�D�ð2Þx

" #
¼ �1

2s
N1kcY

�QTD�1M�1Z; ð42Þ
where
M ¼
�cð1Þ44 a eð1Þ15 b

0 �eð1Þ11 b

" #
; N ¼

�cð2Þ44 a� eð2Þ15 b

0 �eð2Þ11 b

" #
; M1 ¼

�cð1Þ44 eð1Þ15

0 �eð1Þ11

" #
; N1 ¼

�cð2Þ44 eð2Þ15

0 �eð2Þ11

" #
;

R ¼ ðMþNQÞ�1ðM�NQÞ; T ¼ ðMþNQÞ�1ðM�NQÞ þ I; ka ¼
kþ1 0

0 kþ3

" #
;

kb ¼
kþ2 0

0 kþ4

" #
; kc ¼

kþ5 0

0 kþ6

" #
; U ¼

a 0

0 b

� �
; V ¼

a� 0

0 b

� �
; D�1 ¼

e�sad 0

0 e�sbd

� �
;

B ¼ e�sajy�dj 0

0 e�sbjy�dj

" #
; I ¼

1 0

0 1

� �
; Q ¼

1 0
eð1Þ

15

eð1Þ
11

� eð2Þ
15

eð2Þ
11

1

2
4

3
5; Z ¼

p

0

� �
:

The next step consists in evaluating the inverse Laplace transform of (37)–(42) by means of the Cagn-
iard-de Hoop scheme. The Cagniard-de Hoop inversion method is used to perform the two integrations in
one single operation leaving only the convolution to be done. We have to include the integral around the
branch cut whatever different slowness combines. This additional integral path represents the head wave.
There are two situations, b1jcosh1j > b2 and b1jcosh1j < b2, to be investigated and the k-contours are shown
in Fig. 2. As the Cagniard-de Hoop inversion method is employed, we introduce Cagniard contours by
setting
aðyþ dÞ � kx ¼ t; ð43Þ
aðy� dÞ � kx ¼ t; ð44Þ
byþ ad� kx ¼ t; ð45Þ
bðy� dÞ � kx ¼ t; ð46Þ
�a�yþ ad� kx ¼ t; ð47Þ
�byþ ad� kx ¼ t: ð48Þ
Note that, vales of k�1 , k�2 , k�3 , k�4 , k�5 and k�6 are the roots of (43)–(47) and (48), respectively. When the imag-
inary part of root in (45) and (48) vanishes, the correspondent arrive times are denoted by t3 and t6, respec-
tively. The additional integral path represents the head wave in (43) and (47), where the wave fronts of head
wave arrive at time t = t1HD and t = t5HD, respectively.

Finally, the transient solutions in matrix form for displacement, shear stresses and electric displacement for
piezoelectric materials (1) and (2) are explicitly presented and are summarized as follows
wð1Þ

wð1Þ

" #
¼ �1

2p

Z t

0

HaIm½k0aRM�1Z�dtþ
Z t

0

HbIm½k0bM�1Z�dt
� �

; ð49Þ

wð2Þ

wð2Þ

" #
¼ �1

2p

Z t

0

HcIm½k0cQTM�1Z�dt; ð50Þ

sð1Þyz

Dð1Þy

" #
¼ 1

2p
ðIm½Hak

0
aM1URM�1Z� þ Im½Hbk

0
bM1UM�1Z�Þ; ð51Þ



Fig. 2. The Cagniard-de Hoop contour for (a) b1j cosh1j > b2 and (b) b1jcosh1j < b2.
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sð1Þxz

Dð1Þx

" #
¼ �1

2p
ðIm½Hak

0
aM1kaRM�1Z� þ Im½Hbk

0
bM1kbM�1Z�Þ; ð52Þ

sð2Þyz

Dð2Þy

" #
¼ �1

2p
Im½Hck

0
cN1VQTM�1Z�; ð53Þ

sð2Þxz

Dð2Þx

" #
¼ �1

2p
Im½Hck

0
cN1kcQTM�1Z�; ð54Þ
where
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k0a ¼
okþ

1

ot 0

0
okþ

3

ot

2
4

3
5; k0b ¼

okþ
2

ot 0

0
okþ

4

ot

2
4

3
5; k0c ¼

okþ
5

ot 0

0
okþ

6

ot

2
4

3
5; Ha ¼

Hðt� t1HDÞ 0

0 Hðt� t3Þ

� �

Hb¼
Hðt�b1r2Þ 0

0 Hðt� er2Þ

� �
; Hc¼

Hðt� t5HDÞ 0

0 Hðt� t6Þ

� �
; r1¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þðyþdÞ2

q
; r2¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þðy�dÞ2

q
;

kþ1 ¼ �
t
r1

cos h1 þ ij sin h1j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2

r2
1

� b2
1

s
; kþ2 ¼ �

t
r2

cos h2 þ ij sin h2j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2

r2
2

� b2
1

s
; t1HD ¼ b1ðr2 sin h2 þ dÞ;

t5HD ¼ �b2ðr2 sin h2 þ dÞ þ b1d; cos h1 ¼
x
r1

; sin h1 ¼
ðyþ dÞ

r1

; cos h2 ¼
x
r2

; sin h2 ¼
ðy� dÞ

r2

:

The transient solutions in matrix form presented in (51)–(54) can also be completely expressed in explicit form
as indicated in Appendix A. If the piezoelectric material (2) is reduced to an elastic material, which implies that
the piezoelectric effect is neglected. Then we have
�cð2Þ44 ¼ l; ð55Þ

eð2Þ15 ¼ 0; ð56Þ

eð2Þ11 !1; ð57Þ
where l is shear modulus. Substitution of (55)–(57) into (49)–(54) yields the transient solutions in matrix form
for displacement, stress and electric displacement for piezoelectric and elastic bi-material.
2.2. The transient solutions for applying a dynamic electric charge

In this problem, the material (1) is subjected to a dynamic electric charge (�qd(x)H(t)) at time t = 0, as
shown in Fig. 1. The jump condition is represented as
Dð1
þÞ

y jy¼d � Dð1
�Þ

y jy¼d ¼ �qdðxÞHðtÞ: ð58Þ
The continuous conditions are the same as that presented in (26)–(31) and the jump of shear stress syz in (24)
equal zero. The Cagniard-de Hoop inversion method is applied and Cagniard contours are introduced by set-
ting (43)–(48) and
ayþ bd� kx ¼ t; ð59Þ
bðyþ dÞ � kx ¼ t; ð60Þ

�a�yþ bd� kx ¼ t; ð61Þ

�bðy� dÞ � kx ¼ t: ð62Þ
Note that vales of k�7 , k�8 , k�9 and k�10 are the roots of (59)–(62), respectively. When the imaginary part of root
in (59) and (61) vanishes, the correspondent arrive times are denoted by t7 and t9, respectively. Accordingly,
from the similar procedure that we have used for applying a dynamic concentrated force, the transient solu-
tions for displacement, shear stresses and electric displacements for piezoelectric materials (1) and (2) are sum-
marized as follows
wð1Þ

wð1Þ

" #
¼ �1

2p

Z t

0

HaIm½k0aRM�1G�dtþ
Z t

0

HbIm½k0bM�1G�dt
� �

; ð63Þ

wð2Þ

wð2Þ

" #
¼ �1

2p

Z t

0

HcIm½k0cQTM�1G�dt; ð64Þ
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sð1Þyz

Dð1Þy

" #
¼ 1

2p
ðIm½M1UHdRk0dM�1G� þ Im½M1UHek

0
eM

�1G�Þ; ð65Þ

sð1Þxz

Dð1Þx

" #
¼ �1

2p
ðIm½M1kdHdRk0dM�1G� þ Im½M1keHek

0
eM

�1G�Þ; ð66Þ

sð2Þyz

Dð2Þy

" #
¼ �1

2p
Im½N1VHfQTk0fM

�1G�; ð67Þ

sð2Þxz

Dð2Þx

" #
¼ �1

2p
Im½N1kfHfQTk0M�1G�; ð68Þ
where
G¼
0

�q

� �
; k0d ¼

k0d1 0

0 k0d3

" #
; k0e ¼

k0e2 0

0 k0e4

" #
; k0f ¼

k0f 5 0

0 k0f 6

" #
; kd¼

kd1 0

0 kd3

� �
; ke¼

ke2 0

0 ke4

� �
;

kf ¼
kf 5 0

0 kf 6

� �
; Hd ¼

H d1 0

0 Hd3

� �
; He ¼

H e2 0

0 He4

� �
; Hf ¼

H f 5 0

0 H f 6

� �
;

k0e2H e2 ¼
okþ2
ot

Hðt� b1r2Þ; k0e4He4 ¼
okþ4
ot

Hðt� er2Þ; k0d1Hd1 ¼
okþ1
ot

Hðt� t1HDÞ;

k0d3Hd1 ¼
okþ7
ot

Hðt� t7Þ;

k0d1Hd3 ¼
okþ3
ot

Hðt� t3Þ; k0d3Hd3 ¼
okþ8
ot

Hðt� er1Þ; k0f 5H f 5 ¼
okþ5
ot

Hðt� t5HDÞ;

k0f 6H f 5 ¼
okþ9
ot

Hðt� t9Þ;

k0f 5H f 6 ¼
okþ6
ot

Hðt� t6Þ; k0f 6H f 6 ¼
okþ10

ot
Hðt� er2Þ; ke2k

0
e2He2 ¼ kþ2

okþ2
ot

Hðt� b1r2Þ;

ke4k
0
e4H e4 ¼ kþ4

okþ4
ot

Hðt� er2Þ; kd1k
0
d1Hd1 ¼ kþ1

okþ1
ot

Hðt� t1HDÞ; kd1k
0
d3Hd1 ¼ kþ7

okþ7
ot

Hðt� t7Þ;

kd3k
0
d1Hd3 ¼ kþ3

okþ3
ot

Hðt� t3Þ; kd3k
0
d3H d3 ¼ kþ8

okþ8
ot

Hðt� er1Þ; kf 5k
0
f 5Hf 5 ¼ kþ5

okþ5
ot

Hðt� t5HDÞ;

kf 5k
0
f 6H f 5 ¼ kþ9

okþ9
ot

Hðt� t9Þ; kf 6k
0
f 5H f 6 ¼ kþ6

okþ6
ot

Hðt� t6Þ; kf 6k
0
f 6Hf 6 ¼ kþ10

okþ10

ot
Hðt� er2Þ:
3. The existence of surface wave at the piezoelectric bi-material interface

It is important to examine the possibility of surface waves propagating along the interface between piezo-
electric bi-materials. We will discuss the existence condition of the surface wave in this section. An explicit
expression of the surface wave velocity will be given if the surface wave does exist. The second term of
(A.1), which represents the reflected wave, is used to study the surface wave at the interface. The reflected wave
is expressed as follows
p
2p

Im
R2

R1

okþ1
ot

� �
Hðt� t1HDÞ; ð69Þ
where
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R1 ¼ �ðeð2Þ15 eð1Þ11 � eð1Þ15 eð2Þ11 Þ
2bðkþ1 Þ þ �cð1Þ44 eð1Þ11 eð2Þ11 ðe

ð1Þ
11 þ eð2Þ11 Þaðk

þ
1 Þ þ �cð2Þ44 eð1Þ11 eð2Þ11 ðe

ð1Þ
11 þ eð2Þ11 Þa�ðk

þ
1 Þ;

R2 ¼ ðeð2Þ15 eð1Þ11 � eð1Þ15 eð2Þ11 Þ
2bðkþ1 Þ þ �cð1Þ44 eð1Þ11 eð2Þ11 ðe

ð1Þ
11 þ eð2Þ11 Þaðk

þ
1 Þ � �cð2Þ44 eð1Þ11 eð2Þ11 ðe

ð1Þ
11 þ eð2Þ11 Þa�ðk

þ
1 Þ;

bðkþ1 Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 � ðkþ1 Þ

2
q

; aðkþ1 Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

1 � ðk
þ
1 Þ

2
q

; a�ðkþ1 Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

2 � ðk
þ
1 Þ

2
q

:

The surface wave at the piezoelectric bi-material interface can be constructed by setting the denominator of
(69) equal to zero
R1 ¼ �ðeð2Þ15 eð1Þ11 � eð1Þ15 eð2Þ11 Þ
2bðkþ1 Þ þ �cð1Þ44 eð1Þ11 eð2Þ11 ðe

ð1Þ
11 þ eð2Þ11 Þaðk

þ
1 Þ þ �cð2Þ44 eð1Þ11 eð2Þ11 ðe

ð1Þ
11 þ eð2Þ11 Þa�ðk

þ
1 Þ ¼ 0: ð70Þ
Note that, (70) is the same as the well-known velocity equation for the MT wave obtained by Maerfeld and
Tournois (1971). The number of roots for (70) is determined by means of the principle of the argument
(Achenbach, 1976). Let Gk(z) be analytic everywhere inside and on a simple closed curve Ck, except for a finite
number of poles inside Ck and Gk(z) has no zeros on Ck. Then
1

2pi

Z
Ck

dGk

dz
dz

GkðzÞ
¼ Zk � P k; ð71Þ
where z is a complex variable. Zk is the number of zeros inside Ck and Pk is the number of poles. The numbers
Zk and Pk include the orders of poles and zeros. It is convenient to rewrite (70) in the form
RðkÞ ¼ �ðeð2Þ15 eð1Þ11 � eð1Þ15 eð2Þ11 Þ
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 � k2

p
þ �cð1Þ44 eð1Þ11 eð2Þ11 ðe

ð1Þ
11 þ eð2Þ11 Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

1 � k2
q

þ �cð2Þ44 eð1Þ11 eð2Þ11 ðe
ð1Þ
11 þ eð2Þ11 Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

2 � k2
q

¼ 0:

ð72Þ
In the complex k-plane, the function R(k) is rendered single-valued by introducing branch cuts. Now con-
sider the contour Ck consisting of Ct, Cl and Cr as indicated in Fig. 3. Since the function R(k) clearly does not
have poles in the complex k-plane, the number of zeros within the contour Ck = Ct + Cl + Cr is given by
Zk ¼
1

2pi

Z
Ck

dR
dk

dk
RðkÞ : ð73Þ
The counting of the number of zeros is carried out by mapping the k-plane on the v-plane through the relation
v ¼ RðkÞ; dv ¼ dRðkÞ
dk

dk: ð74Þ
If Cv is the mapping of Ck in the v-plane, the integral (73) in the v-plane becomes
Fig. 3. The k-plane for b1 > b2.
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1

2pi

Z
Cv

dv
v
¼ Zk: ð75Þ
The integral in (75) has a simple pole at v = 0 and thus the value of Zk is simply the number of times the
image contour Cv encircles the origin in the v-plane in the counter-clockwise direction. To determine the num-
ber of zeros in the k-plane, we thus carefully trace the mapping of the contour Ck into the v-plane. Since
R(k) = R(�k), the images of Cr and Cl are the same and only one of them, say Cr, needs to be considered.

There are two cases to be discussed, that are b1 > b2 and b2 > b1, as follows
Case (a): b1 > b2 (see Fig. 3).
At O point:
RðeÞ ¼ �cð1Þ44 eð1Þ11 eð2Þ11 ðe
ð1Þ
11 þ eð2Þ11 Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

1 � e2

q
þ �cð2Þ44 eð1Þ11 eð2Þ11 ðe

ð1Þ
11 þ eð2Þ11 Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

2 � e2

q
: ð76Þ
Along OA:
RðkÞ ¼ �cð1Þ44 eð1Þ11 eð2Þ11 ðe
ð1Þ
11 þ eð2Þ11 Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

1 � k2
q

þ �cð2Þ44 eð1Þ11 eð2Þ11 ðe
ð1Þ
11 þ eð2Þ11 Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

2 � k2
q� �

� �ðeð2Þ15 eð1Þ11 � eð1Þ15 eð2Þ11 Þ
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � e2

ph i
i; ð77Þ
where the minus sign applies above the cut and the plus sign applies below the cut.
Also, at A point:
Rðb2Þ ¼ �cð1Þ44 eð1Þ11 eð2Þ11 ðe
ð1Þ
11 þ eð2Þ11 Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

1 � b2
2

q� �
� �ðeð2Þ15 eð1Þ11 � eð1Þ15 eð2Þ11 Þ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

2 � e2

q� �
i: ð78Þ
Along AB:
RðkÞ ¼ �cð1Þ44 eð1Þ11 eð2Þ11 ðe
ð1Þ
11 þ eð2Þ11 Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

1 � k2
q� �

� �ðeð2Þ15 eð1Þ11 � eð1Þ15 eð2Þ11 Þ
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � e2

p
þ �cð2Þ44 eð1Þ11 eð2Þ11 ðe

ð1Þ
11 þ eð2Þ11 Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � b2

2

q� �
i: ð79Þ
At B point:
Rðb1Þ ¼ � �ðeð2Þ15 eð1Þ11 � eð1Þ15 eð2Þ11 Þ
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

1 � e2

q�
þ�cð2Þ44 eð1Þ11 eð2Þ11 ðe

ð1Þ
11 þ eð2Þ11 Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

1 � b2
2

q �
i: ð80Þ
For jkj is large, we find
RðkÞ ¼ ½�ðeð2Þ15 eð1Þ11 � eð1Þ15 eð2Þ11 Þ
2 þ eð1Þ11 eð2Þ11 ð�c

ð1Þ
44 þ �cð2Þ44 Þðe

ð1Þ
11 þ eð2Þ11 Þ�

ffiffiffiffiffiffiffiffi
�k2

p
: ð81Þ
Finally, we find that the number of zeros for the function R(k) is mainly controlled by the positive or negative
value of the bracket in (80). For the case that
�ðeð2Þ15 eð1Þ11 � eð1Þ15 eð2Þ11 Þ
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

1 � e2

q
þ �cð2Þ44 eð1Þ11 eð2Þ11 ðe

ð1Þ
11 þ eð2Þ11 Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

1 � b2
2

q
> 0; ð82Þ
as indicated in Fig. 4(a), the contours Ct, Cr and Cl in the k-plane are mapped to the contours C0t, C0r and C0l in
the v-plane. The contour C0t encircles the origin (pole) counterclockwise in the v-plane and C0l and C0r encircle
the origin clockwise in the v-plane.

The contour of C0t is C 0 ! D 0 ! E 0 and E00 ! F00 ! C00, and Zk ¼ 2� 1
2
¼ 1.

The contour of C0r is B 0 ! A 0 ! O 0 ! A00 ! B00, and Zk ¼ � 1
2
.

The contour of C0l is the same as the route of C0r, and Zk ¼ � 1
2
.

Hence the number of zeros is zero, i.e. Zk ¼ 2� 1
2
� 2� 1

2
¼ 0. For the case that
�ðeð2Þ15 eð1Þ11 � eð1Þ15 eð2Þ11 Þ
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

1 � e2

q
þ �cð2Þ44 eð1Þ11 eð2Þ11 ðe

ð1Þ
11 þ eð2Þ11 Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

1 � b2
2

q
< 0; ð83Þ



Fig. 4. The v-plane for (a) Im[R(b1)] > 0 and (b) Im[R(b1)] < 0.
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the contours C0t, C0r and C0l in the v-plane is indicated in Fig. 4(b). The contour C0t encircles the origin counter-
clockwise in the v-plane while C0l and C0r encircle the origin counterclockwise in the v-plane.

The contour of C0t is C 0 ! D 0 ! E 0 and E00 ! F00 ! C00, and Zk ¼ 2� 1
2
¼ 1.

The contour of C0r is B 0 ! A 0 ! O 0 ! A00 ! B00, and Zk ¼ 1
2
.

The contour of C0l is the same as the route of C0r, and Zk ¼ 1
2
.

Hence the number of zeros for the function R(k) is two, i.e. Zk ¼ 2� 1
2
þ 2� 1

2
¼ 2.

Case (b): b2 > b1.
At O point:
RðeÞ ¼ �cð1Þ44 eð1Þ11 eð2Þ11 ðe
ð1Þ
11 þ eð2Þ11 Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

1 � e2

q
þ �cð2Þ44 eð1Þ11 eð2Þ11 ðe

ð1Þ
11 þ eð2Þ11 Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

2 � e2

q
: ð84Þ
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Along OA:
RðkÞ ¼ �cð1Þ44 eð1Þ11 eð2Þ11 ðe
ð1Þ
11 þ eð2Þ11 Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

1 � k2
q

þ �cð2Þ44 eð1Þ11 eð2Þ11 ðe
ð1Þ
11 þ eð2Þ11 Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

2 � k2
q� �

� �ðeð2Þ15 eð1Þ11 � eð1Þ15 eð2Þ11 Þ
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � e2

ph i
i; ð85Þ
where the minus sign applies above the cut and the plus sign applies below the cut.
Also, at A point:
Rðb1Þ ¼ �cð2Þ44 eð1Þ11 eð2Þ11 ðe
ð1Þ
11 þ eð2Þ11 Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

2 � b2
1

q
� �ðeð2Þ15 eð1Þ11 � eð1Þ15 eð2Þ11 Þ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

1 � e2

q� �
i: ð86Þ
Along AB:
RðkÞ ¼ �cð2Þ44 eð1Þ11 eð2Þ11 ðe
ð1Þ
11 þ eð2Þ11 Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

2 � k2
q

� �ðeð2Þ15 eð1Þ11 � eð1Þ15 eð2Þ11 Þ
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � e2

p
þ �cð1Þ44 eð1Þ11 eð2Þ11 ðe

ð1Þ
11 þ eð2Þ11 Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � b2

1

q� �
i: ð87Þ
At B point:
Rðb2Þ ¼ � �ðeð2Þ15 eð1Þ11 � eð1Þ15 eð2Þ11 Þ
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

2 � e2

q
þ �cð1Þ44 eð1Þ11 eð2Þ11 ðe

ð1Þ
11 þ eð2Þ11 Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

2 � b2
1

q� �
i: ð88Þ
For jkj is large, the result is the same as that indicated in (81). Finally, follow the similar discussion as given in
case (a), we find that
�ðeð2Þ15 eð1Þ11 � eð1Þ15 eð2Þ11 Þ
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

2 � e2

q
þ �cð1Þ44 eð1Þ11 eð2Þ11 ðe

ð1Þ
11 þ eð2Þ11 Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

2 � b2
1

q
> 0; Zk ¼ 0; ð89Þ
and
�ðeð2Þ15 eð1Þ11 � eð1Þ15 eð2Þ11 Þ
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

2 � e2

q
þ �cð1Þ44 eð1Þ11 eð2Þ11 ðe

ð1Þ
11 þ eð2Þ11 Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

2 � b2
1

q
< 0; Zk ¼ 2: ð90Þ
We have shown that the condition for the existence of surface waves is indicated in (83) (or (90)). We will
determine the velocity of the surface wave if it exists. Consider the problem that at time t = 0, a dynamic
anti-plane loading is applied at the interface (x,y) = (0, 0) and the receiver is located at (x, y) = (x,0), then
sinh1 = 0 and cosh1 = 1. We have
kþ1 ¼ �
t
x
� � 1

vs

; ð91Þ
where vs is the surface wave velocity. The solution of vs in (70) can be obtained and the surface wave velocity is
explicitly expressed as
vs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2D2

�E2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2

2 � 4D2F 2

q
vuut ; ð92Þ
where
D2 ¼ ½A2
2 � B2

2�;
E2 ¼ ½B2

2ðb
2
1 þ b2

2Þ � 2A2C2�;
F 2 ¼ ½C2

2 � B2
2b2

1b2
2�;

A2 ¼ ½eð1Þ11 eð2Þ11 ðe
ð1Þ
11 þ eð2Þ11 Þ�

2½ð�cð1Þ44 Þ
2 þ ð�cð2Þ44 Þ

2� � ½eð2Þ15 eð1Þ11 � eð1Þ15 eð2Þ11 �
4
;

B2 ¼ 2�cð1Þ44 �cð2Þ44 ½e
ð1Þ
11 eð2Þ11 ðe

ð1Þ
11 þ eð2Þ11 Þ�

2
;

C2 ¼ ½eð1Þ11 eð2Þ11 ðe
ð1Þ
11 þ eð2Þ11 Þ�

2½ð�cð1Þ44 Þ
2b2

1 þ ð�c
ð2Þ
44 Þ

2b2
2�:
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If the piezoelectric material (2) is reduced to an elastic material, which implies that the piezoelectric effect
is neglected and the interface between piezoelectric and elastic bi-material is metallized. The surface wave
at the interface between piezoelectric and elastic bi-material is also studied and the result is presented in
Appendix B.

If the surface of piezoelectric material (1) is covered with an infinitesimally thin perfect conducting film and
the mechanical effect in material (2) is neglected. Then the scalar potential of the electric field is set to be zero
on the surface. We have
Table
The m

ZnO
PZT4
CdS
BaTiO
�cð2Þ44 ¼ 0; eð2Þ15 ¼ 0; eð2Þ11 !1: ð93Þ
Substitution of (93) into (70) yields
aðkþ1 Þ � k2
ebðk

þ
1 Þ ¼ 0; ð94Þ
where k2
e ¼

ðeð1Þ
15
Þ2

�cð1Þ
44

eð1Þ
11

. By substituting (91) into (94), a simple velocity equation for the electromagneto-acoustic sur-

face wave is obtained as
vs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�cð1Þ44

qð1Þ
ð1� k4

eÞ

s
: ð95Þ
This surface wave velocity recovers the classic BG wave solution. If the surface of piezoelectric material (1) is a
free surface, which is in contact with a vacuum half-space on the top, we have
�cð2Þ44 ¼ 0; eð2Þ15 ¼ 0; eð2Þ11 ¼ e0: ð96Þ
Substitution of (96) into (70) yields
aðkþ1 Þ � k2
vbðk

þ
1 Þ ¼ 0; ð97Þ
where k2
v ¼

ðeð1Þ
15
Þ2e0

�cð1Þ
44

eð1Þ
11
ðeð1Þ

11
þe0Þ

. Then the electromagneto-acoustic surface wave has the velocity asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffis

vs ¼

�cð1Þ44

qð1Þ
ð1� k4

vÞ: ð98Þ
Once again, we recover the classic result of the classic BG wave solution.

4. Numerical results

With the explicit transient solutions at hand, the numerical calculation of transient response for pie-
zoelectric bi-material subjected to a dynamic anti-plane concentrated force or electric charge is investi-
gated in detail. The correspondent static solutions of the same problem are expressed in Appendix C.
At time t/b1r2 = 0, the loading is applied suddenly at (x, y) = (0, d) in piezoelectric material (1) as shown
in Fig. 1. Table 1 lists the commonly used piezoelectric material properties and correspondent shear wave
velocities. There are two cases of piezoelectric bi-material to be considered in this study. One has faster
shear wave velocity in material (2) and material (1)–material (2) is PZT4–ZnO. The pattern of wave
fronts is shown in Fig. 5 (points A and B are receivers). The transient responses of shear stresses and
1
aterial properties and shear wave speeds of piezoelectric materials

c44 (1010 N/m2) e15 (C/m) e11 (10�9 F/m) q (kg/m3) 1/b (m/s)

4.25 �0.48 0.0757 5676 2832.65
2.56 12.70 6.4634 7500 2596.26
1.49 �0.21 0.0799 4824 1789.73

3 4.40 11.40 9.8722 5700 3166.83



Fig. 5. The pattern of wave fronts for PZT4–ZnO subjected to a dynamic anti-plane concentrated force.
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electric displacements for two receivers are presented in Figs. 6–9. The other case has slower shear wave
velocity in material (2) and material (1)–material (2) is PZT4–CdS. Similarly, the pattern of wave fronts
is shown in Fig. 10 and the transient responses of shear stresses and electric displacements are presented
in Figs. 11–14. The waves shown in Figs. 5–14 are composed of incident wave, reflected wave, refracted
wave, head wave, elastic wave and electromagnetic wave and are denoted by i, r, f, h, e and p, respec-
tively. For instance, symbol of rpe represents the elastic wave reflected from the interface by the electro-
magnetic incident wave and symbol of hf

ee represents the elastic head wave refracted from the interface by
the elastic incident wave. It is shown in Figs. 5 and 10 that the wave fronts of head wave are inclined
ðhr

eeÞ and horizontal ðhr
ep, hf

epÞ straight lines for PZT4–ZnO but there is no head wave hr
ee for PZT4–CdS.

The time presented in the transient response curves has been normalized by dividing by b1r2. The arrival
time for each wave front and the corresponding static values are also indicated in these figures. It is
found that the transient responses of shear stresses and electric displacements tend to static value after
the arrival of the last wave.

In Fig. 6(a), a small illustration window on the right hand side presents the transient response of sð1Þyz at time
t/b1r2 = 0–1. The rep wave is the first wave arrival at the receiver A at the normalized time equal to 0.5. This
wave propagates toward the interface with the elastic wave speed and then travels with the electromagnetic
wave velocity after reflected from the interface. It is shown clearly in Fig. 6(a) that the stress field behaves with
a square root singularity at the incident ie and reflected ree wave fronts. However, the contribution of shear
stress from rep and hr

ep waves is relatively small. In Fig. 6(b), we can see that the only contribution of the elec-
tric displacement is due to the rep wave which is indicated in (A.2). In Fig. 7, the receiver B is located in mate-
rial (2) and the arrival time of fee is less than unity because ZnO has faster shear wave velocity than PZT4. In



Fig. 6. The transient responses of (a) sð1Þyz and (b) Dð1Þy for PZT4–ZnO subjected to a dynamic anti-plane concentrated force.
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order to see the transient response induced by electric loading, a dynamic electric charge in piezoelectric bi-
material is considered. In Fig. 8, the transient behavior of shear stress and electric displacement in material
(1) are presented and we can see that more waves are generated as compared with Fig. 6. Fig. 9 represent
the transient response for material (2). Consequently, it is worthy to note that all kinds of elastic and electro-
magnetic waves in piezoelectric bi-material can be generated by applying a dynamic electric charge. For the
piezoelectric bi-material is PZT4–CdS, the wave fronts (Fig. 10) for ie and ree are circular curves, while fee wave
front is a smooth curve which is constructed by numerical calculations. The transient phenomena in Figs. 11–
14 have similar features as that indicated in Figs. 6–9.



Fig. 7. The transient responses of (a) sð2Þyz and (b) Dð2Þy for PZT4–ZnO subjected to a dynamic anti-plane concentrated force.
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The transient solution for applying a dynamic anti-plane concentrated force in a piezoelectric and elastic bi-
material can be reduced from the solution for piezoelectric bi-materials. The transient responses of shear stres-
ses for PZT4–Aluminum alloy 2014-T6 and PZT4–Bronze are indicated in Fig. 15 and 16, respectively. Sim-
ilarly, the transient solutions are shown to approach the correspondent static solutions as time increases.
Compared with piezoelectric bi-material, the main distinction is that sð2Þyz does not have the wave of fep owing
to non-piezoelectricity in material (2). Basically, the transient phenomena as presented in these figures have
similar characteristics to those shown in Figs. 6–9.

The existence of surface wave for piezoelectric bi-material for the commonly used material indicated in
Table 1 is examined. From the existence condition indicated in (83) (or (90)), it is found that there is no surface



Fig. 8. The transient responses of (a) sð1Þyz and (b) Dð1Þy for PZT4–ZnO subjected to a dynamic electric charge.
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wave for any combination of piezoelectric materials listed in Table 1. However, we can not rule out the pos-
sibility that there is a surface wave propagating along the interface between piezoelectric bi-material. Hence,
we try to investigate if there exist ranges of piezoelectric properties in Table 1 that a surface wave can prop-
agate along the piezoelectric bi-material interface. The virtual piezoelectric material properties are obtained by
changing the elastic constant of c44 to satisfy (83) (or (90)) and the positive definite conditions. For case (a)
(b1 > b2), the bi-material is PZT4–virtual ZnO, all the material properties are set to be fixed except c44 for



Fig. 9. The transient responses of (a) sð2Þyz and (b) Dð2Þy for PZT4–ZnO subjected to a dynamic electric charge.
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ZnO, we find that the existence condition (83) is satisfied only in the range
3:53� 1010 N=m2

6 cð2Þ44 6 3:58� 1010 N=m2 (i.e., c44 for ZnO is 4.25 · 1010 N/m2). The correspondent shear
wave speed for virtual ZnO is 2599.11 m/s 6 1/b2 6 2616 m/s. The velocity of the surface wave can be obtained
from (92) and the result is 2593 m/s 6 vs 6 2596.19 m/s. The shear wave speed for PZT4 is 2596.26 m/s as indi-
cated in Table 1. We can see that the existence of the surface wave only at the situation that the shear wave
speed of two materials is close. Furthermore, the surface wave velocity is close to and less than the slower
shear wave speed (i.e., PZT4) of the two materials. For case (b) (b2 > b1), the bi-material is virtual BaTiO3–



Fig. 10. The pattern of wave fronts for PZT4–CdS subjected to a dynamic anti-plane concentrated force.
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ZnO and we change the value of c44 for BaTiO3. It is found that the existence condition of surface wave is
satisfied only in the range 3:26� 1010 N=m2

6 cð1Þ44 6 3:29� 1010 N=m2 (i.e., c44 for BaTiO3 is 4.4 · 1010 N/
m2) and the correspondent shear wave speed for virtual BaTiO3 is 2833.52 m/s 6 1/b1 6 2842.79 m/s. The
velocity of the surface wave is 2830.04 m/s 6 vs 6 2832.58 m/s. Similar phenomenon in case (a) is found in
case (b). The surface wave velocity is close to and less than the slow shear wave speed (i.e., 2832.65 m/s for
ZnO).

Table 2 lists the surface wave velocity vs (if it exists) of the piezoelectric–elastic bi-material which is
composed of PZT4 (material (1)) and elastic materials (material (2)). It is interesting to note that the
surface wave does exist in the interface of ZnO and nine elastic materials. For example, the surface wave
velocity of the bi-material PZT4–Glass is 2595.51 m/s which is slightly less than the shear wave speed of
PZT4 (2596.26 m/s). If we change only the elastic constant c44 of PZT4 and to find the range of c44 such
that the surface wave exists, then, we find that there will have a surface wave along the interface of
PZT4–Glass bi-material for 2:12� 1010 N=m2

6 cð1Þ44 6 6:87� 1010 N=m2 and the surface wave velocity is
2480.71 m/s 6 vs 6 3467.1 m/s. For the other case that the elastic material is Bronze, the shear wave
speed (2316.43 m/s) is less than that of PZT4. The surface wave velocity is found to be 2313.96 m/s
which is slightly less than the shear wave speed of Bronze. The surface wave of PZT4–Bronze exists
if c44 of PZT4 is in the range of 1:53� 1010 N=m2

6 cð1Þ44 6 2:72� 1010 N=m2 and the correspondent sur-
face wave velocity is 2212.64 m/s 6 vs 6 2316.43 m/s. We can see from both cases that the range of cð1Þ44

for the existence of the surface wave is much larger than that of piezoelectric bi-materials discussed
previously.

For the case that the shear wave speed of the elastic material is larger than that of the piezoelectric material,
i.e., b1 > b02, the existence condition of the surface wave can be expressed as



Fig. 11. The transient responses of (a) sð1Þyz and (b) Dð1Þy for PZT4–CdS subjected to a dynamic anti-plane concentrated force.
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However, if the shear wave speed of the elastic material is less than that of the piezoelectric material, i.e.,
b1 < b02, then the condition for the existence of the surface wave becomes



Fig. 12. The transient responses of (a) sð2Þyz and (b) Dð2Þy for PZT4–CdS subjected to a dynamic anti-plane concentrated force.
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After the detailed numerical investigation of the existence of the surface wave for piezoelectric–piezoelectric
bi-materials and piezoelectric–elastic bi-materials, it can be concluded that the surface wave velocity is always
less than the slower shear wave speed of the two materials. Furthermore, the existence of the surface wave for
piezoelectric–piezoelectric bi-materials is restricted to the situation that the shear waves of the two piezoelec-



Fig. 13. The transient responses of (a) sð1Þyz and (b) Dð1Þy for PZT4–CdS subjected to a dynamic electric charge.
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tric materials are very close. However, the possibility for the existence of the surface wave for piezoelectric–
elastic bi-materials is much greater than that of the piezoelectric–piezoelectric bi-materials. In order to present
the contribution of surface wave, a material point near the interface between PZT4 and Aluminum alloy 2014-
T6 is chosen for investigation. The transient response of a short time interval for the arrival of the surface



Fig. 14. The transient responses of (a) sð2Þyz and (b) Dð2Þy for PZT4–CdS subjected to a dynamic electric charge.
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wave is shown in Fig. 17. Due to the influence of the surface wave, a large variation of shear stress is found in
Fig. 17.

5. Conclusion

In this paper, a general methodology is proposed to construct the full-field transient solutions of pie-
zoelectric bi-materials subjected to a dynamic anti-plane concentrated force and a dynamic electric charge.



Fig. 15. The transient responses of (a) sð1Þyz and (b) sð2Þyz for PZT4–Aluminum alloy 2014-T6 subjected to a dynamic anti-plane concentrated
force.
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The Cagniard-de Hoop method is used to construct the transient solutions in time domain. The analytical
results obtained in this study are exact and are expressed in explicit closed forms, each term representing a
physical transient wave. The corresponding static solutions are also obtained in this study. The dynamic
response of shear stress in the transient period is much larger than that of the static value. In the transient



Fig. 16. The transient responses of (a) sð1Þyz and (b) sð2Þyz for PZT4–Bronze subjected to a dynamic anti-plane concentrated force.
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period, the stress will change radically when the reflected or the refracted wave arrives. The transient value
of shear stress will tend toward the static value after the last wave has passed. The existence condition of
a surface wave propagating along piezoelectric bi-material interface is established in this study. The veloc-
ity of surface wave for the fully-coupled SH electromagneto-acoustic surface wave is obtained in a simple,
closed form. It is found in this study that the surface wave velocity is always close to and less than the



Table 2
The material properties of elastic materials and the correspondent surface wave velocities

l (1010 N/m2) q (kg/m3) 1/b (m/s) vs (m/s)

Aluminum alloy 2014-T6 2.8 2800 3162.28 2559.25
Aluminum alloy 7075-T6 2.7 2800 3105.30 2549.59
Aluminum alloy 6061-T6 2.6 2700 3103.16 2544.27
Brass 4.1 8400 2209.29 –
Bronze 4.4 8200 2316.43 2313.96
Cast iron 6.9 7200 3095.70 –
Copper and copper alloys 4.7 8900 2298.02 2297.00
Glass 3.5 2800 3535.53 2595.51
Magnesium alloys 1.7 1830 3047.89 2478.38
Monel 6.6 8800 2738.61 2590.00
Nickel 8.0 8800 3015.11 –
Rubber 0.0001 1300 27.74 –
Steel 7.5 7850 3090.98 –
Titanium alloys 3.9 4500 2943.92 2577.25
Tungsten 14.0 1900 8583.95 –

Fig. 17. The transient response of sð1Þyz at the interface for PZT4–Aluminum alloy 2014-T6 subjected to a dynamic anti-plane concentrated
force.
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slower shear wave speed of the two materials. Furthermore, the existence of the surface wave for piezo-
electric–piezoelectric bi-materials is restricted to the situation that the shear wave speed of the two piezo-
electric bi-materials is close.
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Appendix B

The existence condition of a surface wave propagating along the piezoelectric–elastic bi-material interface is
analyzed in this appendix. Substitution of (55)–(57) into (A.1) yields the reflected wave subjected to a dynamic
anti-plane concentrated force as follows
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Considering the denominator of (B.1), let
R3 ¼ �ðeð1Þ15 Þ
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The principle of argument in Section III is applied to (B.2) and rewrite (B.2) in the form
R0ðkÞ ¼ �ðeð1Þ15 Þ
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 � k2

p
þ �cð1Þ44 eð1Þ11

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

1 � k2
q

þ leð1Þ11

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b022 � k2

q
¼ 0: ðB:3Þ
Two cases, i.e., b1 > b02 and b02 > b1, are discussed as follows Case (I): b1 > b02. We find that if the condition
�ðeð1Þ15 Þ
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

1 � e2

q
þ leð1Þ11

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

1 � b022

q
> 0 ðB:4Þ
is satisfied, then the contours C0t, C0r and C0l in the v-plane is the same as that indicated in Fig. 4(a). The number
of zeros for the function R 0(k) is zero, i.e., Zk ¼ 2� 1

2
� 2� 1

2
¼ 0. For the condition
�ðeð1Þ15 Þ
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

1 � e2

q
þ leð1Þ11

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

1 � b022

q
< 0; ðB:5Þ
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the contours C0t, C0r and C0l in the v-plane is indicated in Fig. 4(b) and the number of zeros for the function R 0(k)
is two, i.e. Zk ¼ 2� 1

2
þ 2� 1

2
¼ 2. Case (II): b02 > b1. We find that
�ðeð1Þ15 Þ
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b022 � e2

q
þ �cð1Þ44 eð1Þ11

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b022 � b2

1

q
> 0; Zk ¼ 0; ðB:6Þ
and
�ðeð1Þ15 Þ
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b022 � e2

q
þ �cð1Þ44 eð1Þ11

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b022 � b2

1

q
< 0; Zk ¼ 2: ðB:7Þ
We have shown that the constraint of (B.5) (or (B.7)) is the existence condition of the surface wave. The sur-
face wave velocity can be explicitly expressed as
vs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2A4

�B4 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2

4 � 4A4C4

q
vuut ; ðB:8Þ
where
A4 ¼ ð1þ g2 � k4
eÞ

2 � 4g2;

B4 ¼ �2ðb2
1 þ g2b2

2Þð1þ g2 � k4
eÞ þ 4g2ðb2

1 þ b2
2Þ;

C4 ¼ b4
1 � 2g2b2

1b2
2 þ g4b4

2;

g ¼ l

�cð1Þ44

:

Appendix C. The static solutions for piezoelectric bi-materials

C.1. The static solutions for applying an anti-plane concentrated force

As indicated in Fig. 1, the material (1) is subjected to a static anti-plane concentrated force with magnitude
p applied at x = 0 and y = d. The governing equations for the static problem are
r2w ¼ 0; ðC:1Þ

r2U ¼ 0: ðC:2Þ
The constitutive equations are the same as that expressed in (13)–(16). The jump condition is
sð1
þÞ

yz jy¼d � sð1
�Þ

yz jy¼d ¼ pdðxÞ: ðC:3Þ
The continuous conditions are presented in (25)–(31). This problem can be solved by the application of the
Fourier transform. The Fourier transform on the spatial variable x for (C.1) and (C.2) can be represented
of the form
d2 ~w
dy2
� x2 ~w ¼ 0; ðC:4Þ

d2 ~U
dy2
� x2 ~U ¼ 0; ðC:5Þ
where x is the Fourier transform parameter and the overwave symbol is used to denote the transform on the
spatial variable x. The general solutions of (C.4) and (C.5) are
~wð1
þÞ

~Uð1
þÞ

" #
¼ exy A3

C3

� �
þ e�xy B3

D3

� �
; ðC:6Þ
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~wð1
�Þ

~Uð1
�Þ

" #
¼ exy E3

G3

� �
þ e�xy F 3

H 3

� �
; ðC:7Þ

~wð2Þ

~Uð2Þ

" #
¼ exy I3

K3

� �
þ e�xy J 3

L3

� �
; ðC:8Þ
The static solutions in the transform domain are
~wð1Þ

~Uð1Þ

" #
¼ �1

2x2
ðe�xjy�djIþ e�xðyþdÞR̂ÞM̂�1Z; ðC:9Þ

~wð2Þ

~Uð2Þ

" #
¼ �1

2x2
exðy�dÞT̂M̂�1Z; ðC:10Þ
where
R̂ ¼ ðM̂þ N̂Þ�1ðM̂� N̂Þ; T̂ ¼ ðM̂þ N̂Þ�1ðM̂� N̂Þ þ I; M̂ ¼
cð1Þ44 eð1Þ15

eð1Þ15 �eð1Þ11

" #
; N̂ ¼

cð2Þ44 eð2Þ15

eð2Þ15 �eð2Þ11

" #
:

After the Fourier inversion transform is employed, the static solutions for displacement, shear stresses and
electric displacements are
wsð1Þ

Usð1Þ

" #
¼ 1

2p
ðR̂M̂�1Z ln r1 þ M̂�1Z ln r2Þ; ðC:11Þ

wsð2Þ

Usð2Þ

" #
¼ 1

2p
T̂M̂�1Z ln r2; ðC:12Þ

ssð1Þ
yz

Dsð1Þ
y

" #
¼ 1

2p
M̂R̂M̂�1Z

yþ d
r2

1

þ Z
y� d

r2
2

� �
; ðC:13Þ

ssð1Þ
xz

Dsð1Þ
x

" #
¼ 1

2p
M̂R̂M̂�1Z

x
r2

1

þ Z
x
r2

2

� �
; ðC:14Þ

ssð2Þ
yz

Dsð2Þ
y

" #
¼ 1

2p
N̂T̂M̂�1Z

y� d
r2

2

; ðC:15Þ

ssð2Þ
xz

Dsð2Þ
x

" #
¼ 1

2p
N̂T̂M̂�1Z

x
r2

2

: ðC:16Þ
C.2. The static solutions for applying an electric charge

The jump condition is
Dð1
þÞ

y jy¼d � Dð1
�Þ

y jy¼d ¼ �qdðxÞ: ðC:17Þ
The static solutions for displacement, shear stresses and electric displacements in piezoelectric materials (1)
and (2) are presented as follows
wsð1Þ

Usð1Þ

" #
¼ 1

2p
ðR̂M̂�1G ln r1 þ M̂�1G ln r2Þ; ðC:18Þ
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wsð2Þ

Usð2Þ

" #
¼ 1

2p
T̂M̂�1G ln r2; ðC:19Þ

ssð1Þ
yz

Dsð1Þ
y

" #
¼ 1

2p
M̂R̂M̂�1G

yþ d
r2

1

þG
y� d

r2
2

� �
; ðC:20Þ

ssð1Þ
xz

Dsð1Þ
x

" #
¼ 1

2p
M̂R̂M̂�1G

x
r2

1

þG
x
r2

2

� �
; ðC:21Þ

ssð2Þ
yz

Dsð2Þ
y

" #
¼ 1

2p
N̂T̂M̂�1G

y� d
r2

2

; ðC:22Þ

ssð2Þ
xz

Dsð2Þ
x

" #
¼ 1

2p
N̂T̂M̂�1G

x
r2

2

: ðC:23Þ
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