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Theoretical simulations of a propagating crack subjected to in-plane
stress wave loading by caustic method
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Abstract. The optical method of caustics for measuring the dynamic stress intensity factor in a transient process
is investigated in this study. The transient full-field solutions of a propagating crack contained in an infinite
medium subjected to step-stress wave and ramp-stress wave loadings are used to establish the exact equations
of the initial and caustic curves. The results of the stress intensity factor obtained from the caustic method are
compared with theoretical predictions and some experiments. The results demonstrate that a significant deviation
can occur in the determination of the dynamic stress intensity factor from shadow spot measurements. The factors,
such as screen distance, magnitude of loading, crack speed and rising time which can influence the accuracy of
the experimental measurements are discussed in detail. In addition, the valid region of the dynamic stress singular
field for the propagating crack is discussed in detail and it gives a better understanding of the appropriate region of
measurements for investigators.
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1. Introduction

In fracture mechanics, the idea of the stress intensity factor of a cracked body is well estab-
lished and the measurement of the stress intensity factor becomes the major work of relative
experiments. Several experimental methods, such as photoelasticity, interferometry and caus-
tics were developed to determine such factors. The optical method of caustics, a technique
based on geometrical optics, has been successfully applied to the study of deformation fields
in solids. It has several advantages over the other optical methods due to its simplicity. The
method of caustics requires less equipment and a simple optical set-up, and it can be applied
to the investigation of both transparent or opaque materials. Therefore, it has been widely
used in many applications of fracture mechanics, especially in the measurement of static and
dynamic stress intensity factors.

The method of caustics was initially introduced by Schardin (1959) and Manogg (1964)
was the first person who showed that the geometrical characteristics of the caustic depend on
the intensity of the crack tip singularity and was able to measure the intensity of the near-tip
stress field. Theocaris (1971) used the method in a reflection arrangement, and subsequently
Theocaris and Gdoutos (1974) applied this method to examine the deformation fields near a
stationary crack tip. In the late 1970s, the method of caustics has been developed into a standard
and efficient technique for measurement of the static and dynamic fracture toughnesses of
elastic materials. Rosakis (1980) provided analyses to account for the effects of material
inertia in the interpretation of caustic data obtained with light reflected from specimens of
opaque materials. In a paper by Rosakis et al. (1983), the method of caustics for a power-law
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hardening material in a state of plane stress was established, and a relationship between the
value of Rice’s J integral and the maximum transverse diameter of the shadow spot was
derived.

The caustic method mentioned above is based on the fact that the value of the stress intensity
factor can be related to features of the optical field obtained by directing parallel light through
a transparent specimen in the crack tip region, or by reflecting light from the surface of an
opaque specimen in the crack tip region. There are assumptions in deriving the method of
caustics, hence the formula of the caustic used in determining the stress intensity factor is
subjected to some restrictions. In deriving the formula of the caustic, several assumptions are
made

(a) the specimen is in a plane stress state;
(b) the deformation slope is small;
(c) small scale yielding prevails;
(d) the measurements are made within the region of dominant singular field.

Hence, the caustic method should be performed under those conditions to get good exper-
imental results. These assumptions have been carried through in most of the subsequent
applications of caustics. It is only recently that those restrictions have been investigated and
some conclusions have been made to improve the validity and accuracy of caustic methods.
Rosakis and Ravi-Chandar (1986) analyzed the limitation of the plane stress interpretation of
caustics data on compact tension specimens. The results indicated that plane stress conditions
prevail at distances from the crack tip greater than half the specimen thickness. Plasticity at
the crack tip also limits the minimum distance from the tip where optical measurements can
be performed. Analysis by Rosakis and Freund (1981) has shown that the error introduced
through the neglect of plasticity effects in the interpretation of caustics data will be small as
long as the measurement is performed in a radius greater than twice the plastic zone size. The
implicit assumptions of the usual small angle reflection in the evaluation of stress intensity
factors by shadow spot measurements are discussed in detail by Rosakis and Zehnder (1985).
The exact equations were derived for caustics formed by the reflection of light from a general
surface, the results demonstrated significant deviation from the approximate analyses resulting
in errors as large as 15 percent in the determination of the stress intensity factor.

Recently, many experimental results and investigations, such as Freund and Rosakis (1992)
and Krishnaswamy and Rosakis (1991), indicated that the assumption of K dominance is not
always adequate to describe the deformed behavior in the vicinity of a propagating crack tip.
In order to explain the phenomena of experiments, Ma (1990) has used the exact solutions of
static crack and the transient stress field of a stationary crack subjected to dynamic loading to
simulate the experiment of caustics. He has found that very accurate measurement of the stress
intensity factor by caustic methods can be obtained only if the initial curves are within one tenth
of the crack length for static loading and one tenth of the longitudinal wave front for dynamic
loading. Aoki and Kimura (1993) used two- and three-dimensional finite element methods to
investigate the experiment of caustics for a propagating crack. They declared that the dynamic
stress intensity factor depends on the incident wave form and also on the loading rate for a
short time-to-fracture. Based on the higher order transient expansion obtained by Freund and
Rosakis (1990), Liu et al. (1993) established an explicit relation between the instantaneous
value of the dynamic stress intensity factor and the geometrical characteristics of the caustic.
They also used the Broberg problem as an example problem to compare the difference between
the classical analysis and the improved method proposed by them. Recalling the assumptions
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(a), (b), (c) and (d) as indicated above, the points at which experimental data are taken can
not be too close to the crack tip because of the restriction of the plane stress state, plastic zone
effect and small slope of the deformed surface. The points can not be too far away from the
crack tip either, because of the K dominance assumption. Hence, the region which is suitable
for the experimental measurement is an annular zone surrounding the crack tip. In this study,
we try to give some information on the determination of the outer boundary for satisfactory
accuracy of the stress intensity factor measurement by using the caustic method.

In this paper, the exact transient solutions of a propagating crack subjected to step-stress
and ramp-stress wave loadings are used to establish the exact equations of the caustic envelope.
The validity of the stress singular field is also investigated to determine the appropriate region
for measurements with acceptable accuracy by the method of caustics. The experimental
results of Ravi-Chandar and Knauss (1984a,b,c,d) are used for comparison with the simulating
analysis for the stationary crack. The factors that influenced the accuracy of the experimental
measurement are discussed in detail. Furthermore, the ratio of the exact full-field transient
stress to the stress singular field is computed numerically so that the valid region of the stress
singular field in the transient process can be investigated more accurately.

2. Formation of caustic in reflection

Consider a highly polished planar specimen of uniform thickness h in the undeformed state
occupying a region in the x–y plane. If the plate is subjected to an external loading, the
resulting change thickness in terms of the in-plane stress components is given by

f(x; y) = �w(x; y) = �h

2E
(�xx + �yy); (1)

where � is the Poisson’s ratio, E is the Young’s elastic modulus and w is the displacement in
the thickness direction.

Consider a family of light rays travelling in the z-direction, normally incident on the
reflecting surface as illustrated in Figure 1. Upon passing through the specimen, the direction
of each ray is modified. The amount of deviation for each ray depends on local conditions, in
particular, on the local thinning of the specimen due to in-plane stress. If certain geometrical
conditions are met by the reflecting surface, then the extensions of the reflected rays will form
an envelope of a three-dimensional surface in space. This surface, which is called the caustic
surface, is the locus of points of maximum luminosity in the reflected light field. A screen is
positioned parallel to the x–y plane so that it intersects the caustic surface at a distance z0

from the undeformed specimen. Under suitable conditions, the light field on the screen will
appear as a dark spot (the shadow spot) surrounded by a bright border (the caustic curve),
with diminishing light intensity away from the caustic curve. If the plane of the specimen is
the x–y plane, then let the X–Y plane be the plane of the screen, where the screen coordinate
axes are obtained by translating the specimen coordinate axis in the directional normal to
the specimen. The position of the image point on the screen will depend on the slope of the
reflecting surface and on the normal distance z0, the light ray which strikes the specimen at
point (x; y) then strikes the screen at the point (X;Y ), and the optical mapping may be written
as (Rosakis et al., 1983)

X = x� 2(z0 � f)
@f=@x

1� (@f=@x)2 � (@f=@y)2 ; (2)
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Figure 1. Schematic diagram of the optical reflection process and the formation of a caustic envelope.

Y = y � 2(z0 � f)
@f=@y

1� (@f=@x)2 � (@f=@y)2 : (3)

If it is now assumed that jf j � z0 and that (@f=@x)2 + (@f=@y)2 � 1, which is usually the
case in most practical applications, then the optical mapping simplifies to

X = x� 2z0@f=@x; (4)

Y = y � 2z0@f=@y: (5)

If the screen intersects a caustic surface in the reflected light field, then the resulting caustic
curve on the screen is a locus of points for which the mapping described by (4) and (5) is not
invertible and the determinant of the Jacobian matrix of the mapping must vanish, i.e.

@(X;Y )

@(x; y)
= 1� 2z0

 
@2f

@x2 +
@2f

@y2

!
� 4z2

0

2
4
 

@2f

@x@y

!2

� @2f

@x2

@2f

@y2

3
5 = 0: (6)

The points on the plane of the undeformed reflecting surface for which the Jacobian
determinant vanishes are the points from which the rays forming the caustic curve are reflected.
The locus of these points on the reflecting surface is the so-called initial curve. In other words,
the curve on the specimen which maps into the caustic curve according to (4) and (5) is
the initial curve. The light rays which strike the specimen both inside and outside of the
initial curve map into points on the screen which are outside of the caustic curve. Since
the interpretation of the stress field at the crack tip in terms of the stress intensity factor is
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appropriate only in a very small region around the crack tip, the reliability of the method of
caustics depends on the size of the initial curve. This property gives the initial curve its special
importance. The equation of the initial curve given by Equation (6) depends parameterically
on z0, the distance from the specimen surface to the screen. If z0 is small, then the initial curve
will be close to the crack tip. If z0 is large, then the initial curve will be located far from the
crack tip. The size of the initial curve has to be small in order that the interpretation of the
caustic size in terms of the stress intensity factor is adequate. Since z0 is a variable determined
by the experimental set up, the position of the initial curve can be varied at will.

In linear elastic dynamic fracture mechanics, the principal application of the method of
caustic is to measure the stress intensity factor. An expression relating the dynamic stress
intensity factor Kd

1 (t) to the maximum transverse diameter of the experimentally obtained
caustic curves is established based on the K-dominance field. When a planar Mode-I crack
extends in an elastic body with a constant velocity �, the expression of stress field �xx + �yy
in the vicinity of the propagating crack tip can be expressed by (Freund, 1990)

lim
r!0

(�xx + �yy) =
4Ecd
h�

r
�1=2
l cos(�l=2); (7)

where

cd =
h�Kd

1 (t)(1 + �2
s)(�

2
l � �2

s)

2
p

2�E[4�l�s � (1 + �2
s)

2]
;

�l = (1� �2=c2
l )

1=2; �s = (1� �2=c2
s)

1=2;

rl = (�2 + �2
l y

2)1=2; �l = tan�1(�ly=�); � = x� �t;

in which cl and cs are the longitudinal and shear wave speeds, respectively.
Substituting Equation (7) into Equation (1), we can obtain the equation of the deformed

specimen surface f(x; y). Then substituting f(x; y) into Equation (6), the equation for the
initial curve based on the stress singular field can be found as follows

r
5=2
l =

z0cd

(
3(1� �2

l ) cos
�

5�l
2

�
+

rh
3(1� �2

l ) cos
�

5�l
2

�i2
+ 36�2

l

)

2
: (8)

By substituting the deformed curve f(x; y) into (4) and (5), the mapping equations become

X = rl cos �l + 2z0cdr
�3=2
l cos(3�l=2); (9)

Y = (rl sin �l)=�l + 2�lz0cdr
�3=2
l sin(3�l=2): (10)

The equations of the caustic curve for the near tip field are then obtained by substituting
(8) into optical mapping Equations (9) and (10). The dynamic stress intensity factor can be
related to the maximum transverse diameter Dmax of the caustic curve as follows

Kd
1 (t) =

2
p

2�E[4�l�s � (1 + �2
s)

2]

z0h�(1 + �2
s)(�

2
l � �2

s)
(Dmax)

5=2Cm(�l); (11)
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where

Cm(�l) = 0:006763+ 0:014438�l � 0:002527�2
l (12)

is determined numerically by using the least squares method (Rosakis, 1980). However, it is
found in this study that Equation (10) has two stationary points located at �l = �2�=5 at
which Ymax and Ymin occur. Consequently,Cm(�l) can be obtained exactly and is represented
in an explicit form as follows

Cm(�l) =
1
3

�
2 sin

�
2�
5

�
+

4
3

sin
�

3�
5

���5=2

�
1=2
l : (13)

Finally, the relation between Kd
1 (t) and Dmax derived earlier in Equation (11) can be

simplified and rewritten as

Kd
1 (t) =

E�
1=2
l [4�l�s � (1 + �2

s)
2]

10:708z0h�(1 + �2
s)(�

2
l � �2

s)
(Dmax)

5=2: (14)

If � = 0, which is the stationary case, the relation of stress intensity factor and the transverse
diameter can be reduced as

Ks
1 =

E

10:708z0h�
(Dmax)

5=2: (15)

The derivation of Equation (14) and (15) is based on the singular stress field shown in
Equation (7). If the stress field near the crack tip is completely characterized by the prevailing
stress intensity factor, and if the initial curve is well within crack tip, then the features of the
optical field as observed on the screen are also known up to the value of the stress intensity
factor. But the stress intensity factor is determined by caustic methods from measurements
covering a finite region around the crack tip and the singular field may not exist within this
region. Whether or not the data obtained from the experimental observations are within the
singular field is important in the determination of the correct stress intensity factor.

3. Simulation of caustic method of a propagating crack subjected to dynamic
step-stress wave loading

Consider a stationary stress-free semi-infinite crack contained in a linear elastic homogeneous
isotropic infinite medium. This crack lies along the negative x axis and will be referred to as
the original crack. An incident step-stress wave of magnitude �0 parallel to the crack faces
arrives at the semi-infinite crack faces at time t = 0. At a delay time t = tf , the crack begins
to propagate along the positive x axis with a constant velocity � less than the shear wave speed
cs. The coordinate systems and the pattern of wavefronts for t > tf are shown in Figure 2.
The transient solution can be analyzed by integral transforms together with the superposition
scheme (Tsai and Ma, 1992) and the Cagniard-de Hoop method of Laplace inversion. The
result of the transient solution of �xx + �yy after crack propagation is presented as follows

�xx(�; y; t) + �yy(�; y; t)

=
2�0a

1=2(b2 � a2)

��d2c00S�
+
(0)

Z t

tL

Im

(
[b2(1� ��)2 � 2�2]@�

@t

��
+
(�)(c0 � �)S��(�)�

)
t=�

d� � �0 H(t� ay); (16)
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Figure 2. Configuration and coordinate system of a propagating crack subjected to a step-stress wave loading.

where

a =

r
�

�+ 2�
=

1
cl
; b =

r
�

�
=

1
cs
;

� = 4(1� a2�2)1=2(1� b2�2)1=2 � (2� b2�2)1=2; d = 1=�;

��(�) = ��
+
(�)���(�) =

p
a+ �(1� a�)

p
a� �(1 + a�);

S��(�) = exp

(
�1
�

Z b00;b0

a00;a0
tan�1

"
4z2 j��(�)j j��(�)j
(b2(1� ��)2 � 2�2)2

#
d�

� � �

)
;

a0 = a=(1 + a�); b0 = b=(1 + b�); c0 = c=(1 + c�);

a00 = a=(1� a�); b00 = b=(1� b�); c00 = c=(1 � c�);

tL =
afa�� + [�2 + (1� a2�2)y2]1=2g

1� a2�2 ;

� =
�(�t+ a2�y2) + iy

q
t2 � a2[y2 + (� + t�)2]

�2 + (1� a2�2)y2 ;

� = x� �(t� tf );

in which � and � are the shear modulus and the mass density of the material, � is the Lame
elastic constant, a and b are the slownesses of longitudinal and shear waves, respectively,
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Figure 3. The ratios of �xx + �yy for the transient solution and the stress singular field.

c = 1=cR is the slowness of the Rayleigh wave. The theoretical result of dynamic stress
intensity factor for the propagating crack subjected to a step-stress wave is

Kth
1 (t) =

2
p
at�0dp

�(1� a�)cS+(0)(c00 + d)S�
+
(d)

: (17)

From Equation (7), the stress singular field of �xx + �yy can be expressed as

lim
r!0

(�xx + �yy) =
2Kth

1 (t)(1 + �2
s)(�

2
l � �2

s)p
2�[4�l�s � (1 + �2

s)
2]

r
�1=2
l cos(�l=2): (18)

Initially, this stress singular field exists only in an asymptotically small domain around the
crack tip, and the region of validity of this field expands to a larger domain as time progresses.
The ratio of the stress �xx + �yy evaluated from the actual stress (16) to the stress singular
field (18) has been computed numerical for Poisson’s ratio � = 0:25 and the result is shown in
Figure 3. Assume that for a ratio of 0.9, the actual stress is accurately described by the stress
singular field. Then, the region of the stress singular field will be valid only for points very
close to the crack tip, within a distance from the stationary crack of 0.2 percent of the distance
to the cylindrical longitudinal wave front. It is also indicated in this figure that the valid region
of the stress singular field for the propagating crack is much smaller than that for the stationary
crack. The stress singular field will be valid with a distance from the propagating crack tip
of 0.04 percent of the distance to the longitudinal wave front for � = 0:1�l. The region of
validity of the stress singular field is time-dependent in the highly transient process. Hence,
the use of the singular field to represent the actual stress field should be carefully considered,
especially in the early stages of the dynamic transient field.
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In order to simulate the caustic experiment, one must substitute the full-field solution (16)
into the initial curve Equation (6) and the mapping Equations (4) and (5) by using Equation (1).
These requires the first and second derivative of (16) and they are given as follows

@f

@�
= � Im

(
[b2(1� ��)2 � 2�2]@�@t
��
+
(�)(c0 � �)S��(�)

)
; (19)

@f

@y
= �� Im

(
���(�)[b

2(1� ��)2 � 2�2]@�@t
�(c0 � �)S��(�)

)
; (20)

and

@2f

@�2 = � Im

"

xx

�
@�

@t

�2

+ �xx
@2�

@t2

#
; (21)

@2f

@y2 = � Im

"

yy

�
@�

@t

�2

+ �yy
@2�

@t2

#
; (22)

@2f

@�@y
= �� Im

"

xy

�
@�

@t

�2

+�xy
@2�

@t2

#
; (23)

where

� =
h��0a

1=2(b2 � a2)

E�c00�d2S�
+
(0)

;


xx =
1

[��
+
(�)(c0 � �)S��(�)]

2 f�
�

+
(�)(c0 � �)S��(�)

(b2 � 6�2 � 4b2��+ 3b2�2�2)� �[b2(1� ��)2 � 2�2][0:5(1� a�)

��
+
(�)�1(c0 � �)S��(�)� ��

+
(�)S��(�)� ��

+
(�)(c0 � �)S
�(�)]g;


yy =
1

[�(c0 � �)S��(�)]
2 f�(c

0 � �)S��(�)[�0:5(1 + a�)��
+
(�)

[b2(1� ��)2 � 2�2] + (��+ a2�2�� a2�)��
+
(�)�1[b2(1� ��)2 � 2�2]

+2(�b2� + b2�2�� 2�)���(�)�
�(�)]� ���(�)�

�(�)

[b2(1� ��)2 � 2�2][(c0 � �)S��(�)� �S��(�)� �(c0 � �)S
�(�)]g;


xy =
1

[(c0 � �)S��(�)]
2 f(c

0 � �)S��(�)[�0:5(1 + a�)���(�)
�1

[b2(1� ��)2 � 2�2] + 2(�b2� + b2�2�� 2�)���(�)]� ���(�)

[b2(1� ��)2 � 2�2][�S��(�)� (c0 � �)S
�(�)]g;
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�xx =
�[b2(1� ��)2 � 2�2]

��
+
(�)(c0 � �)S��(�)

;

�yy =
���(�)�

�(�)[b2(1� ��)2 � 2�2]

�(c0 � �)S��(�)
;

�xy =
���(�)[b

2(1� ��)2 � 2�2]

(c0 � �)S��(�)
;

S
�(�) =

(
�1
�

Z b0

a0
tan�1

"
4z2 j��(�)j j��(�)j
(b2(1� ��)2 � 2�2)2

#
d�

(� � �)2

)
S��(�):

We choose material 4340 steel and specimen thickness h = 5 mm for numerical simulation.
The material properties of 4340 steel are � = 7860 kg/m3,E = 210 GPa,� = 0:29 andK1C =
68:5 MPa, which yield the wave speeds cl = 5401 m/s, cs = 3218 m/s and cR = 2945 m/s. It
is assumed that the stationary crack starts to propagate as the dynamic stress intensity factor
reaches its critical value, i.e., the fracture toughness K1C. In view of Equation (8), it can be
seen that the size of the initial curve depends on the screen distance z0, crack velocity � and
the stress intensity factor for a specified specimen. If the stress intensity factor keeps constant,
the initial curve could be adjusted by changing the distance z0. However, if the stress intensity
factor or crack velocity varies in a dynamic experiment, one does not have close control over
the radius of the initial curve other than limiting its variation through a judicious choice of the
screen distance z0. In order to minimize the error due to the varying size of the initial curve,
it is necessary to determine the reference distance z0 that would provide small initial curves
over a large range of stress intensity factors.

Figure 4 shows the results of the simulation for different values of screen distance z0.
In this figure, Kd

1 (t) is the stress intensity factor obtained by the caustic method from the
simulating experiment, and the solid line represents the theoretical prediction in (17) under the
assumption of a stress singular field. It is seen clearly that the errors between simulating and
theoretical results will grow as the reference distance z0 increases. It means that the size of the
initial curve increases gradually as z0 increases and the assumption of a stress singular field is
not adequate. Figure 5 shows the results for a higher magnitude of loading condition. It can be
seen that the corresponding error by using the caustic method as shown in Figure 5 becomes
larger than that shown in Figure 4. It indicates that for a higher load level, the transient effect
is much more significant than for the lower load level. The reason is that the stress intensity
factor increases as the magnitude of applied loading increases and the size of the initial curve
will extend to a large region in which the assumption of stress singular field is invalid.

4. Simulation of caustic method of a propagating crack subjected to dynamic loading
with rise time

In the previous section, it has been assumed in the theoretical analysis that the time dependence
of the stress wave loading is a simple step in time. In experiments, it is impossible to produce
a true step profile, instead, the loading pulse has a finite rise time. In order to compare the
simulating results with the results obtained from experiments, the analysis is extended to the
case that the loading pulse has a finite rise time. Suppose that at time t = 0, the incident plane
wave arrives at the crack faces of the stationary crack and the crack pressure increases linearly
from zero at the instant. After some finite rise time TR, the magnitude of pressure reaches its
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Figure 4. The normalized stress intensity factors for different values of z0 under low step loading.

Figure 5. The normalized stress intensity factors for different values of z0 under high step loading.
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maximum value �0, and then maintains constant for t > TR. At time t = tf , the crack begins
to propagate with a constant velocity �. Making use of the integral transform method and
the superposition method in the Laplace transform domain (Tsai and Ma, 1992), the transient
solution of �xx + �yy can be obtained and is expressed as follows

�xx(�; y; t) + �yy(�; y; t)

=
2�0a

1=2(b2 � a2)

TR�c00�d2S�
+
(0)

�
(Z t

tL

(t� �) Im[R(�)]t=� d� �
Z t�TR

tL

(t� � � TR) Im[R(�)]t=� d�

)

��0

�
t� ay

TR
H(t� ay)� (t� ay � TR)

TR
H(t� ay � TR)

�
; (24)

where

R(�) =
[b2(1� ��)2 � 2�2]@�=@t

���
+
(�)(c0 � �)S��(�)

;

tL =
afa�� + [�2 + (1� a2�2)y2]1=2g

1� a2v2 ;

� =
�(�t+ a2�y2) + iy

q
t2 � a2[y2 + (� + t�)2]

�2 + (1� a2�2)y2 :

Substituting (24) into (1), we can obtain the deformation curve and the first and second
derivatives of f are given as follows

@f

@�
= N

(Z t

tL

Im[�R(�)]t=� d� �
Z t�TR

tL

Im[�R(�)]t=� d�

)
; (25)

@f

@y
= �N

(Z t

tL

Im[��(�)R(�)]t=� d� �
Z t�TR

tL

Im[��(�)R(�)]t=� d�

)
; (26)

@2f

@�2 = NfIm[�2
R(�)]H(t� tL)� Im[�2

R(�)]t=t�TR H(t� tL � TR)g; (27)

@2f

@y2 = NfIm[��(�)2
R(�)]H(t� tL)

� Im[��(�)2
R(�)]t=t�TR H(t� tL � TR)g; (28)

@2f

@�@y
= NfIm[���(�)R(�)]H(t � tL)

� Im[���(�)R(�)]t=t�TR H(t� tL � TR)g; (29)
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where

N =
h��0a

1=2(b2 � a2)

TRE�c00�d2S�
+
(0)

:

The analytical result of dynamic stress intensity factor for this problem has been solved by
Ma and Freund (1986). For TR < tf , the solution is

Kth
1 (t)p
2�

=

8>>>>>>>>><
>>>>>>>>>:

4�0$0

3�TR
t3=2; 0 < t < TR;

4�0$0

3�TR
[t3=2 � (t� TR)

3=2]; TR < t < tf ;

4�0$0k(d)

3�TR
[t3=2 � (t� TR)

3=2]; tf < t <1;

(30)

where

$0 =

q
2a(b2 � a2)

b2 ;

k(d) =
d

(1� a=d)1=2(c00 + d)S�
+
(d)

:

For tf < TR, the solution is

Kth
1 (t)p
2�

=

8>>>>>>>>><
>>>>>>>>>:

4�0$0

3�TR
t3=2; 0 < t < tf ;

4�0$0k(d)

3�TR
t3=2; TR < t < tf ;

4�0$0k(d)

3�TR
[t3=2 � (t� TR)

3=2]; tf < t <1:

(31)

We choose material 4340 steel and specimen thickness h = 5 mm for numerical simulation
of caustic. Figures 6 and 7 show comparative results between simulation and theoretical
prediction for different values of z0 under lower load level and higher load level, respectively.
For a low magnitude of loading, the simulating results are very close to the theoretical results
(solid line), which means that the initial curves for these cases are within the K field and
the difference from the theoretical values is very small. While for a high magnitude of load
as shown in Figure 7, large errors will occur and errors increase as z0 becomes large. These
figures also show the fact that at a specific time t for fixed � and z0, a higher load level
will imply larger initial curve radii. The comparative results for different values of �0=E are
shown in Figure 8. It can be seen very clearly that a higher load level will induce larger errors.
Figure 9 shows the simulating results for different values of rise time TR. This figure indicates
that the loading pulse with different rise time does not have great influence on the simulating
results.
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Figure 6. The normalized stress intensity factors for different values of z0 under low ramp loading.

Figure 7. The normalized stress intensity factors for different values of z0 under high ramp loading.
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Figure 8. The normalized stress intensity factors for different magnitudes of ramp loading.

Figure 9. The normalized stress intensity factors for different values of rising time under ramp loading.
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In the work reported by Ravi-Chandar and Knauss (1984), a long edge crack was cut into
a large rectangular sheet of Homalite-100 along a symmetry line. The specimen was then
subjected to a small tensile load in the direction perpendicular to the line of the crack, mainly
to hold the specimen in space. A continuous copper ribbon of the same lateral dimension as
the thickness of the plate was then doubled over and placed in the slightly open crack. The fold
in the ribbon was as close to the crack tip as possible, and one side of the doubled ribbon was
adjacent to each crack face. A large capacitor bank was then discharged through the ribbon.
The mechanical forces induced by the electrical current flowing through the copper ribbon
caused the opposite sides of the ribbon to repel each other and, in so doing, applied essentially
uniform normal pressure on the crack faces. The time variation of this pressure distribution was
approximated very well by a linear increase in magnitude up until some time after application
(the elapsed time is called the rise time TR), and then by a constant magnitude thereafter. It
was observed in the experiment that the onset of crack growth, which is denoted by tf here,
might be greater or less than rise time TR. The dimensions of the specimen were such that the
waves generated by the loading device would not be reflected back onto the crack tip for about
150�s after application of the pressure. Therefore, for all practical purposes, the situation is
that of semi-infinite crack in an unbounded body subjected to spatially uniform pressure over
the initial crack faces during the early part of the experiment. In addition, for time t > tf , it
was observed in the experiments that the crack tip moved with constant speed until the first
reflected waves arrived from the remote boundaries. The properties of Homalite-100 given by
Ravi-Chandar and Knauss are � = 1230 kg/m3, E = 4550 MPa, and � = 0:31, which yield
the wave speeds cl = 2057 m/s, cs = 1176 m/s and cR = 1081 m/s.

In this paper, the loading type of our analysis is different from that of Ravi-Chandar and
Knauss. However, the situation before the onset of crack growth is just the same as that
performed by them. Consequently, we used the experimental data reported by Ravi-Chandar
and Knauss to simulate and make a comparison of their results with the theoretical prediction.
One of the screen distances z0 used by Ravi-Chandar and Knauss, 168 cm, is adopted for
numerical simulation, and the results are shown in Figures 10 and 11. In these figures, the
stress intensity factor induced by the preload reported by Ravi-Chandar and Knauss has already
been cancelled such that the stress intensity factor starts at the origin. The prediction of the
stress intensity factor is presented by the solid line, the experimental data and simulating results
are marked by asterisk and square symbols, respectively. Figure 10 shows the numerical results
for lower load level and lower crack tip speeds. It can be seen that the agreement between the
theoretical prediction in (30) and numerical simulation is very good. It is also observed that
the experimental results of higher crack face pressure (�0 = 1:1 MPa) in this lower speed case
induce larger errors compared with prediction. Figure 11 shows the comparative results for
higher load level and higher crack tip speeds. It is worthy to note that the simulating results are
gradually far away from the theoretical prediction in both stationary and propagating stages.
In addition, it can be seen that errors between experimental and theoretical results increase as
the magnitude of load increases. However, the experimental results are close to the simulating
results, and it means that the initial curves for these cases are not within the K field and the
difference from the theoretical values is very large.

5. Conclusions

The dynamic fracture problem has been explored experimentally in increasing detail recently.
The goal of these experiments is to determine the appropriate fracture criterion. Interest in
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Figure 10. The stress intensity factor history of the propagating crack from the loading observed in the experiments
by Ravi-Chandar and Knauss.

Figure 11. Same as Figure 10, but for data shown.
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the dynamic stress intensity factor stems from its potential as a driving force for the fracture
process. The main technique employed to determine the dynamic stress intensity factor is
the caustic method used in conjunction with a high speed camera. Once the dynamic stress
intensity factor is known, the crack tip stress field is then completely determined. In analogy
with quasi-static fracture, the singular field is expected to dominate the crack tip stress field at
least in a small neighborhood around the crack tip. The extent of this region of K dominance,
however, is not well established particularly under transient conditions.

In this paper, the exact transient solutions of a propagating crack subjected to step-stress
and ramp-stress wave loadings are used for caustic simulations. The error induced from the
caustic method to evaluate the stress intensity factor under assumption of the singular field
dominance is analyzed in detail. It is found that the simulating results will be close to the
theoretical prediction as the size of initial curves is within the K field. This means that one
must control the region of the initial curve in experiments carefully through a judicious choice
of the screen distance z0. It is also found that the validity of the stress singular field for the
propagating crack is much smaller than that for the stationary crack. Therefore, the use of
the singular field to represent the actual stress field must be carefully considered in the early
stages of transient processes.

Some experimental results reported by Ravi-Chandar and Knauss are used for comparison
with the simulation results. Because of the difference in the loading condition, only the exper-
imental data for the stationary crack is compared with the theoretical simulation. However,
the successful interpretation of the experimental measurement of the stress intensity factor
by the caustic method might be extended to study the discrepancies of the experimental and
theoretical results in (Ma and Freund, 1986) and (Ravi-Chandar and Knauss, 1987). This
would need further study in the area.
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