
A

n
a
t
r
A
p
©

K

1

r
r
o
r
s
d
a
f
“
e

(
t
(
a
o

T

0
d

Journal of Chromatography A, 1139 (2007) 104–108

Temporal shifting: A hidden key to the skewed peak puzzle
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bstract

The recorder-provided peak position for flow-type chemical instruments has been verified mathematically as being comprised of a “spatially-
on-existent” shift, which is generated due to the relativity in accounting for the detection at a fixed point. This shift, denoted as Φ, can be
pproximated by Φ ≈ 0.5μ2

t , where μt is the temporal expanding coefficient of the system given. For flow injection analysis, the shift is correlated
2
o a longitudinal dispersion coefficient D and the flow speed u, i.e., Φ ≈ D/u . For linear chromatography, it is correlated to a dynamic partition

atio k′′ and a scaling factor f of the column used, i.e., Φ ≈ 0.5k′′f. In combination, the temporal shift can be expressed as Φ ≈ 0.5k′′f + D(k′′ + 1)2/u2.
lthough the shift may be small in scale, it provides a clue to decipher the basic parameters from a recorded peak. Under a linear isotherm, this
arameter can be estimated readily from an experimental peak following a very simple procedure.

2006 Elsevier B.V. All rights reserved.
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. Introduction

Many analytical instruments give results as peaks on a
ecorder, which are frequently skewed to carry a tail. The occur-
ence of this tailing has been usually explained as the result
f non-ideal conditions or defects of the instrumentation, but
ecent studies [1–3] have proposed a new prospect, i.e., the peak
kewness may also be generated from an image-transformation
istortion due to the observation made at a fixedpoint. Thus,
next question is raised: “Does the recorder also give a

alse peak position?” The answer may also be a surprising
Yes,” though a direct mathematical derivation is yet to be
stablished.

In describing the peak formation in flow injection analysis
FIA) [1], it has been noticed that the recorded peak posi-
ion (t∗p ) always appears earlier than the theoretical arrival time
tp = L/u; L is the length of the tubular channel and u the aver-

ge flow speed). The difference is not insignificant, and a value
f 0.5 s has been reported in that paper. The “shift” is denoted
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hift

ere as

= tp − t∗p (1)

A similar phenomenon has also been described in the dimen-
ionless Parcel models [2,3]. On a chromatogram, the location
f a peak (tr) always appears ahead of the corresponding reten-
ion time (denoted as τrm; τrm = Nc/υm; Nc is the dimensionless
olumn length and υm the dimensionless migration speed) by a
mall but almost consistent difference:

= 0.5 k′′ (2)

here k′′ is a dynamic partition ratio between the stationary and
obile phases at a given flow speed.
Although the principles of the above two techniques are likely

ifferent [4], they both point out the same fact that the tempo-
al distortion is not a real mechanism but a product of an axial
onvolution process, resulting in a “twisted” peak image and a
shifted” peak position. If this is correct, then Eqs. (1) and (2)
ay be linked together in a theoretical way. The scale of the

emporal shift is closely related to the expanding nature of the
ample zone, for which a faster zone broadening rate will lead

o a larger shifting on the temporal axis, and vice versa. How-
ver, this somewhat abstract concept might not be well accepted
y many scientists unless the shifting term can be rigorously
erived.

mailto:scpai@ntu.edu.tw
dx.doi.org/10.1016/j.chroma.2006.11.012
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Fig. 2. Three-dimensional perspective of the concentration evolving through
both space and time. The diagonal solid line marks the migration route of the
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. Theoretical

.1. Basic implementation

An ideal micro-bore tubular channel is implemented as fol-
ows: the system is running at a constant flow speed u; a detector
s located at L = Lp; and a small sample plug is injected at a
osition of L = 0 at time t = 0. The sample zone expands while
raveling in a longitudinal direction. The zone width, which
s characterized by the standard deviation σL(t), is propor-
ional to the square root of time (i.e., σL(t) ∝ √

t) or distance
σL(t) ∝ √

L, where L = ut). An ideal evolution of the sample
one through both distance and time is illustrated in Fig. 1, in
hich the migration route of the mass center is a straight line,
ith two thresholds (±σL(t)) on both sides. When the center of

he sample zone arrives at the detector at Lp (or at time tp = Lp/u),
he longitudinal peak standard deviation can be expressed as

L(tp) = μL

√
utp (3)

here μL is defined as the expanding coefficient along the L
oordinate, in cm1/2 units.

.2. Peak curves

A mass distribution curve along the L coordinate at a given
ime t was derived as early as 1952 by Lipidus and Amundson
5]. Incorporating also the evolution through time, a complete
ariation of the mass concentration can be expressed as a two-
imensional Gaussian function [6]

AL 2 2

(L, t) =

μL

√
2πut

e−(L−ut) /(2μ
L
ut) (4)

here AL is the integrated total peak area along the longitudinal
oordinate. A snapshot taken at any fixed time, say tp, yields a

ig. 1. Evolution of a sample plug on a length vs. time plane. The sample plug
s injected at L = 0 and t = 0, and a detector is placed at L = Lp that records the
rrival of the mass center at tp = L/u. The migration route of the peak summit is
arked by a solid line with dashed lines on both sides demarcating the standard

eviation (±1σL) boundaries. A spatial distribution pattern at t = tp is represented
y Eq. (5) along a vertical line, whereas a temporal curve (Eq. (6)), as might be
ecorded by the detector at L = Lp, is shown along a horizontal line.
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ass center, and the dashed lines illustrate the peak broadening. The peak curve
t a fixed time (tp = 40 s) marks a snapshot of the spatial pattern, whereas a
emporal cross section at a fixed position (Lp = 40 cm) depicted by the line mimics
he signal recorded on a recorder (see also Fig. 1).

liced pattern along the L axis as a spatial Gaussian curve (see
he example as demonstrated in Fig. 2)

(L) = AL

μL

√
2πutp

e−(L−utp)2/(2μ2
L
utp) (5)

On the other hand, what is recorded on the recorder located
t Lp is essentially a perpendicular cross section at (Lp, tp) (also
ee Fig. 2). For a temporal view at this point, all spatial peak
arameters should be transformed according to the followings:
he temporal peak area At = AL/u, the peak position tp = Lp/u, the
xpanding coefficient on t axis μ2

t = μ2
L/u, and the standard

eviation σt(t) = σL(t)/u. This axial transformation process has
een named the “convolution.” In another thought, the same
unction may be derived directly from Eq. (4) by letting the
eak position as a constant. Thus, the correct temporal peak
urve should be

(t) = At

μt

√
2πt

e−(t−tp)2/(2μ2
t t) (6)

If the spatial curve (Eq. (5)) is normalized to a temporal scale
y letting t = L/u, then the two curves can be overlapped on one
iagram as shown in Fig. 3. In this diagram, the temporal peak
osition (t∗p ) appears slightly earlier than does the spatial peak,

ith a slightly higher peak height h* = C(t∗p ) over that of the
patial peak height h = C(tp).

.3. The temporal shift

The shifting of the temporal peak summit t∗p from tp can be
erived mathematically by letting the result of the differentiation

f Eq. (6) as zero. A t∗p value can be found such that

dC

dt

∣∣∣∣
t=t∗p

= 0 (7)
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Fig. 3. Overlaying the normalized spatial pattern (Eq. (5) is transformed to a
L/u axis, the dashed line) and the temporal peak curve (Eq. (6), the solid line) on
the time scale (t or L/u). Assuming u = 1 cm s−1, At = 1, μt = 2 s1/2 and tp = 40 s,
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On the temporal scale, the standard deviation becomes√
he recorded peak will appear at tp = 38.05 s, with an observed peak height of
* = 0.0319, slightly higher than the expected h = 0.0315. The temporal shift in
his case is Φ = tp − t∗p = 1.95 s.

This equation can be easily simplified as

t∗p − tp)2 − 2t∗p (t∗p − tp) − μ2
t t

∗
p = 0 (8)

Since the difference between the two peak positions is defined
s Φ, (tp − t∗p = Φ or t∗p = tp − Φ), the above equation can be
earranged as

2 − (2tp + μ2
t )Φ + μ2

t tp = 0 (9)

The solution for Φ is therefore

=
(2tp + μ2

t ) −
√

4t2
p + μ4

t

2
(10)

If tp is large enough (or 4t2
p � μ4

t ), then the

erm
√

4t2
p + μ4

t ≈ 2tp, the Φ value will rapidly converge

o a fixed threshold (see Fig. 4)

≈ μ2
t

2
(11)

Therefore, the observed peak position t∗p should appear the-

retically ahead of the actual position tp and can be estimated
yt∗p ≈ tp − μ2

t /2. Reversely, the actual peak position should be

t tp ≈ t∗p + μ2
t /2.

ig. 4. The temporal shifting (Φ) as a function of tp and μt as shown in Eq. (10).
s tp grows, it quickly converges to μ2

t /2 (μt = 2 s1/2 in this example).
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.4. Peak heights

Also from Fig. 3, the height of a spatial peak at tp is

= At

μt

√
2πtp

(12)

But, the temporal peak height (denoted as h*) should refer to
he position at t = t∗p

∗ = At

μt

√
2πt∗p

e−(t∗p−tp)2/(2μ2
t t

∗
p ) (13)

The ratio (h*/h) between the two peak heights is

h∗

h
=

√
tp

(tp − Φ)
e−Φ2/[2μ2

t (tp−Φ)] (14)

Numerical verification shows that the first portion√
tp/(tp − Φ)) is always larger than 1, and that the second expo-

ential portion is always smaller than 1. In combination, h*/h is
lightly larger but rapidly merges to 1 when tp becomes large or
p � Φ (see Fig. 5). This means that the influence of the tempo-
al distortion effect is comparatively less significant to the peak
eight than to the peak position.

.5. In flow injection analysis

In a flow injection system, the peak expanding is mainly gov-
rned by a longitudinal dispersion–diffusion effect [4]. Although
dispersion” and “diffusion” should occur simultaneously, the
ormer is much larger in scale than the latter when the liquid is
owing. Therefore, the molecular diffusion can be ignored here.
he relationship between the peak standard deviation (σL) at a
pecific time and the dispersion coefficient D can be expressed
s

L(t) =
√

2Dt (15)
t(t) = σL(t)

u
= 2D

u2 t (16)

ig. 5. The ratio of the apparent peak amplitude (h* at t∗p ) vs. the expected spatial
eak height (h at tp) as evaluated according to Eq. (14) (Φ = 2 s). The first portion√

tp/(tp − Φ), represented by the top line) compensates the variation of the

econd portion (the bottom line), and renders h*/h to converge quickly to 1.
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The temporal expanding coefficient μt is

t =
√

2D

u2 (17)

If tp is large enough, the temporal shift (Eq. (11)) can be
pproximated by

≈ D

u2 (18)

hus, the temporal shift Φ is linearly proportional to the disper-
ion coefficient D of the flow system, and also the reciprocal of
he square of the flow speed u.

.6. In linear chromatography without dispersion

In linear chromatography, the expansion of a sample zone can
e considered as a “bulk” retention mechanism, which is corre-
ated to a dynamic equilibrium ratio k′′ of a substance between
he stationary and mobile phases [2,3]. The dispersion effect is
sually minimal due to the compact packing of the resin bed in
he column (i.e., D can be treated as zero here). The flow speed of
he mobile influent is still u, but the peak migration speed should
e um = u/(k′′ + 1). Spatially, the mass retention time is defined
s trm = Lc/um, whereas temporally, the peak position should be
ound at tr on the recorder. The difference is the temporal shift:

= tr − trm.
The expanding rate of the zone variance on the longitudinal

xis is

dσL(t)2

dt
= k′′

(k′′ + 1)2 u2f (19)

here f (unit: s) is a factor characterizing the physical conditions
f the system in use (to be small for high efficiency and vice
ersa). In fact, f is equivalent to the temporal scaling factor �t
n the discrete parcel model [2,3,7] (Note: u2f equals �L2/�t or
�L). Thus, the “longitudinal” standard deviation of the sample
one when reaching the detector at trm is

L(trm) =
√

k′′u2f

(k′′ + 1)2 trm (20)

The “temporal” standard deviation is obtained by further
ividing it by the migration speed.

t(trm) = σL(trm)

um
=

√
k′′ftrm (21)

Thus, the temporal expanding coefficient is

t =
√

k′′f (22)

When trm is large enough, the peak position shift at trm can
e approximated by

′′
√

2 ′′ 2 ′′

=

2trm + k f − 4trm + (k f )

2
≈ k f

2
(23)

In the dimensionless Parcel model when the physical fac-
or f is unique (both �L and �t are defined to be 1), the shift

p
k
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ill be approximately 0.5k′′. This gives a rational explanation to
he numerical verification of the temporal shift (Eq. (2)) in that

odel [2,3].

.7. With both retention and diffusion effects

If both retention and diffusion effects co-exist in a chromato-
raphic system, one may consider to add the individual variances
ogether and to give a summation

2
L = σ2

initial + σ2
retention + σ2

dispersion (24)

Assuming that the injection size is minimal, i.e.,σ2
initial ≈ 0,

he longitudinal variance is a linear function of time. When the
eak arrives at the detector at trm = Lp/um, the variance becomes

L(trm)2 = k′′u2f

(k′′ + 1)2 trm + 2Dtrm (25)

The combined temporal expanding coefficient is therefore

t =
√

k′′f + 2D(k′′ + 1)2

u2 (26)

nd the temporal shift can be expressed by

≈ k′′f
2

+ D(k′′ + 1)2

u2 (27)

The first term on the right-hand side of the equation is a contri-
ution of the retention nature of the column, whereas the second
erm is attributed mainly to the dispersion effect, with an addi-
ional (k′′ + 1)2 term acting as a magnifying factor. If k′′ = 0, it fits
IA cases with no retention; whereas when D approaches zero,

he equation matches the ideal case of linear chromatography.

.8. Predicting the scale of shifting

Even though the temporal shift for both FIA and chromatog-
aphy has been developed in mathematical ways, it can be almost
ure that the scale of such a shift is much larger for FIA than chro-
atography. The reason is clear; the dispersion coefficient D is

sually large (e.g. at 101–102 cm2 s−1 level) in a hollow tubing
ut small in a packed column (e.g. at 10−2–10−1 cm2 s−1 level).
he difference can be of several orders of magnitude. Besides,
oth Eqs. (23) and (27) contain a scaling factor f, which is pro-
ortional to the height equivalent to a theoretical plate (HETP).
or an efficient chromatographic column (with large plate num-
er), both the plate height and f are small. If D is also small,
hen the scale of the temporal shift that is calculated by Eq. (27)
ould only be as little as in millisecond units. On the other hand,

he scale of shifting for FIA is more significant and can be as
arge as few seconds.

. Restoration of an experimental peak
Following Section 2.4, the crossover of the spatial and tem-
oral peaks at the summits (where h* ≈ h) provides a “magic”
ey to retrieve the experimental expanding coefficient (denoted
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s μexp to distinguish it from the theoretical μt). Three basic
arameters can be obtained by the recorder: the experimental
eak area Aexp (equivalent to At), the peak position texp (equiv-
lent to t∗p ) and the apparent peak height hexp (equivalent to
*). The empirical expanding coefficient can be estimated by
exp = Aexp/hexp/

√
2πtexp. Then, by taking Φ = μ2

exp/2, a
emporal shift is obtained:

≈ A2
exp

4πtexph2
exp

(28)

With this value, together with Aexp, texp and μexp = √
2Φ, a

estoration equation is derived from Eq. (6)

(t) = Aexp√
4πΦt

e−(t−texp−Φ)2/(4Φt) (29)

This curve should generate a very similar shape to the experi-
ental peak with almost identical peak height and peak position,

s it has been demonstrated in the earlier work [1]. This quick
estoration process is very simple, and it does not require
nowing the channel or column length, flow speed, diffusion
oefficient, void time, partition ratio, or even the scaling factor.
ince the retention and diffusion effects are combined here as
single expanding behavior, the same treatment may apply to
oth FIA and linear chromatographic peaks.

Many previous researchers have already tried to use empir-
cal Gaussian functions to generate skewed peak shapes, but
heir focus was mainly based on the modification of the “stan-
ard deviation” term [8–11] without altering the experimentally
btained peak height and recorded peak position. In this study,
he merit is essentially laid on the modification of the “position”
erm. The consideration of the temporal shift makes the peak
unction more comprehensible in terms of physical meaning.

. Conclusion

Temporal shift is a hidden but surprising parameter. It
appens to be nearly half of the square of the temporal expand-
ng coefficient (Φ ≈ 0.5 μ2

t ) or half of the temporal variance
xpanding rate (Φ ≈ 0.5 dσ2

t (t)/dt) during the migration pro-

ess. In FIA, it may also be termed as the “temporal diffusivity.”
his finding opens a new insight into the skewed peak problems,
s the zone broadening and temporal shift can be shown to be
o closely related in such a simple way.

[

[

ogr. A 1139 (2007) 104–108

In analytical chemistry textbooks, the apparent peak position
t∗p for FIA, tr for chromatography) obtained from the recorder
as been customarily treated as a fundamental measurement of
hat system. If the observed peak position implies a shift from
ts real position in the spatial domain, then the traditional way
f calculating the dispersion coefficient D (or the k′′ value for
hromatography) would carry a small residue. This residue will
e accumulated in the further development of other parame-
ers. It would also cause misinterpretations in explaining an
xperimental peak shape.

The temporal shifting has not been identified until recently,
robably due to the intuitive impression of most scientists that
he observed peak position (tr) should equal “length/speed”
t = L/u), while neglect mass evolves simultaneously through
oth spatial and temporal dimensions. Mathematical derivation,
s provided in this paper, would be a key to further clarifica-
ions of existing theories. Application of the present concept on
he measurements of several physico-chemical parameters in a
eal flow injection system will be presented in a separate paper
mmediately following this one.
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