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bstract

A dispersion-convolution model is proposed for simulating peak shapes in a single-line flow injection system. It is based on the assumption that
n injected sample plug is expanded due to a “bulk” dispersion mechanism along the length coordinate, and that after traveling over a distance or a
eriod of time, the sample zone will develop into a Gaussian-like distribution. This spatial pattern is further transformed to a temporal coordinate
y a convolution process, and finally a temporal peak image is generated. The feasibility of the proposed model has been examined by experiments
ith various coil lengths, sample sizes and pumping rates. An empirical dispersion coefficient (D*) can be estimated by using the observed peak
osition, height and area (t∗p , h* and A∗

t ) from a recorder. An empirical temporal shift (Φ*) can be further approximated by Φ* = D*/u2, which
ecomes an important parameter in the restoration of experimental peaks. Also, the dispersion coefficient can be expressed as a second-order

2
√

olynomial function of the pumping rate Q, for which D*(Q) = δ0 + δ1Q + δ2Q . The optimal dispersion occurs at a pumping rate of Qopt = δ0/δ2.
his explains the interesting “Nike-swoosh” relationship between the peak height and pumping rate. The excellent coherence of theoretical and
xperimental peak shapes confirms that the temporal distortion effect is the dominating reason to explain the peak asymmetry in flow injection
nalysis.

2006 Elsevier B.V. All rights reserved.
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. Introduction

Flow injection analysis (FIA) was first introduced by Ruz-
ck and Hansen in 1975 [1], and has been widely adopted as
n efficient analytical tool in many scientific fields. Although
he principle seems to be well understood, Kolev [2] has sug-
ested that the theoretical foundation for generating a flow
njection peak is still far from complete due to the complexity of

echanisms involved (dispersion, convection and other kinetic
easons). He concluded that, in general, the Uniform Dispersion
odel (UDM) [3,4] and Random Walk Model (RWM) [5–7] are
heoretically preferred. But, they require difficult mathematics
nd computations, and thus have limited utilization in a practi-
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al system. On the other hand, the Tanks-in-Series Model (TSM)
8,9] and Axially Dispersed Plug Flow Model (ADPFM) [10]
ave gained more popularity not only because of the lesser math-
matics involved, but also due to the fact that it is not necessary
o know the exact flow pattern in a tubular system.

Apart from those models, several mathematical approaches
ave also been proposed to construct a peak curve including the
xponentially-Modified Gaussian functions (EMG) [11,12] and

he Polynomial-Modified Gaussian functions (PMG) [13–17].
ecently, a Temporally-Convoluted Gaussian equation (TCG)

18] has been developed which is not only the simplest, but also
ndicates that a very basic and long-ignored principle can be an
mportant key to solve the ambiguous skewed peak problems.
his equation involves only two basic principles: (1) that the

xpansion of the sample zone is proportional to the square root
f distance or time travelled; and (2) that the concentration pro-
le is gradually turned into a Gaussian-like distribution along

he tubular channel. The difference between this approach and

mailto:scpai@ntu.edu.tw
dx.doi.org/10.1016/j.chroma.2006.11.011


1 atogr. A 1139 (2007) 109–120

a
p
a
s
t
a
(
d
a
A
i
l
fi
w
o
s
d
w

2

2

F
d
n
t
d
(
a
h
t
T
c
(
a
p
a
W
p
t
m

d
l
C
t
A
s

2

a
m
t

Fig. 1. Parameters involved in an ideal single-line flow injection system. (i) A
sample plug with a concentration C0 (�M) and volume Vi (ml) is injected into
a tubular system, which has a cross-section of a (cm2) and the flow is pumped
at a rate of Q (ml s−1). The total tubular volume Vtotal (ml) is measured from the
center of the injector to the center of the detector, Vtotal = 0.5Vi + Vc + 0.5Vd. (ii)
The same system is plotted on an L coordinate, with an initial zone width Wi

(cm) = Vi/a, and an average flow speed u (cm s−1) = Q/a. The plug area remains
conservative during the migration (Area = C0Wi). (iii) The vertical coordinate is
converted to the recorder signal S, so the initial plug height is S0 = ηC0, where
η (signal-�M−1) is the sensitivity of the recorder. The plug area (AL, unit:
signal-cm) becomes AL = S0Wi. The initial plug can be converted to a hypo-
t
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ll previous models is that it includes a temporal convolution
rocess, in which all spatial parameters need to be convoluted
long a temporal coordinate so as to simulate the peak that is
hown on the recorder. Later, Pai and Chiao [19] have suggested
hat a “shift”, denoted as Φ, should exist universally between
n apparent peak position t∗p and its actual arrival time tp
Φ = tp − t∗p ) for any flow-type instrument with a single fixed
etector. When restoring an experimental peak, this Φ should be
dded to modify the peak position term of a Gaussian equation.
lso, the same Φ becomes a parameter to describe the expand-

ng nature of the flow system, for which Φ ≈ D/u2where D is a
ongitudinal dispersion coefficient and u the flow speed. Those
ndings have been combined, re-assessed and extended in this
ork, and a new model is proposed here and has been thor-
ughly examined and verified by experiments using a self-made
ingle-line flow injection system. The relationship between the
ispersion coefficient D and flow speed u (or pumping rate Q)
ill also be studied both theoretically and experimentally.

. Theoretical

.1. Parameters in a flow injection system

A typical single-line flow injection system is illustrated in
ig. 1 (i). The basic tubular channel consists of an injector and a
etector with a mixing coil in between. The corresponding inter-
al volumes are Vi, Vd and Vc, respectively. When summing up
he total tubular volume (Vtotal), only half of the injector and
etector volumes (Vi and Vd) are taken into account, i.e. Vtotal
unit: ml) = 0.5Vi + Vc + 0.5Vd [1]. Since the liquid is pumped
t a consistent rate Q (ml s−1), and the tubing is assumed to
ave a uniform cross-section area a (cm2), the average migra-
ion speed of the sample can be calculated as u (cm s−1) = Q/a.
he total channel length from the center of the injector to the
enter of the detector is Ltotal (cm), which is calculated by Ltotal
cm) = Vtotal/a. The mean residence time for the mass center to
rrive at the detector is tp (s) = Vtotal/Q or Ltotal/u. A sample
lug is characterized by an initial concentration C0 (�M) and
n injection volume Vi (ml). An equivalent initial zone width

i (cm) can be obtained by Wi = Vi/a. This sample plug can be
lotted on a “conc. versus length” diagram (Fig. 1(ii)), so that
he area is C0Wi (�M cm). The area remains constant during the
igration of the sample zone along the L coordinate.
To cope with the reading of the detecting device, the above

iagram needs to be further converted to a “signal versus
ength” plot (Fig. 1(iii)). Accordingly, the initial concentration

0 becomes S0 (signal units), where S0 = ηC0 and η is the sensi-
ivity (signal-�M−1) of the detector. The plug area, denoted as
L (signal-cm), remains S0Wi, even though the sample zone has
pread out after traveling over a distance.

.2. The Gaussian approximation
In the present study, the expanding of the sample zone is
ssumed to be attributed to a “bulk” longitudinal dispersion
echanism [20], which results in a Gaussian distribution pat-

ern after traveling a distance or a period of time. A Gaussian

l
s
f
a

hetical Gaussian distribution pattern with an initial standard deviation σL0 (cm)
Wi/

√
2π. The mean residence time for the mass center to arrive at the detector

s tp (s) = Vtotal/Q or Ltotal/u.

unction comprises three major parameters: the peak area AL,
he standard deviation σL at the detector, and the peak position
p. The latter two terms refer to a mean residence time tp at a
iven flow speed u. Therefore, at the detector, the standard devi-
tion is σL(tp) and the peak position Lp(tp) = utp. Accordingly,
he Gaussian pattern can be expressed by the following equation:

(L) = AL√
2πσL(tp)

e−(L−utp)2/(2σL(tp)2) (1)

he standard deviation at any instance is proportional to the
quare root of time, σL(t) ∝ √

t , and the expanding rate of the
ariance (dσL(t)2/dt) is a constant:

dσL(t)2

dt
= 2D (2)

here D (having a unit of cm2 s−1) is defined as the “bulk”

ongitudinal dispersion-diffusion coefficient at a constant flow
peed. It comprises two major fractions, i.e. Dd and Dm; the
ormer is “dispersion” coefficient in the longitudinal direction
nd the latter is the “molecular diffusion” coefficient. It should be
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oted here that once the liquid starts to flow, Dd is much larger
han Dm, therefore the symbol D in Eq. (2) can be regarded
xclusively as a longitudinal dispersion coefficient.Integration
f the above equation gives:

L(t)2 (cm2) = σ2
L0 + 2Dt (3)

here σ2
L0 refers to an initial variance at t = 0.

By combining Eqs. (1) and (3), the longitudinal peak pattern
t a given time tp can be written as:

(L) = AL√
2πσ2

L0 + 4πDtp

e−(L−utp)2/(2σL0
2+4Dtp) (4)

.3. The initial state

Although a sample plug may be small, the initial zone stan-
ard deviation σL0 should not be treated as zero, otherwise the
alculation of Eq. (4) will lead to infinity at t = 0. To avoid this
roblem, the initial standard deviation is defined here to be:

L0 (cm) = Wi√
2π

(5)

r σL0≈0.399Wi. With this definition, the initial peak height h
at t = 0) will be identical to the initial signal of the sample:

(t=0) = AL√
2πσL0

= AL

Wi
= S0 (6)

part from this initial state, the relationship between the
eak width and standard deviation at any other time is still
L(t) = 4σL(t).

.4. Convolution of a spatial pattern to a temporal image

When a sample zone passes through a detector located at
= Lp, the recorder will give out a peak on the temporal coor-
inate which is different in shape from the spatial distribution
attern. A convolution process is required to transform the spa-
ial image S(L) to a temporal function S(t). The transformations
f individual peak parameters (Lp(tp), AL and σL(tp)) from a
ongitudinal coordinate to a temporal axis (tp, At andσt(tp)) are
escribed below:

p(s) = Lp

u
(7)

t(signal-s) = AL

u
(8)

he standard deviation term is no longer fixed at a specific tp,
ut variable with time:

t(t)(s) = σL(t)

u
(9)

The resultant temporally convoluted Gaussian equation

TCG) [18,19] becomes:

(t) = At√
2πσL0

2/u2 + 4πDt/u2
e−(t−tp)2/(2σL0

2/u2+4Dt/u2)

(10)
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o
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his function imitates the temporal peak as normally seen on a
ecorder. It is not symmetrical, and the peak position appears at
∗
p , slightly earlier than the expected tp. The apparent peak height
*(at t = t∗p ) is slightly higher than the expected h (at t = tp).

A numerical test is illustrated in Fig. 2. Assuming that a
ow injection system is composed of 0.8 mm ID tubing, and

hat the carrier flow is running at a rate of Q = 0.04 ml s−1.
sample plug of Vi = 0.100 ml is injected with an initial sig-

al of S0 = 1.000, and three hypothetical detectors are located
t Ltotal = 200, 400 and 1000 cm. A hypothetical dispersion
oefficient (D) is designated as 100 cm2 s−1. The sample zone
rrives at the three detectors at tp = L/u=La/Q = 25.14, 50.27 and
25.68 s, respectively. The corresponding heights of the spatial
eaks are h = 0.1112, 0.0789 and 0.0500. When these peak pat-
erns are to be transformed onto a temporal axis, the apparent
eak positions (t∗p ) are 23.61, 48.72 and 124.11 s. The temporal
hifts are 1.53, 1.55 and 1.57 s, respectively. The apparent peak
eights (h*) are 0.1130, 0.0795 and 0.0502, and all are slightly
igher than the corresponding h.

.5. The temporal shift

The temporal shift (represents the shift of the peak position
rom an expected tp to an apparent t∗p , i.e. Φ(s) = (tp − t∗p ) is a
uite consistent value for a fixed flow system when tp is not too
mall. Its scale is related to both the dispersion coefficient D and
ow speed u. An approximate relationship has been derived as
19]:

(s) ≈ D

u2 (11)

hus, Φ can be calculated from D, but the latter may vary from
ystem to system so it needs to be estimated experimentally.

.6. The dispersion coefficient D of a given system

Each flow injection system will have a specific dispersion
oefficient D. However, it is almost impossible to obtain the

value directly from a “spatial” peak pattern because such a
attern is not available when using a single fixed detector. Prac-
ically, the D value could be estimated from “temporal” peak
arameters, but a “recursion” process is necessary.

According to Eq. (10), the temporal peak height h* should
ppear at t = t∗p :

∗ = S(t∗p ) ≈ At√
2πσ2

L0/u
2 + 4πDt∗p/u2

Z (12)

here Z is the exponential part of the Gaussian function:
= e−(t∗P−tp)2/(2σL0
2/u2+4Dt∗P/u2) (13)

t would be difficult to solve D directly from Eq. (12). However,
ne may first assume the temporal peak height h* is nearly equal
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Fig. 2. Diagrams illustrating the evolution of a sample plug on a length vs. time diagram, at given conditions. The upper left diagram showing the migration route
of the sample plug with two threshold boundaries (±σ (t)). Three detectors are located at L = 200, 400 and 1000 cm, respectively. The mass distributions (spatial
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eaks) of the sample arriving at the detectors are shown in the right diagram, w
eak positions (tp); triangles represent the observed peak positions (t∗p ); the latte
ith apparent heights (h*) slightly higher than that of spatial peaks (h).

o the spatial peak height h. In other words, one may first let Z=1:

∗ ≈ S(t∗p ) ≈ At√
2πσ2

L0/u
2 + 4πDt∗p/u2

(14)

first estimation of D can be obtained:

At
2u2 σ2

L0
(1st est.) =
4πh∗2t∗p

−
2t∗p

(15)

y putting this first approximated D into Eq. (13) and letting
p − t∗p = Φ ≈ D/u2, a Z value is obtained. This Z value is put

L
t
p
m

able 1
umerical test showing the fesibility of estimating the dispersion coefficient D values

s designated to be 100 cm2 s−1)

hannel length

total (cm)
Spatial peak Temporal peak

Position tp (s) Height h (abs) Position t∗p (s) Heig

200 25.14 0.1112 23.61 0.11
400 50.27 0.0789 48.72 0.07
000 125.68 0.0500 124.11 0.05

oth spatial and temporal peak data are generated by Eqs. (4) and (10). Conditions re
he estimated temporal shift is calculated by Φ (est.) = D (2nd est.)/u2.
total

s the temporal peaks are plotted in the bottom diagram. Circles denote the true
always slightly earlier than that expected by a nearly-consistent temporal shift,

ack into Eq. (12) and a second estimation of D is given:

(2nd est.) = A2
t u

2Z2

4πh∗2t∗p
− σ2

L0

2t∗p
(16)

A numerical test is demonstrated in Table 1 using the data
rovided in Fig. 2. In that system, the dispersion coefficient

has been designated as 100 cm2 s−1 and other conditions
At, u, σL0,. . .) are fixed. At each given observation point (e.g.

= 200, 400 or 1000 cm), a temporal peak is generated, and

hree peak parameters (A∗
t , t∗p and h*) are obtained from that

eak. By putting these data into the above equations, a first esti-
ation of D by Eq. (15) gives the values of 103.12, 101.62 and

from temporal peak parameters by a recursion calculation method (the D value

Temporal
shift Φ (s)

Estimation of D and Φ values

ht h* (abs) D (1st est.)
(cm2 s−1)

D (2nd est.)
(cm2 s−1)

Φ (est.) (s)

30 1.53 103.12 99.62 1.57
95 1.55 101.62 99.96 1.58
02 1.57 100.43 99.79 1.58

fer to Fig. 2. The iterating estimation of the D value follows Eqs. (15) and (16).
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00.43 cm2 s−1, respectively, with errors up to 3.12%. Through
second estimation, the D values are more accurate (99.62,

9.96 and 99.79 cm2 s−1), and the errors are effectively reduced
o less than 0.4%. Although more iterations can be done, the
esults from the second estimation are deemed close enough to
he original value of D = 100 cm2 s−1. In this case, a temporal
hift (Φ) of ca. 1.58 s can be estimated for this system, which
s close to the theoretical values of 1.53–1.57 s. This numerical
est demonstrates that the D value of a system can indeed be
etrieved from experimental peak parameters.

. Experimental

.1. Instrument layout

A flow injection system was assembled as illustrated in Fig. 3.
t consisted of (i) a speed-adjustable peristaltic pump; (ii) a
heodyne six-port injector with a changeable sample loop to
ive a specific injection size; (iii) a changeable mixing coil made
y winding a desired length of Teflon tube (0.8 mm ID) onto a
cm diameter supporting rod; (iv) a Shimadzu 160A double
eam spectrophotometer installed with a Hellma flow cuvette
1 cm light path with a capacity of 31 �l).

The spectrophotometer was operated in the “time-scan”
ode, so absorbance readings Sexp(t) were recorded sequentially

fter the sample injection at required intervals (�t = 0.1–5 s).

.2. Dye solution

A food dye “blue #1” solution (maximum absorptivity at
29 nm) was prepared for the injection test. The absorbance of
test sample when filled up into the flow cuvette was regarded

s the initial signal S0.

.3. Volumetric measurement

The actual sample volume injected (Vi) was identified by

njecting a dense dye solution into the injector and collecting the
ffluent in a 100 ml graduated flask and diluting to the mark. The
olume was calculated by comparing the absorbance that was
btained by adding a known volume of the same dye solution and

ig. 3. The flow injection device used in this study consists of a peristaltic pump,
6-port injector with a sample loop, a mixing coil of designated length, and a
ellma flow cuvette (1 cm, 31 �l) installed in a Shimadzu 160A spectropho-

ometer.

e
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iluting to the same volume. In this way, Vi could be measured to
precision of better than ±2 �l. The volume of the flow channel

Vc, including the coil and connectors) and the detector (Vd) was
lso estimated in a similar way by filling with a dye solution and
hen draining it out for quantification. The pumping rate (Q) was

easured just prior to each experiment by weighing the outflow
ater in a dry beaker over a suitable time span.

.4. Calculation of channel length

A series of coils were made of 0.8 mm ID Teflon tube, which
ave a cross section area of a = 0.005027 cm2. The length of
ach coil was decided not by a ruler, but calculated from the
olumetric measurement. For example, the capacity of a coil
as measured to be Vc = 2.12 ml, and then its length was cal-

ulated to be Lc = Vc/a=422 cm. The half of the cuvette volume
lus connecting tubing was estimated to be ca. 0.18 ml, which
as equivalent to 36 cm in length. The combined length was
22 + 36 = 458 cm. When an injection volume of Vi = 0.112 ml
as applied, the initial width was Wi = 22.28 cm. An extra length
f 0.5Wi = 11.14 cm should be added to compensate for the ini-
ial shift of the mass center. In this way, the total channel length
Ltotal) of this case was calculated to be ca. 469 cm.

.5. Measurements of peak parameters

The injection of a sample and the switching-on of the recorder
ere controlled simultaneously. Each injection action produced
temporal peak on the recorder, which provided a temporal peak
osition t∗p and an apparent peak height h*. The experimental
emporal peak area (denoted as A∗

t ) was estimated by sum-
ing up all absorbance values S(t) and multiplying the recording

nterval �t, i.e. A∗
t = ΣS(t) × Δt.

.6. Calculation of the empirical D*

In Section 2.6, the dispersion coefficient can be theoretically
stimated by Eqs. (12)–(16), but experimentally the flow speed
and initial standard deviation σL0 still can not be directly mea-

ured. Also, the flow injection device may involve some physical
ffects other than the longitudinal dispersion alone. For practical
easons, the pumping rate Q and injection volume Vi are used
nstead of u and σL0, and the experimentally retrieved D value
n the following sections is named the “empirical” dispersion
oefficient and denoted as D*.

Since u = Q/a, σL0 = Wi/
√

2π and Wi = Vi/a, the first approx-
mation of D by Eq. (15) is rewritten as:

∗(1st est.) = A∗2
t Q2 − V 2

i h∗2

4πa2h∗2t∗p
(17)

he temporal shift estimated from experimental data should also

e empirical and is denoted as Φ* ≈ D* a2/Q2. Similarly, Eq.
13) becomes:

∗ = e−(D∗2a4π)/(Q2(V 2
i +4πD∗a2t∗p ) (18)
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y putting Z* back into consideration, a second estimation is
btained by:

∗(2nd est.) = A∗2
t Q2Z∗2 − V 2

i h∗2

4πa2h∗2t∗p
(19)

he unit for D* is cm2 s−1.

.7. Restoration of experimental peaks

To restore an experimental peak, it is necessary to compose
hree peak parameters, i.e. the temporal peak area (A∗

t ), the peak
osition tp and the standard deviation (σt (t)) into the TCG equa-
ion (Eq. (10)). The peak position (tp) can not be read from the
ecorder but can be estimated by adding a shift Φ* to the apparent
eak position t∗P, i.e. tp = t∗p + Φ∗.

The longitudinal standard deviation is:

L(t) (cm) =
√

σ2
L0 + 2D∗a2t/Q2 (20)

hich needs to be converted to a temporal standard deviation:

t(t)(s) = σL(t)

u
=

√
σL0

2 + 2D∗t
u2 (21)

Accordingly, a restored peak function S′(t) is expressed as:

′(t) = A∗
t√

2πσ2
L0/u

2 + 4πD∗t/u2

× e−(t−t∗p−D∗/u2)
2
/(2σ2

L0/u
2+4D∗t/u2) (22)

hen, σL0 and u are replaced by Vi and Q (σ2
L0 = V 2

i /(2πa2));
= Q/a):

′(t) = A∗
t Q√

V 2
i + 4πa2D∗t

e−(t−t∗p−D∗a2/Q2)
2
πQ2/(V 2

i +4πa2D∗t)

(23)

urthermore, since Φ* ≈ D*a2/Q2, it can also be written as:

′(t) = A∗
t√

V 2
i /Q2 + 4πΦ∗t

e−(t−t∗p−Φ∗)2/(V 2
i /(πQ2)+4Φt) (24)

The peaks that restored by either Eq. (23) or Eq. (24) are
dentical.

.8. The residue curve

The difference between a restored peak S’(t) and the original
xperimental peak Sexp(t) is in a crooked shape, which has been
amed here the residue curve:

(t) = S′(t) − S (t) (25)
exp

he amplitude of this residue curve (maximum to minimum)
ndicates the offset from the theoretical simulation quantita-
ively, which may include the influences of some physical effects
ther than the longitudinal dispersion.
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w
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. Results and discussion

.1. Peak reproducibility

The reproducibility of peaks generated by the flow injec-
ion system was quite good judging visually by overlapping
eplicated peaks on one diagram. Moreover, it was evaluated
uantitatively by measuring the variations of the peak posi-
ion, height and area (i.e. t∗p , h* and A∗

t ). A test was made
or the system using an injection volume (Vi) of 0.499 ml and

mixing coil length (Lc) of 328 cm, running at a pumping
ate (Q) of 0.024 ml s−1. The average peak appearance time
as: t∗p = 63.4 ± 0.3 s (n = 7); the average peak height was:
*=0.394 ± 0.003 (n = 7); and the average peak area was: A∗

t =
2.43 ± 0.08 (n = 7). All showed a relative precision (RSD) of
etter than ±1%. However, it was noticed that when the coil
ength was too short (Lc < 70 cm), or the pumping rate was
oo fast (Q > 0.3 ml s−1), erratic peak shapes would occur. The
eproducibility was less satisfactory in those extreme conditions.

.2. Effect of coil length

According to Ruzick and Hansen’s textbook [1], changing
he coil length from short to long will cause a longer peak
ppearance time and lower peak height, but the peak area will be
onserved. These were proved experimentally and the data are
hown in Table 2. In this experiment, a series of coils (Lc = 70,
12, 215, 328 and 422 cm) were used. The flow system was
unning at a constant pumping rate of Q = 0.016 ml s−1. The
njection volume for all tests was 0.112 ml. A dye solution
absorbance S0 = 2.4) was used for the injection.

In Fig. 4(A), the delay of the peak position was proportional
o the increase of coil length (t∗p = 33.3, 48.5, 80.0, 113.5 and
44.3 s, respectively). The peak height dropped exponentially,
.e. h* = 0.556, 0.458, 0.366, 0.318 and 0.299, respectively. The
eak areas were almost equal at 15.6 ± 0.2 for all tested coil
engths.

Calculation of the empirical dispersion coefficient (D*) was
ade by Eqs. (17)–(19) using the above data, to be between

5.2 and 18.4 cm2 s−1. A slightly decreasing trend was found
or D* as the coil length increased. Although this phenomenon
as not expected, it was understood that the system in use was
ot perfect. Thus, a larger dispersion might occur in the irregular
pace in the injector and detector, but this defect would have been
educed as the coil length increased. The temporal shifts were
stimated by Φ* = D*a2/Q2, to be in the range of 1.50–1.90 s.

.3. Effect of injection volume

An experiment was done by changing the sample loop with 7
izes (total injection volume ranged from 0.046 to 0.573 ml, see
able 2) and the resultant peak shapes were recorded. The coil

ength used in this experiment was 328 cm, and the system was

unning at a pumping rate of Q = 0.016 ml s−1. A dye solution
ith an absorbance of S0 = 0.89 was used for the injection. In
ig. 4(B) it can be seen that the peak appearance time for the
mallest volume (Vi = 0.046 ml) was found at 111.3 s and gradu-
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Table 2
Experimental conditions and resultant peak data

No. Experimental conditions Observed peak data Calculation

Lc (cm) Q (ml s−1) Vi (ml) S0 (abs) t∗p (s) h* (abs) A∗
t (abs s) D* (cm2 s−1) Φ* (s)

Changing coil length
1 70 0.016 0.112 2.4 33.3 0.556 15.30 16.7 1.75
2 112 ” ” ” 48.5 0.458 15.71 18.4 1.90
3 215 ” ” ” 80.0 0.366 15.50 17.4 1.72
4 328 ” ” ” 113.5 0.318 15.55 16.5 1.63
5 422 ” ” ” 144.3 0.299 15.80 15.2 1.50

Changing injection volume
6 328 0.016 0.046 0.89 111.3 0.050 2.35 15.8 1.56
7 ” ” 0.066 ” 112.5 0.075 3.52 15.7 1.55
8 ” ” 0.112 ” 114.0 0.120 5.81 16.1 1.59
9 ” ” 0.227 ” 117.0 0.229 11.80 16.8 1.55

10 ” ” 0.344 ” 120.5 0.319 17.12 16.1 1.58
11 ” ” 0.450 ” 124.5 0.408 23.25 15.8 1.56
12 ” ” 0.573 ” 128.8 0.482 29.37 15.1 1.49

Changing pumping rate
13 422 0.0038 0.112 2.49 633 0.425 67.62 1.8 3.02
14 ” 0.0065 ” ” 377 0.360 40.23 4.3 2.58
15 ” 0.014 ” ” 179.0 0.302 19.55 12.2 1.83
16 ” 0.016 ” ” 144.0 0.295 15.80 15.7 1.55
17 ” 0.034 ” ” 71.8 0.275 7.88 40.8 0.89
18 ” 0.051 ” ” 47.1 0.275 5.34 64.3 0.62
19 ” 0.138 ” ” 17.5 0.272 2.01 186.8 0.24
2 1
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lly delayed to 128.8 s for the largest injection size of 0.573 ml.
he peak heights increased exponentially, and the peak areas
ere increased proportionally with the injection volume, as they

hould be. The results of the D* calculation are listed in Table 2
nd plotted in Fig. 4(B). All values were found almost equal at
5.9 ± 0.5 cm2 s−1. The temporal shifts (Φ*) in this case were
hen estimated to be ca. 1.56 s.

.4. Effect of pumping rate

The experimental conditions were: Vi = 0.112 ml,
c = 422 cm. A dye with an absorbance of ca. 2.49 was
sed. The pumping rate was adjusted from Q = 0.0038 to
.277 ml s−1. Experimental data are listed in Table 2, and were
lotted against the pumping rate Q (Fig. 5(A)) and also, its
eciprocal 1/Q (Fig. 5(B)). The peak appearance time t∗p was
ound to be in a parabolic relationship with the pumping rate
. This was confirmed by the linear line when the same data
ere plotted against 1/Q. Similar relationship was also found
etween the peak area A∗

t and Q.
The most interesting part was the effect of changing the

umping rate to the peak height h*. At the slowest pump-
ng rate (Q = 0.0038 ml s−1), h* was 0.425. When the pumping
ate was increased to 0.034–0.138 ml s−1, the peak height was
ecreased to 0.272–0.275, but then increased to 0.298 at the

astest pumping rate of 0.277 ml s−1. The h*(Q) curve looks
uite like a “Nike” shape (the “swoosh”), with a minimum at
round Q = 0.1 ml s−1. A similar relationship can also be found
n the h* versus 1/Q diagram.

p
e
c
t

1.6 0.284 1.35 262.8 0.15
8.8 0.298 1.03 323.4 0.11

On the D* versus Q diagram, the relationship is even more
nteresting. The correlation curve is not a linear one but shows
n “S” shape (a slight turning at the bottom and top ends of the
urve). When the pumping rate was minimal, D* approached
early zero. This is reasonable because in a static situation only
he molecular diffusion should be taken into account, which is
t the level of 10−5 cm2 s−1. This relationship will be further
iscussed in a latter section (Section 4.6).

The temporal shift calculated could be as large as 3 s when
he system was operating at the slowest pumping rate of
.0038 ml s−1, but rapidly dropped to almost nothing when the
umping rate was faster than 0.138 ml s−1.

.5. Restoration of experimental peaks

Each of the above experimental peaks provide three basic
eak parameters (i.e. t∗p , A∗

t and h*) and two calculated terms (i.e.
he empirical dispersion coefficient D* and temporal shift Φ*).

ith this information, an experimental peak can be restored by
q. (24). A total of 21 peaks were generated in this way and dis-
layed in Figs. 6 and 7. Each peak was numbered according to the
xperimental conditions listed in Table 2. The original recorder
rack (the experimental peak) was overlapped for comparison.
he residue curve for each peak pair was also plotted.

In general, all peaks fit amazingly well if judged by the peak

ositions and heights, as well as the trends of asymmetry. How-
ver, small differences at the root of both sides of each peak
an be identified on the diagrams. For most cases, the ampli-
ude of the residue curve (normalized as % of the peak height)
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Fig. 4. Effects of changing (A) the coil length Lc and (B) the injection volume Vi

to the peak parameters (i.e. peak position t∗p , peak area A∗
t and peak height h*),
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Fig. 5. Effect of the pumping rate to the peak parameters, dispersion coeffi-
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mpirical dispersion coefficient D* and temporal shift Φ*. The pumping rate
or all tests was at Q = 0.016 ml s−1. Other conditions: Vi=0.112 ml and S0 = 2.4
or the experiment (A); Lc = 328 cm and S0 = 0.89 for the experiment (B).

ies between +5% and −3%, but can exceed ±10% when (i) the
oil length is too short (i.e. Lc <112 cm); (ii) the injection vol-
me is too large (i.e. Vi > 0.450 ml); and (iii) the pumping rate
s too fast (i.e. Q > 0.208 ml s−1). Under these conditions, some
hysical mechanisms, classified as spatial asymmetrical factors,
lthough minor, indeed exist in the flow system. Nonetheless, it
hows that the temporal distortion effect is still the major fac-
or controlling the peak-shape in flow injection analysis; further
roofs since the first introduction of the concept several years
go [18].

.6. The “Nike” swoosh
The interesting relationship between the pumping rate Q and
he apparent peak height h* (the “Nike” swoosh) was studied
urther. This phenomenon is quite similar to the two trends of
ispersion variation that was described by Li and Ma [21]. It

i
s

D

ient and temporal shift. Data were plotted against (A) Q and (B) 1/Q. The
xperimental conditions were: Lc = 422 cm, Vi = 0.112 ml and S0 = 2.49.

an be seen that in Fig. 5(A), when Q was decreased, the peak
ppearance time was delayed, the peak became wider but the
eak height (h*) was “growing” higher. This last phenomenon
s counter-intuitive that the peak height should be lower due to
he longer residence time for dispersion. The only explanation
ould be that the dispersion is a function of the pumping rate
, i.e. D* becomes smaller when Q is slower.
Taking the data provided in Table 1, an empirical correlation

as obtained by a fifth-order polynomial curve fitting (with no
ntercept):

∗(Q) = δ1Q + δ2Q
2 + δ3Q

3 + δ4Q
4 + δ5Q

5 (26)

here δ1 = 729.3, δ2 = 17637, δ3 = −164538, δ4 = 615341 and
5 = −832415. However, when an intercept was allowed (ignor-
ng the data at the slowest pumping rate), a much simpler

econd-order equation could be obtained:

∗(Q) = δ0 + δ1Q + δ2Q
2 (27)
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Fig. 6. Restoration of experimental peaks by the proposed equation. Each peak was numbered referring to the conditions listed in Table 2. Peaks #1–5: the coil length
was changed from 70 to 422 cm. Peaks # 6–12: the injection volume was changed from 0.046 to 0.573 ml. Solid line: experimental peaks; dashed line: restored peaks
by Eq. (24). The residue curve is also plotted under each peak pair.
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ig. 7. Experimental and restored peaks for changing the pumping rate from 0.
n Table 2. Descriptions of peak curves are the same as Fig. 6.

here δ0 = −5.3, δ1 = 1515 and δ2 = −1161, with units of
m2 s−1, cm−1 and cm−4 s, respectively.

The use of the “negative” intercept (δ0) reduces the complex-
ty of the function from a 5th-order to a 2nd-order, but it may
e debatable even though it is just a mathematical fitting. If one
nlarges the bottom part of the D*(Q) curve shown in Fig. 5,
he D* value becomes relatively small when the pumping rate

is less than 0.0065 ml s−1. Additional tests using extremely
low pumping rates (Q between 0.0005 and 0.003 ml s−1) show
hat the D* value approaches gradually to zero (the sample plug
akes more than 1000 s to arrive at the detector). Theoretically,
hen the flow is almost stationary, turbulence in the mixing coil
s minimal, so the longitudinal dispersion is less impacted by the
ariation of the pumping rate. If the flow is completely stopped,
hen only the molecular diffusion is in charge, which should be
very small constant independent of the pumping rate.

r
p
r
0

o 0.277 ml s . Peak numbers (#13–21) refer to experimental conditions listed

Nonetheless, since the scale of the second term is dominating,
t can be stated that the magnitude of dispersion in a flow injec-
ion system is basically proportional to the pumping rate within a
imited working range (e.g. Q between 0.0065 and 0.277 ml s−1

n this work).
Accordingly, the temporal shift also becomes a function of

:

∗(Q) = −0.00013Q−2 + 0.03829Q−1 − 0.0293 (28)

With Eqs. (27) and (28), one can generate peaks for a flow
njection system at any given pumping rate within the valid

ange. Examples are given in Fig. 8. In this simulation, a sample
lug (Vi = 0.112 ml) was injected into a flow system at pumping
ates of 0.01, 0.015, 0.02, 0.03, 0.05, 0.07, 0.10, 0.15, 0.2,
.3 and 0.35 ml s−1, respectively. Three hypothetical detectors
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Fig. 8. Numerical simulations of the flow injection peaks at various pumping
rates. A sample is injected into a flow system running at Q = 0.01, 0.015, 0.02,
0.03, 0.05, 0.07, 0.1, 0.15, 0.2, 0.25, 0.3 and 0.35 ml s−1, respectively. Other
conditions are Vi = 0.112 ml, S0 = 2.49, δ0 = −5.3, δ1 = 1515, δ2 = −1161. The
migration routes are plotted on an L vs. t diagram, with three hypothetical detec-
tors located at L = 100, 200 and 469 cm, respectively. The peaks generated at all
three positions show a “Nike” trend on peak height, while the peak areas are
p
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Fig. 9. The lowest point of the “Nike swoosh” is found at a pumping rate of
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The three peak parameters (h*, t∗p and A∗
t ) can also be used to
roportional to 1/Q.

ere located at Ltotal = 100, 200 and 469 cm. Other conditions
ere: a = 0.005027 cm2; S0 = 2.49. The peak shapes generated

t each detecting position were plotted on an overlapped
iagram (Fig. 8). It can be seen that the peak areas expand in
roportion to 1/Q. The peak heights (h*) are relatively high
t very fast pumping rates, but drop slightly as the pumping
ate decreases, then raise when the pumping rate becomes very

low, an exact “Nike” trend like the experimental results shown
n Fig. 5(A).

g
w

= δ0/δ2. Circles are simulated peak heights from Fig. 8 assuming that
he detecting position is at L = 100, 200 and 469 cm, respectively. Dots are
xperimental data for Ltotal = 469 cm taken from Table 2.

The apparent peak height h* at a position t∗p can be roughly
stimated (ignoring the initial σL0) by:

∗(t∗p ) ≈ A∗
t√

4πD∗t∗pa2/Q2
(29)

here all three variables (i.e. t∗p , A∗
t and D*) are func-

ions of Q. Among these, A∗
t (Q) = ALa/Q, t∗p (Q) ≈

ca/Q, and D∗(Q) = δ0 + δ1Q + δ2Q
2. In combination, h∗ ∝

Q/D∗(Q), or

∗ ∝
√

Q

δ0 + δ1Q + δ2Q2 (30)

his explains why the h*(Q) curve looks like a “Nike” shape,
nd why there exist two dispersion trends in a flow system. To
ocate the lowest point, a further differentiation of h*(Q) was

ade, which led to an equation:

0 − δ2Q
2 = 0 (31)

Thus, the lowest peak height should occur at a pumping rate
f

′ =
√

δ0/δ2 (32)

In the present case (see Fig. 9), δ0 = −5.3 and δ2 = −1161,
herefore Q′ = 0.0676 ml s−1. In flow injection analysis, it is
lways expect that the sample zone should mix with reagents
t the largest dispersion; therefore, the optimal pumping rate
opt should be at Q′. Up to this point, one may interestingly
nd that all the above descriptions for FIA are very similar to

he search for an optimal flow rate for chromatography by the
amous van Deemter equation.

.7. Throughput
ive a measure of the analysis speed of a flow injection system
ith a fixed channel length operating at a given pumping rate.
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ince h* can be expressed as:

∗ ≈ A∗
t√

2πσt
(33)

here σt is the temporal standard deviation when the sample
one arrives at the detector at t∗p . The temporal width of a peak

t is defined as Wt = 4σt, therefore,

t = 4A∗
t√

2πh∗ (34)

By taking this width as a minimum time span to separate
wo sequentially injected samples, a maximum throughput R
samples per hour) can be reasonably defined by:

(h−1) = 3600

Wt(s)
(35)

. Conclusion

The present model has successfully demonstrated its use-
ulness in simulating peak shape, position and height for flow
njection analysis. It is much simpler than most previous mod-
ls, but the result matches all the characteristics that have been
ustomarily used to describe the expanding nature of an injected
ample plug in a tubular channel.

The model has several improvements over the previous work
18,19]:

(i) The sample size and the initial standard deviation have been
included, which enables the modeling be feasible even when
the sample size is not a small plug.

ii) An observed dispersion coefficient D* has been defined,
which can be reasonably estimated from the measure-
ments of the experimental peak position, height and
area.

ii) An empirical temporal shift Φ* can be calculated from D*.
It is nearly a constant for a given flow system operating at
a fixed pumping rate. One can use it to modify the position
term of a Gaussian function, so as to restore an experimental
peak.

iv) The relationship between D* and the pumping rate
Q has been related by an empirical function, i.e.

D*(Q) = δ0 + δ1Q + δ2Q2. The modeling of peak shapes can
therefore be applied at different pumping rates.

v) The optimal operation for a flow injection system can be
find at a pumping rate of Qopt = √

δ0/δ2.

[

[

A 1139 (2007) 109–120

However, small deviations on the peak shape due to physical
ffects cannot be denied. It could mean that the development of a
ample band might not be completely symmetrical in the initial
tage. If one insists, a further modification on the longitudinal
tandard deviation term (expressed as a polynomial function
f time) [13–17] may be carried out. In this way, the spatial
istribution pattern will become asymmetrical, and an even more
kewed temporal peak image could be generated by a similar
onvolution process that has been described in this work.
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