

New cytotoxic steroids from the soft coral Clavularia viridis

Chang-Yih Duh^{a,b,*}, I-Wen Lo^a, Shang-Kwei Wang^c, Chang-Feng Dai^d

^a Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan

^b Center of Asia-Pacific Marine Researches, National Sun Yat-sen University, Kaohsiung, Taiwan

^c Department of Microbiology, Kaohsiung Medical University, Kaohsiung, Taiwan

^d Institute of Oceanography, National Taiwan University, Taipei, Taiwan

ARTICLE INFO

Article history: Received 6 January 2007 Received in revised form 16 March 2007 Accepted 16 March 2007 Published on line 30 March 2007

Keywords: Steroids Clavularia viridis Cytotoxicity

1. Introduction

The genus Clavularia has afforded many types of bioactive prostanoids, terpenoids and steroids [1–11]. As part of our search for bioactive substances from marine organisms, the soft coral Clavularia viridis Quoy and Gaimard (class Anthozoa, subclass Octocorallia, order Stolonifera) was studied because the CH_2Cl_2 extracts showed significant cytotoxicity to HT-29 (human colon adenocarcinoma), and P-388 (mouse lymphocytic leukemia) cell cultures as determined by standard procedures [12,13]. Bioassay-guided fractionations of the CH_2Cl_2 extracts resulted in the isolation of ten new cytotoxic steroids, stoloniferones H–Q (1–10).

ABSTRACT

Ten new cytotoxic steroids, stoloniferones H–Q (1–10) were isolated from the methylene chloride solubles of the soft coral *Clavularia viridis*. The structures of the metabolites were elucidated on the basis of spectroscopic (IR, MS, and 1D and 2D NMR) analysis and their cytotoxicity against selected cancer cells was measured *in vitro*.

© 2007 Elsevier Inc. All rights reserved.

2. Experimental

2.1. General

Optical rotations were determined on a JASCO DIP-181 polarimeter. UV spectra were obtained on a Shimadzu UV-160A spectrophotometer, and IR spectra were recorded on a Hitachi 26–30 spectrophotometer. The NMR spectra were recorded on Bruker Avance 300 NMR spectrometer at 300 MHz for ¹H and 75 MHz for ¹³C, respectively, in CDCl₃ using TMS as internal standard. ESIMS spectra were obtained with a Bruker APX II mass spectrometer. Si gel 60 (Merck, 230–400 mesh)

^{*} Corresponding author. Tel.: +886 7 5252000x5036; fax: +886 7 5255020. E-mail address: yihduh@mail.nsysu.edu.tw (C.-Y. Duh).

⁰⁰³⁹⁻¹²⁸X/\$ – see front matter © 2007 Elsevier Inc. All rights reserved. doi:10.1016/j.steroids.2007.03.010

was used for column chromatography; precoated Si gel plates (Merck, Kieselgel 60 F_{254} , 0.25 mm) were used for TLC analysis.

2.2. Animal material

The soft coral *Clavularia viridis* was collected at Green Island, off Taiwan, in July 2003, at a depth of 2–3 m and was stored for 1 month in a freezer until extraction. A voucher specimen, NSUGN-061, is deposited in the Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Taiwan.

2.3. Extraction and isolation

The bodies of the soft coral *C. viridis* were freeze dried to give 1.90 kg of a solid, which was extracted with CH₂Cl₂ (5.0 $l \times 3$). After removal of solvent in vacuo, the residue (80 g) was chromatographed over silica gel 60 using *n*-hexane and *n*-hexane/EtOAc mixtures of increasing polarity. Elution by *n*-hexane/EtOAc (60:40 v/v) afforded fractions containing compounds **8–10**. Elution by *n*-hexane/EtOAc (50:50 v/v) afforded fractions containing compounds **8–10**. Elution by *n*-hexane/EtOAc (50:50 v/v) afforded fractions containing compounds **1–7**. Compounds **1–7** were further purified by C₁₈ HPLC column using MeOH/H₂O (86:14 v/v) as solvent system. Compounds **8–10** were further purified by C₁₈ HPLC column using MeOH/H₂O (88:12 v/v) as solvent system.

2.3.1. Stoloniferone H (1)

Colorless amorphous solid; $[\alpha]_D^{25} = +15.0$ (c=0.1, CHCl₃); UV (MeOH) λ_{max} 224 nm (log ε 3.56); IR ν_{max} 3420, 1653 cm⁻¹; ¹H NMR see Table 1; ^{13}C NMR see Table 2; HRESIMS m/z 467.3134 (calcd for $C_{28}H_{44}O_4\text{Na},$ 467.3137).

2.3.2. Stoloniferone I (2)

Colorless amorphous solid; $[\alpha]_D^{25} = +12.0$ (c = 0.1, CHCl₃); UV (MeOH) λ_{max} 225 nm (log ε 3.58); IR ν_{max} 3430, 1656 cm⁻¹; ¹H NMR see Table 1; ¹³C NMR see Table 2; HRESIMS *m*/z 467.3134 (calcd for C₂₈H₄₄O₄Na, 467.3137).

2.3.3. Stoloniferone J (3)

Colorless amorphous solid; $[\alpha]_D^{25} = +26.0 \text{ (c}=0.1, \text{ CHCl}_3)$; UV (MeOH) λ_{max} 224 nm (log ε 3.46); IR ν_{max} 3400, 1658 cm⁻¹; ¹H NMR see Table 1; ¹³C NMR see Table 2; HRESIMS *m*/z 459.3476 (calcd for C₂₉H₄₇O₄, 459.3474).

2.3.4. Stoloniferone K (4)

Colorless amorphous solid; $[\alpha]_D^{25} = +18.0$ (c=0.1, CHCl₃); UV (MeOH) λ_{max} 223 nm (log ε 3.38); IR ν_{max} 3480, 1657 cm⁻¹; ¹H NMR see Table 1; ¹³C NMR see Table 2; HRESIMS *m*/z 469.3291 (calcd for C₂₈H₄₆O₄Na, 469.3294).

2.3.5. Stoloniferone L (5)

Colorless amorphous solid; $[\alpha]_D^{25} = -45.0$ (c = 0.1, CHCl₃); IR ν_{max} 3439, 1703 cm⁻¹; ¹H NMR see Table 3; ¹³C NMR see Table 2; HRESIMS *m*/z 445.3319 (calcd for C₂₈H₄₅O₄, 445.3318).

2.3.6. Stoloniferone M (6)

Colorless amorphous solid; $[\alpha]_D^{25} = -42.0$ (c = 0.1, CHCl₃); IR ν_{max} 3441, 1705 cm⁻¹; ¹H NMR see Table 3; ¹³C NMR see Table 2; HRESIMS *m*/z 481.3292 (calcd for C₂₉H₄₆O₄Na, 481.3294).

2.3.7. Stoloniferone N (7)

Colorless amorphous solid; $[\alpha]_D^{25} = -23.0$ (c = 0.1, CHCl₃); IR ν_{max} 3443, 1705 cm⁻¹; ¹H NMR see Table 3; ¹³C NMR see Table 2; HRESIMS *m*/z 469.3292 (calcd for C₂₈H₄₆O₄Na, 469.3294.

2.3.8. Stoloniferone O (8)

Colorless amorphous solid; $[\alpha]_D^{25} = +10.0$ (c=0.1, CHCl₃); UV (MeOH) λ_{max} nm (log ε) 314 (4.20); IR ν_{max} 3409, 1652 cm⁻¹; ¹H NMR see Table 4; ¹³C NMR see Table 2; HRESIMS *m*/z 449.3029 (calcd for C₂₈H₄₂O₃Na, 449.3031).

2.3.9. Stoloniferone P (9)

Colorless amorphous solid; $[\alpha]_D^{25} = +9.2$ (c = 0.1, CHCl₃); UV (MeOH) λ_{max} nm (log ε) 313 (4.12); IR ν_{max} 3420, 1656 cm⁻¹; ¹H NMR see Table 4; ¹³C NMR see Table 2; HRESIMS *m*/z 449.3028 (calcd for C₂₈H₄₂O₃Na, 449.3031).

2.3.10. Stoloniferone Q (10)

Colorless amorphous solid; $[\alpha]_D^{25} = +18.6$ (c=0.2, CHCl₃); UV (MeOH) λ_{max} nm (log ε) 313 (4.22); IR ν_{max} 3380, 1655 cm⁻¹; ¹H NMR see Table 4; ¹³C NMR see Table 2; HRESIMS *m*/z 463.3192 (calcd for C₂₉H₄₄O₃Na, 463.3188).

2.4. Cytotoxicity testing

P-388 cells were kindly supplied by J. M. Pezzuto, formerly of the Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago; HT-29 cells were purchased from the American Type Culture Collection. Cytotoxic assays

Table 1 – ¹ H NMR spectroscopic data ^a (300 MHz) of 1–4 in CDCl ₃					
	1	2	3	4	
2	6.02 dd (9.9, 2.4) ^b	6.01 dd (9.9, 2.4)	6.02 dd (9.9, 2.4)	6.02 dd (9.9, 2.4)	
3	6.69 dt (9.9, 2.4)	6.69 dt (9.9, 2.4)	6.68 dt (9.9, 2.4)	6.69 dt (9.9, 2.4)	
4α	2.22 m	2.16 m	2.08 m	2.15 m	
4β	3.43 dt (19.8, 2.4)	3.43 dt (19.8, 2.4)	3.42 dt (19.8, 2.4)	3.44 dt (19.8, 2.4)	
6	3.66 br s	3.67 br s	3.67 br s	3.67 br s	
7	1.82 m, 1.61 m	1.70 m, 1.62 m	1.82 m, 1.62 m	1.70 m, 1.61 m	
8	1.83 m	1.95 m	1.94 m	1.91 m	
9	2.00 m	2.01 m	2.02 m	2.01m	
11	3.70 dt (3.3, 10.5)	3.70 dt (3.6, 10.5)	3.70 dt (3.6, 10.2)	3.71 dt (3.6, 10.5)	
12α	1.43 m	1.40 m	1.44 m	1.42 m	
12β	2.34 dd (12.6, 3.3)	2.36 dd (12.3, 3.6)	2.36 dd (12.3, 3.6)	2.37 dd (12.6, 3.6)	
14	1.25 m	1.23 m	1.31 m	1.25 m	
15	1.52 m, 1.08 m	1.62 m, 1.14 m	1.63 m, 1.12 m	1.62 m, 1.09 m	
16	1.75 m, 1.27 m	1.86 m, 1.30 m	1.86 m, 1.42 m	1.61m, 1.35 m	
17	1.28 m	1.31 m	1.38 m	1.28 m	
18	0.74 s	0.78 s	0.74 s	0.77 s	
19	1.48 s	1.48 s	1.48 s	1.49 s	
20	2.06 m	1.43 m	0.87 m	1.38 m	
21	1.05 d (6.6)	0.99 d (6.3)	0.97 d (6.6)	0.96 d (6.0)	
22	5.15 dd (15.6, 7.2)	1.50 m, 1.18 m	0.29 m	1.42 m, 0.97 m	
23	5.19 dd (15.6, 7.8)	2.15 m, 1.93 m	0.53 m	1.41 m, 0.96 m	
24	1.89 m		0.51 m	1.24 m	
25	1.50 m	2.28 m	1.70 m	1.49 m	
26	0.82 d (6.3)	1.03 d (6.9)	0.87 d (6.3)	0.78 d (6.9)	
27	0.84 d (6.3)	1.03 d (6.9)	0.88 d (6.0)	0.86 d (6.9)	
28	0.91 d (6.9)	4.72 s, 4.66 s	0.89 d (6.3)	0.79 d (6.6)	
29			0.13 m		
OH-11	5.19 d (5.7)	5.03 d (6.3)	4.99 d (5.7)	4.99 d (5.7)	
^a Assigned by	a Assigned by COSY HSOC NOESY and HMBC experiments				

^b J values (in Hz) in parentheses.

were carried out according to the previously described procedures [13].

3. Results and discussion

Compound 1 had a molecular formula of C₂₈H₄₄O₄ as indicated by HRESIMS and ¹³C NMR spectroscopic data. ¹³C NMR and DEPT spectra of 1 exhibited the presence of six methyls, five sp³ methylenes, nine sp³ methines, four sp² methines, three sp³ quaternary carbons and one sp² quaternary carbon. The IR spectrum of 1 showed absorption due to a hydrogen bonded α,β -unsaturated ketone (1653 cm⁻¹). The presence of a conjugated enone system in 1 was also indicated by UV absorption at 224 nm (log ε 3.56) as well as ¹H NMR [δ 6.02 (1H, dd, J=9.9, 2.4 Hz), 6.69 (1H, dd, J = 9.9, 2.4 Hz)] (Table 1) and ¹³C NMR [δ 128.9 (CH), 142.2 (CH), 208.7 (qC)] spectra (Table 2). IR absorption at 3420 cm $^{-1}$ and NMR signals at $\delta_{\rm H}$ 3.66 (1H, br s) and 3.70 (1H, dt, J = 3.3, 10.5 Hz) as well as at $\delta_{\rm C}$ 74.7 (CH) and 68.4 (CH) indicated the presence of two secondary hydroxyl groups. The ¹³C NMR data of 1 indicated some similarities to those of yonarasterol A [14], except for the absence of a secondary acetate at C-6. All C-H correlations of 1 were detected in the HSQC experiment. The ¹H-¹H COSY spectrum exhibited partial structures a, b, and c (Fig. 1). In the HMBC spectrum, partial structure **a** could be connected to **b** through three quaternary carbons (C-1, C-5 and C-10) and H₃-19 (Fig. 1). Partial structure **b** could be connected to **c** through the remaining quaternary

carbon (C-13) and H₃-18. Based on these findings, the planar structure of **1** was concluded as in Fig. 1. The configuration at C-20 and C-24 was determined by comparison of ¹³C NMR data with those of yonarasterol A and epimeric steroidal side chains [14,15]. The coupling constant between H-22 and H-23 (J = 15.6 Hz) suggested the double bond to have *E* configuration. The NOESY correlations (Fig. 2) observed between H-11 and H-8, H-11 and H₃-18, H-11 and H₃-19, H-3 and H-2, H-9 and H-14, H₃-18 and H-8, H₃-19 and H-8, H₃-18 and H-20, H-4 β and H₃-19, H-4 α and H-6, H₃-21 and H-12 β , H-9 and H-12 α indicated all trans configurations for ring fusions.

The spectroscopic data of **2–4** were analogous to those of **1**, except for NMR signals due to the side chains. As shown

Fig. 1 – ¹H–¹H COSY and key HMBC correlations of 1.

Table 2 – 13 C NMR spectroscopic data ^a (75 MHz) of 1–10 in CDCl ₃										
	1	2	3	4	5	6	7	8	9	10
1	208.7	208.6	208.7	208.7	215.3	215.2	215.4	212.5	212.5	212.5
2	128.9	128.9	128.9	128.9	47.1	47.1	47.1	126.9	126.9	126.9
3	142.2	142.2	142.1	142.2	64.2	64.2	64.2	140.9	140.8	140.8
4	36.8	36.8	36.3	36.8	40.9	40.9	40.9	119.0	119.0	119.0
5	77.9	77.5	77.9	77.9	61.3	61.3	61.3	157.8	157.7	157.7
6	74.7	74.7	74.7	74.7	60.9	61.0	61.0	73.7	73.7	73.7
7	32.9	33.0	32.9	33.0	31.6	31.6	31.6	40.4	40.4	40.4
8	28.5	28.4	28.4	28.4	28.0	28.5	28.0	29.5	29.5	29.5
9	47.5	47.5	47.2	47.5	49.9	49.8	49.8	58.3	58.1	58.2
10	54.0	54.0	54.3	54.0	51.8	51.7	51.7	55.4	55.4	55.4
11	68.4	68.4	68.4	68.4	67.6	67.6	67.6	66.9	66.9	66.9
12	51.0	51.2	51.2	51.2	49.2	49.2	49.3	49.4	49.6	49.5
13	43.1	43.3	43.6	43.2	42.8	43.2	42.9	42.7	42.9	43.2
14	56.0	55.9	55.6	55.9	55.5	55.2	55.4	55.0	54.9	54.6
15	24.0	24.0	24.0	24.0	24.0	24.4	24.1	24.6	24.6	24.9
16	28.8	28.5	28.5	28.5	28.6	29.8	28.2	28.7	28.3	28.6
17	55.9	56.1	57.5	56.1	55.8	57.4	55.9	55.9	56.0	57.5
18	13.8	13.6	13.1	13.6	13.0	12.6	12.8	13.2	13.1	12.9
19	15.1	15.1	15.1	15.1	13.6	13.6	13.6	19.6	19.6	19.6
20	40.3	35.9	39.8	36.3	40.1	40.0	36.1	40.2	35.8	40.1
21	20.8	18.5	19.1	18.7	20.9	19.1	18.8	20.9	18.6	19.2
22	135.6	34.6	25.2	33.6	135.4	25.2	33.6	135.5	34.6	25.2
23	132.0	31.1	24.0	30.7	132.2	24.1	30.6	132.1	31.1	24.1
24	42.8	156.9	45.0	39.1	42.8	45.0	39.1	42.8	156.8	45.0
25	33.1	33.9	33.0	31.5	33.1	32.9	31.5	33.1	33.9	32.9
26	19.7	21.9	18.6	17.7	19.7	18.6	17.7	19.7	21.9	18.6
27	20.0	22.1	20.7	20.6	20.0	20.7	20.5	20.0	22.1	20.8
28	17.7	106.0	15.9	15.5	17.6	15.8	15.5	17.7	106.1	15.9
29			10.5			10.5				10.5
^a Assigned by DEPT, COSY, HSQC, and HMBC experiments.										

in Tables 1 and 2, signals due to an E disubstituted double bond were absent in 2, but those due to an exo double bond $[\delta_{\rm H} 4.72 \text{ (1H, s)} \text{ and } 4.66 \text{ (1H, s)}; \delta_{\rm C} 156.9 \text{ (qC)} \text{ and } 106.0 \text{ (CH}_2)]$ appeared in 2, similar to those observed for stoloniferone G..¹¹ Thus, the structure of 2 was concluded as a 22,23-dihydro-24,28-dehydro analog of 1. NMR spectra of 3 suggested the E disubstituted olefin in the side chain of 1 to be replaced by a 1,2-disubstituted cyclopropane [δ_H 0.13 (2H, m), 0.29 (1H, m), and 0.53 (1H, m); δ_{C} 10.5 (CH₂), 25.2 (CH) and 24.0 (CH)]. HMBC analysis indicated that 3 has a cyclopropane at C-22 and C-23. The configuration of four chiral centers (C-20, C-22, C-23, and C-24) in the side chain was determined by comparison of ¹³C NMR spectral data with those of stoloniferone-d, the stereostructure of which was established by X-ray crystallographic analysis [16]. NMR signals assigned to a -CH₂CH₂- group at C-22 and C-23 [8_C 33.6 (CH₂) and 30.7 (CH₂)] in 4 were observed instead of the E disubstituted double bond in 1 as shown in

Fig. 2 - Selective NOESY correlations of 1.

Tables 1 and 2. Assignment of the configuration at C-20 and C-24 of **4** was made by comparison of ¹³C NMR data with those of yonarasterol B and epimeric steroidal side chains [14,15].

Compound 5 was assigned a molecular formula of C₂₈H₄₄O₄ as indicated by HRESIMS and ¹³C NMR spectroscopic data. ¹³C NMR and DEPT spectra of **5** showed the presence of six methyls, six sp³ methylenes, ten sp³ methines, two sp² methines, three sp³ quaternary carbons and one sp² quaternary carbon. The IR absorption at $1703 \, \text{cm}^{-1}$ and ^{13}C NMR signal (Table 2) at δ 215.3 exhibited the presence of a ketone. IR absorption at 3439 cm⁻¹ and NMR signals at $\delta_{\rm H}$ 4.19 (1H, m) and 3.80 (1H, dt, J = 4.5, 10.5 Hz) (Table 3) as well as at δ_C 67.6 (CH) and 64.2 (CH) indicated the presence of two secondary hydroxyl groups. The presence of a trisubstituted epoxy was shown by NMR signals at δ_H 3.15 (1H, br s) as well as at δ_C 60.9 (CH) and 61.3 (qC). The spectroscopic data of 5 were analogous to those of stoliferone b [3], except for the data due to C-2 and C-3. The ¹H–¹H COSY spectrum showed partial structures d, e, and f (Fig. 3). In the HMBC spectrum, partial structure d could be connected to e through three quaternary carbons (C-1, C-5 and C-10) and H₃-19 (Fig. 3). Partial structure e could be connected to c through the remaining quaternary carbons (C-13) and H₃-18. Based on this evidence, the planar structure of 5 was concluded as in Fig. 3. Configuration at C-20 and C-24 was determined by comparison of ¹³C NMR data with those of 1 and epimeric steroidal side chains [14,15]. The coupling constant between H-22 and H-23 (J = 15.6 Hz) defined the double bond to have E configuration. The NOESY correlations (Fig. 4)

Table 3 – ¹ H NMR spectroscopic data ^a (300 MHz) of 5–7 in $CDCl_3$					
	5	6	7		
2α	3.05 dd (13.5, 6.9) ^b	3.06 dd (12.9, 6.6)	3.04 dd (13.1, 6.6)		
2β	2.61 dd (13.5, 5.7)	2.61 dd (12.9, 5.7)	2.60 dd (13.1, 6.0)		
3	4.19 m	4.19 m	4.18 m		
4α	1.68 m	1.67 m	1.68 m		
4β	2.21 m	2.20 m	2.18 m		
6	3.15 br s	3.15 br s	3.15 br s		
7	2.20 m, 1.31 m	2.20 m, 1.50 m	2.21 m, 1.39 m		
8	1.30 m	1.28 m	1.30 m		
9	1.23 m	1.39 m	1.38 m		
11	3.80 dt (4.5, 10.5)	3.77 dt (4.5, 10.5)	3.79 dt (4.8, 10.5)		
12α	1.20 m	1.18 m	1.19 m		
12β	2.26 dd (12.0, 4.5)	2.27 dd (12.0, 4.5)	2.27 dd (12.3, 4.8)		
14	1.39 m	1.05 m	1.07 m		
15	1.58 m, 1.07 m	1.62 m, 1.08 m	1.63 m, 1.05 m		
16	1.76 m, 1.28 m	2.09 m, 1.46 m	1.90 m, 1.30 m		
17	1.09 m	1.29 m	1.20 m		
18	0.67 s	0.62 s	0.66 s		
19	1.45 s	1.41 s	1.41 s		
20	2.01 m	0.72 m	1.34 m		
21	1.03 d (6.6)	0.93 d (6.9)	0.92 d (6.3)		
22	5.14 dd (15.6, 7.5)	0.27 m	1.38 m, 0.95 m		
23	5.20 dd (15.6, 8.1)	0.52 m	1.30 m, 0.95 m		
24	1.85 m	0.50 m	1.23 m		
25	1.49 m	1.68 m	1.56 m		
26	0.82 d (6.6)	0.86 d (6.6)	0.78 d (6.6)		
27	0.82 d (6.6)	0.86 d (6.6)	0.85 d (6.6)		
28	0.91 d (6.6)	0.89 d (6.9)	0.77 d (6.6)		
29		0.12 m			
OH-11	2.64 br s	2.65 br s	2.66 br s		

^a Assigned by COSY, HSQC, NOESY, and HMBC experiments.

^b J values (in Hz) in parentheses.

Fig. 3 – ¹H–¹H COSY and key HMBC correlations of 5.

Fig. 4 - Selective NOESY correlations of 5.

in CDCl ₃				
	8	9	10	
2	6.16 d (9.3) ^b	6.16 d (9.3)	6.17 d (9.3)	
3	6.99 dd (9.3, 6.0)	6.99 dd (9.3, 6.0)	6.99 dd (9.3, 6.0)	
4	6.18 d (6.0)	6.19 d (6.0)	6.19 d (6.0)	
6	4.56 br s	4.56 br s	4.57 br s	
7	2.08 m, 1.31 m	2.03 m, 1.31 m	2.03 m, 1.30 m	
8	2.16 m	2.15 m	2.16 m	
9	1.45 m	1.43 m	1.42 m	
11	4.20 dt (4.5, 10.5)	4.19 dt (4.8, 10.2)	4.19 dt (4.8, 10.5)	
12α	1.26 m	1.25 m	1.23 m	
12β	2.36 dd (12.3, 4.5)	2.41 dd (12.6, 4.8)	2.37 dd (12.6, 4.8)	
14	1.15 m	1.17 m	1.13 m	
15	1.58 m, 1.17 m	1.62 m, 1.17 m	1.62 m, 1.17 m	
16	1.76 m, 1.21 m	1.74 m, 1.34 m	1.44 m	
17	1.24 m	1.23 m	1.32 m	
18	0.79 s	0.79 s	0.74 s	
19	1.69 s	1.70 s	1.69 s	
20	2.08 m	1.45 m	0.86 m	
21	1.03 d (6.6)	0.98 d (6.3)	0.95 d (6.3)	
22	5.15 dd (15.6, 7.2)	1.55 m, 1.17 m	0.28 m	
23	5.21 dd (15.6, 7.8)	2.09 m, 1.92 m	0.52 m	
24	1.89 m	1.89 m	0.51 m	
25	1.49 m	2.23 m	1.68 m	
26	0.83 d (6.6)	1.02 d (6.3)	0.86 d (6.6)	
27	0.83 d (6.6)	1.02 d (6.3)	0.88 d (6.6)	
28	0.90 d (6.9)	4.71 s, 4.65 s	0.91 d (6.3)	
29			0.12 m	

Table 4 – ¹H NMR spectroscopic data^a (300 MHz) of 8–10

^a Assigned by COSY, HSQC, NOESY, and HMBC experiments. ^b J values (in Hz) in parentheses.

4.15 br s

4.15 br s

OH-11 4.12 br s

observed between H-11 and H-8, H-11 and H₃-18, H-11 and H₃-19, H-3 and H-6, H-9 and H-14, H₃-18 and H-8, H₃-19 and H-8, H₃-18 and H-20, H-4 β and H₃-19, H-4 α and H-3, H₃-21 and H-12 β , H-9 and H-12 α proved the relative configuration for each ring junction and chiral center.

The spectroscopic data of **6** and **7** resembled those of **5**, except for NMR signals due to the side chains. NMR spectra of **6** indicated that the *E* disubstituted olefin in the side chain of **5** was replaced by a 1,2-disubstituted cyclopropane [δ_H 0.12 (2H, m), 0.27 (1H, m), and 0.52 (1H, m); δ_C 10.5 (CH₂), 25.2 (CH) and 24.1 (CH)]. An HMBC experiment helped ascertain **6** to have a cyclopropane at C-22 and C-23. The stereochemistry of the four chiral centers (C-20, C-22, C-23, and C-24) in the side chain was confirmed by comparison of ¹³C NMR data with those of **3**. NMR signals assigned to a –CH₂CH₂– group at C-22 and C-23 [δ_C 33.6 (CH₂) and 30.6 (CH₂)] in **7** replaced the *E* disubstituted double bond signals in **5** as shown in Tables 1 and 2. The configuration at C-20 and C-24 of **7** was determined by comparison of ¹³C NMR data with those of **4** and epimeric steroidal side chains [14,15].

Compound **8** gave a molecular formula of $C_{28}H_{42}O_3$ as shown by HRESIMS and ${}^{13}C$ NMR spectroscopic data. The ${}^{13}C$ NMR and DEPT spectrum of **8** exhibited the presence of six methyls, four sp³ methylenes, nine sp³ methines, five sp² methines, two sp³ quaternary carbons and two sp² quaternary carbons. The IR spectrum of **8** showed absorption due to an α , β , γ , δ -unsaturated ketone (1652 cm⁻¹). The presence of a conjugated enone system in **8** was also indicated by UV

absorptions at 314 (log ε 4.20) nm as well as ¹H NMR [δ 6.16 (1H, d, J=9.3 Hz), 6.18 (1H, d, J=6.0 Hz), 6.99 (1H, dd, J=9.3, 6.0 Hz)] (Table 4) and ^{13}C NMR [δ 119.0 (CH), 126.9 (CH), 140.9 (CH), 157.8 (C)] spectra (Table 2). IR absorption at $3409 \,\mathrm{cm}^{-1}$ and NMR signals at $\delta_{\rm H}$ 4.56 (1H, brs) and 4.20 (1H, dt, J = 10.5, 4.5 Hz) as well as at $\delta_{\rm C}$ 73.7 (CH) and 66.9 (CH) indicated the presence of two secondary hydroxyl groups. These data were analogous to those of stoloniferone E except for the side chain [11]. The ¹H–¹H COSY spectrum allowed construction of structures g, h, and i (Fig. 5). In the HMBC spectrum, partial structure g could be connected to h through three quaternary carbons (C-1, C-5 and C-10) and H₃-19 (Fig. 5). Partial structure h could be connected to i through the remaining quaternary carbons (C-13) and H₃-18. Based on these results, the planar structure of 8 was concluded as in Fig. 5. Configuration at C-20 and C-24 was determined by comparison of ¹³C NMR data with those of 1 and epimeric steroidal side chains [14,15]. The coupling constant between H-22 and H-23 (J = 15.6 Hz) defined the double bond to have E configuration. The NOESY correlations observed between H-11 and H-8, H-11 and H₃-18, H-11 and H₃-19, H-4 and H-6, H-9 and H-14, H₃-18 and H-8, H₃-19 and H-8, H_3 -18 and H-20, H_3 -21 and H-12 β , H-9 and H-12 α indicated the relative configuration for each ring junction and chiral center.

The spectroscopic data of **9** and **10** were similar to those of **8**, except for NMR signals due to the side chains. In the NMR data of **9** (Tables 2 and 4), signals assignable to an exo double bond [$\delta_{\rm H}$ 4.71 (1H, s) and 4.65 (1H, s); $\delta_{\rm C}$ 156.8 (qC) and 106.1 (CH₂)] replaced the E disubstituted double bond in **8**. Therefore, the structure of **9** was concluded to be the 22,23-dihydro-24,28-dehydro analog of **8**. NMR spectra of **10** indicated that the E disubstituted double bond in the side chain of **8** was replaced by a 1,2-disubstituted cyclopropane [$\delta_{\rm H}$ 0.12 (2H, m), 0.28 (1H, m), and 0.52 (1H, m); $\delta_{\rm C}$ 10.5 (CH₂), 25.2 (CH) and 24.1 (CH)]. HMBC analysis proved **10** to have a cyclopropane at C-22 and C-23. Assignment of the configuration of four chiral centers (C-20, C-22, C-23, and C-24) in the side chain was made by comparison of ¹³C NMR data with those of **3**.

The cytotoxicity of compounds **1–10** is shown in Table 5. Compounds **1–3**, **5**, **6**, and **8–10** exhibited cytotoxicity against HT-29 cell line. Compounds **1–10** exhibited cytotoxicity against P-388 cell line. All compounds showed stronger cytotoxicity than compounds **1–7** may be due to the presence of α , β , γ , δ -unsaturated carbonyl moiety in the molecule. Compounds

Table 5 – Cytotoxicity ^a of 1–10					
Compounds	Cell lines IC ₅₀	Cell lines IC ₅₀ (µg/ml)			
	HT-29	P-388			
1	1.5	1.2			
2	1.8	1.5			
3	2.6	2.2			
4	4.8	3.6			
5	2.9	1.8			
6	3.2	2.4			
7	6.8	3.9			
8	0.2	0.1			
9	0.3	0.2			
10	0.5	0.3			

 $^a\,$ For significant activity of pure compounds, an IC_{50} of ${\leq}4.0\,\mu\text{g/ml}$ is required.

4 and 7 possessing cholestane side chain were less cytotoxic to HT-29 cell line.

Acknowledgments

Financial support was provided by Ministry of Education (96C030313) and National Science Council of Taiwan (NSC 95-2323-B-110-003) awarded to C.Y. Duh.

REFERENCES

- Honda A, Mori Y, Iguchi K, Yamada Y. Structure requirements for antiproliferative and cytotoxic activities of marine coral prostanoids from the Japanese stolonifer *Clavularia viridis* against human myeloid leukemia cells in culture. Prostaglandins 1988;36:621–30.
- [2] Bader T, Yamada Y, Ankel H. Antiviral activity of the prostanoid clavulone II against vesicular stomatitis virus. Antiviral Res 1991;16:341–55.
- [3] Kobayashi M, Lee NK, Son BW, Kyogoku Y, Yoshihara K, Kitagawa I. Stoloniferone -A, -B, -C, and -D, four cytotoxic steroids from the Okinawan soft coral Clavularia viridis. Tetrahedron Lett 1984;51:5925–8.
- [4] Iwashima M, Okamoto K, Iguchi K. Clavirins, a new type of marine oxylipins with growth-inhibitory activity from the Okinawan soft coral, *Clavularia viridis*. Tetrahedron Lett 1999;40:6455–9.
- [5] Iguchi K, Kaneta S, Mori K, Yamada Y, Honda A, Mori Y. Chlorovulones, new halogenated marine prostanoids with an antitumor activity from the stolonifer *Clavularia viridis* Quoy and Gaimard. Tetrahedron Lett 1985;26:5787–90.
- [6] Watanabe K, Sekine M, Takahashi H, Iguchi K. New halogenated marine prostanoids with cytotoxic activity from the Okinawan soft coral Clavularia viridis. J Nat Prod 2001;64:1421–5.
- [7] Iguchi K, Kaneta S, Mori K, Yamada Y, Honda A, Mori Y, Bromovulone I, iodovulone I. Unprecedented brominated and iodinated marine prostanoids with antitumor activity isolated from the Japanese stolonifer *Clavularia viridis* Quoy and Gaimard. J Chem Soc Chem Commun 1986;12:981–2.
- [8] Shen YC, Cheng YB, Lin YC, Guh JH, Teng CM, Ko CL. New prostanoids with cytotoxic activity from Taiwanese octocoral Clavularia viridis. J Nat Prod 2004;67:542546.
- [9] Iguchi K, Kaneta S, Mori K, Yamada Y. A new marine epoxy prostanoid with an antiproliferative activity from the

- [10] Watanabe K, Iwashima M, Iguchi K. New bioactive marine steroids from the Okinawan soft coral Clavularia viridis. Steroids 1996;61:439–46.
- [11] Duh CY, El-Gamal AAH, Chu CJ, Wang SK, Chen HJ, Dai CF. New cytotoxic constituents from the Formosan soft corals Clavularia viridis and Clavularia violacea. J Nat Prod 2002;65:1535–9.
- [12] Geran RI, Greenberg NH, MacDonald MM, Schumacher AM, Abbott BJ. Protocols for screening chemical agents and natural products against animal tumors and other

biological systems. Cancer Chemother Rep 1972; 3:1–91.

- [13] Hou RS, Duh CY, Chiang MY, Lin CN. Sinugibberol, a new cytotoxic cembranoid diterpene from the soft coral Sinularia gibberosa. J Nat Prod 1995;58:1126–30.
- [14] Iwashima M, Nara K, Iguchi K. New marine steroids, yonarasterols, isolated from the Okinawan soft coral, *Clavularia viridis*. Steroids 2000;65:130–7.
- [15] Wright JLC, McInnes AG, Shimizu S, Smith DG, Walter JA, Idler D, Khalil W. Identification of C-24 alkyl epimers of marine sterols by ¹³C nuclear magnetic resonance spectroscopy. Can J Chem 1978;56:1898–905.