New oligo- α-pyridylamino ligands and their metal complexes

Ming-hwa Yang, Tzu-Wei Lin, Chin-Cheng Chou, Hsiao-Ching Lee, Hsiao-Chi Chang, Gene-Hsiang Lee, Man-kit Leung* and Shie-Ming Peng* \dagger
Department of Chemistry, National Taiwan University, Taipei, Taiwan

Three novel oligo- α-pyridylamino ligands, tripyridyldiamine (H_{2} tpda), tetrapyridyltriamine (H_{3} teptra), pentapyridyltetramine (H_{4} peptea) are synthesized; the crystal structures of their metal complexes with the all-anti configuration of the chelating ligands are reported.

Oligo- α-pyridines I exhibit an α-diimine functionality and chelating ability, they bind metal ions strongly and are used as building blocks for the self-assembly of metallosupramolecules. ${ }^{1-3}$ We are interested in developing a new type of ligand which might bind oligonuclear metal ions chain; the oligo- α pyridylamino ligands II. ${ }^{4-6}$

I
$n=0$, bipyridine
$n=1$, terpyridine
$n=2$, quaterpyridine
$n=3$, quinquepyridine
$n=4$, sexipyridine

$n=0$, dipyridylamine(Hdpa)
$n=1$, tripyridyldiamine $\left(\mathrm{H}_{2}\right.$ tpda)
$n=2$, tetrapyridyltriamine (H_{3} teptra)
$n=3$, pentapyridyltetramine(H_{4} peptea)

Here, we report the synthesis of three novel oligo-α-pyridylamino ligands, tripyridyldiamine (H_{2} tpda), tetrapyridyltriamine (H_{3} teptra), and pentapyridyltetramine (H_{4} peptea). The crystal structure of their metal complexes with the all-anti conformation of the chelating ligands are presented.

The tripyridyldiamine ligand was synthesized by treating 2.2 equiv. of chloropyridine with 1 equiv. of 2,6 -diaminopyridine under basic conditions [eqn. (1)]. The crude product was rinsed with water and recrystallized from propan-2-ol. ${ }^{7}$ The iron complex of the ligand was synthesized by treating iron(II) chloride with 2 mol equiv. of H_{2} tpda in methanol [eqn. (2)]. The electronic spectrum (MeOH solution), shows maxima at 240 nm $\left(3.04 \times 10^{4} \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right), 262\left(3.67 \times 10^{4}\right), 278(3.81 \times$ 10^{4}) and $334\left(3.72 \times 10^{4}\right)$.

The molecular structure of $\left[\mathrm{Fe}^{\mathrm{II}}\left(\mathrm{H}_{2} \text { tpda }\right)\right]^{2+}$ (Fig. 1) \ddagger reveals that the coordination geometry around $\mathrm{Fe}^{\text {II }}$ is octahedral with two tridentate H_{2} tpda ligands arranged in a mer-configuration. The H_{2} tpda ligands coordinate to the iron(II) in an anti-anti-anti-anti conformation. The three pyridyl groups of the H_{2} tpda ligand are essentially planar and are twisted. The dihedral angle between each pair of neighboring pyridyl planes is 38°. The short $\mathrm{Fe}-\mathrm{N}$ distances, ranging from $1.981(2)$ to $2.005(2) \AA$, are consistent with the low spin state of $\mathrm{Fe}^{\mathrm{II}}$.
The tetrapyridyltriamine ligand was synthesized by the palladium-catalyzed cross-coupling ${ }^{8}$ of (6-bromo-2-pyri-

Fig. 1 ORTEP view of $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \text { tpda }\right)_{2}\right]^{2+}$. Selected bond lengths (\AA) and angles (${ }^{\circ}$): $\mathrm{Fe}-\mathrm{N} \quad 1.981(2)-2.005(2)$, av. 1.995; cis-N-Fe-N 88.68(9)-91.85(9), av. 90.0, $\mathrm{N}(1)-\mathrm{Fe}-\mathrm{N}(5) \quad 179.2(1)$, $\mathrm{N}(3)-\mathrm{Fe}-\mathrm{N}(8)$, 179.2(1), $\mathrm{N}(6)-\mathrm{Fe}-\mathrm{N}(10), 178.6(1)$; dihedral angles between interpyridyl planes, $\mathrm{Py}(\mathrm{N} 1)-\mathrm{Py}(\mathrm{N} 3), 40.8(1), \mathrm{Py}(\mathrm{N} 3)-\mathrm{Py}(\mathrm{N} 5), 34.4(1), \mathrm{Py}(\mathrm{N} 6)-\mathrm{Py}(\mathrm{N} 8)$, 40.2(1), $\mathrm{Py}(\mathrm{N} 8)-\mathrm{Py}(\mathrm{N} 10), 37.6(1)$.
dyl)(2'-pyridyl)amine and (6-amino-2-pyridyl)(2'-pyridyl)amine in the presence of catalyst $\left[\mathrm{Pd}_{2}(\mathrm{dba})_{3}\right.$, dppp, ButOK, and 18 -crown-6] in refluxing benzene [eqn. (3)]. The crude product was recrystallized from propan-2-ol. H_{3} teptra was characterized on the basis of ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy, and mass spectrometry. ${ }^{1} \mathrm{H}$ NMR in $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$ clearly shows two singlets ($\delta 9.33,9.07$), four doublets ($\delta 8.19,7.88,7.72$, $7.10)$ and three triplets $(\delta 7.62,7.50,6.84)$ which are consistent with the structural assignment.
The $\mathrm{Cu}^{\mathrm{II}}$ complex of the ligand was synthesized by treating an equimolar amount of $\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2}$ and the H_{3} teptra in acetonitrile [eqn. (4)]. The electronic spectrum (MeCN solution), shows maxima at $239 \mathrm{~nm}\left(2.70 \times 10^{4} \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right)$, $270(\mathrm{sh})\left(1.59 \times 10^{4}\right), 328\left(3.77 \times 10^{4}\right)$ and $368(9.71 \times$ $\left.10^{3}\right)$.

The molecular structure of $\left[\mathrm{Cu}^{\mathrm{II}}\left(\mathrm{H}_{3} \text { teptra }\right)\right]^{2+}$ (Fig. 2) \ddagger reveals that the coordination geometry around $\mathrm{Cu}^{\mathrm{II}}$ is between planar and tetrahedral with the monohelical H_{3} teptra ligand having an all-anti comformation. The four pyridyl groups of the H_{3} teptra ligand are planar and the dihedral angle between each

Fig. 2 ORTEP view of $\left[\mathrm{Cu}\left(\mathrm{H}_{3} \text { teptra }\right)\right]^{2+}$. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right): \mathrm{Cu}-\mathrm{N}$ 1.954(5)-1.982(5), av. 1.967; $\mathrm{N}(1)-\mathrm{Cu}-\mathrm{N}(3)$, 91.9 (2), $\mathrm{N}(1)-\mathrm{Cu}-\mathrm{N}(5), 151.0(2), \mathrm{N}(1)-\mathrm{Cu}-\mathrm{N}(7) 90.9(2), \mathrm{N}(3)-\mathrm{Cu}-\mathrm{N}(5), 98.2(2)$ $\mathrm{N}(3)-\mathrm{Cu}-\mathrm{N}(7), 150.0(2), \mathrm{N}(5)-\mathrm{Cu}-\mathrm{N}(7), 93.0(2)$; dihedral angles between interpyridyl planes, $\mathrm{Py}(\mathrm{N} 1)-\mathrm{Py}(\mathrm{N} 3)$, 25.3(3), $\mathrm{Py}(\mathrm{N} 3)-\mathrm{Py}(\mathrm{N} 5), 15.0(1)$, Py(N5)-Py(N7), 20.4(2).
pair of neighboring pyridyl planes is 25.3(3), 15.0(3), 20.4(3) ${ }^{\circ}$, respectively. The short $\mathrm{Cu}-\mathrm{N}$ distances, ranging from 1.954(5) to $1.982(5)$ indicate a strong binding of the chelating ligand.

The synthesis of pentapyridyltetramine was similar to H_{3} teptra [eqn. (5)]. H_{4} peptea was characterized on the basis of its ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR and mass spectrometry data. Although the ${ }^{1} \mathrm{H}$ NMR spectrum of H_{4} peptea [in $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}$] only shows two singlets ($\delta 9.33,9.06$), five doublets ($\delta 8.19,7.90,7.28,7.19$, 7.08) and three triplets ($\delta 7.62,7.50,6.84$), the intergrated area of the triplet at $\delta 7.50$ is equivalent to that originating from three protons when compared to the area of the other triplet, indicating the existence of two independent triplets with an identical chemical shift at $\delta 7.50$.

The $\mathrm{Cu}^{\mathrm{II}}$ complex of the ligand was synthesized by treating an equimolar solution of $\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2}$ and H_{4} peptea in acetonitrile and precipitated by adding diethyl ether [eqn. (6)]. The electronic spectrum (MeCN solution), shows maxima at 254 nm $\left(1.87 \times 10^{4} \mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~cm}^{-1}\right), 324\left(1.97 \times 10^{4}\right), 344(1.65 \times$ 10^{4}) and $378(\mathrm{sh})\left(6.21 \times 10^{3}\right)$.

H_{4} peptea $+\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2} \xrightarrow{\mathrm{MeCN}}\left[\mathrm{Cu}^{\prime \prime}\left(\mathrm{H}_{4}\right.\right.$ peptea $\left.)\right]\left[\mathrm{ClO}_{4}\right]_{2}$

The crystal structure of $\left[\mathrm{Cu}^{\mathrm{II}}\left(\mathrm{H}_{4} \text { peptea) }\right]^{2+}\right.$ (Fig. 3) \ddagger reveals that the coordination geometry around $\mathrm{Cu}^{\mathrm{II}}$ is trigonal bipyramidal with the monohelical H_{4} peptea ligand existing in an allanti configuration. A crystallographic C_{2} axis runs through the $\mathrm{C}(13)-\mathrm{N}(5)-\mathrm{Cu}$ chain. The three independent crystallographic pyridyl groups are planar and the dihedral angle between neighboring pyridine planes is $c a .21^{\circ}$.
In summary, the modified Buchwald's procedure ${ }^{8}$ leads to the synthesis of new types of oligo- α-pyridylamino ligands. Their metal complexes were studied. The complexes demonstrate the chelating ability of the ligands. Attempts to isolate the metal complexes with different coordination modes of the ligands, e.g. the all-syn configuration of the ligands which bind metal ions in a chain are being undertaken.
We thank the National Science Council of the Republic of China for financial support.

Fig. 3 ORTEP view of $\left[\mathrm{Cu}\left(\mathrm{H}_{4} \text { peptea) }\right]^{2+}\right.$. Selected bond length (\AA) and angles $\left({ }^{\circ}\right): \mathrm{Cu}-\mathrm{N}(1) 2.102(5), \mathrm{Cu}-\mathrm{N}(3)$ 1.972(4), $\mathrm{Cu}-\mathrm{N}(5) 2.017(6)$; $\mathrm{N}(1)-\mathrm{Cu}-\mathrm{N}(1 \mathrm{~A}), \quad 112.2(3), \quad \mathrm{N}(1)-\mathrm{Cu}-\mathrm{N}(3) 87.3(2), \quad \mathrm{N}(1)-\mathrm{Cu}-\mathrm{N}(3 \mathrm{~A})$, $88.4(2), \mathrm{N}(1)-\mathrm{Cu}-\mathrm{N}(5), 123.9(1), \mathrm{N}(3)-\mathrm{Cu}-\mathrm{N}(3 \mathrm{~A}), 172.3(3), \mathrm{N}(3)-\mathrm{Cu}-$ $\mathrm{N}(5), 93.8(1)$; dihedral angles between interpyridyl planes, $\mathrm{Py}(\mathrm{N} 1)-\mathrm{Py}(\mathrm{N} 3)$, 22.2(3), Py(N3)-Py(N5), 19.0(3).

Footnotes and References

\dagger E-mail: smpeng@chem35.ch.ntu.edu.tw
\ddagger Crystal data: for $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \text { tpda }\right)_{2}\right] \mathrm{Cl}_{2} \cdot 2 \mathrm{MeOH}$: monoclinic, space group $P 2_{1} / n, a=15.0179(2), b=11.1499(2), c=20.2308(1) \AA$, $\beta=98.864(1)^{\circ}$, $U=3347.15(8) \AA^{3}, D_{\mathrm{c}}=1.424 \mathrm{~g} \mathrm{~cm}^{-3}, Z=4 ; T_{\text {min }}=0.236$, $T_{\max }=0.296,21345$ reflections were measured and 7613 unique reflections ($2 \theta<55^{\circ}, R_{\mathrm{int}}=0.046$) were used in the refinement. Fullmatrix least-squares refinement on F^{2} (457 variables) converged to $R_{\mathrm{F}}=0.0506 R_{\mathrm{wF}^{2}}=0.1026$ for 5168 reflections with $I>2 \sigma(I)$.
$\left[\mathrm{Cu}\left(\mathrm{H}_{3}\right.\right.$ teptra $\left.)\right]\left[\mathrm{ClO}_{4}\right]_{2} \cdot \mathrm{MeCN}$: monoclinic, space group $P 2_{1} / c$, $a=12.0470(2), b=14.4324(1), c=15.4744(2) \AA, \beta=92.883(1)^{\circ}$, $U=2687.08(6) \AA^{3}, D_{\mathrm{c}}=1.629 \mathrm{~g} \mathrm{~cm}^{-3}, Z=4 ; T_{\text {min }}=0.2226$, $T_{\max }=0.2830,14676$ reflections were measured and 4721 unique reflections ($2 \theta<50^{\circ}, R_{\mathrm{int}}=0.0304$) were used in the refinement. Fullmatrix least-squares refinement on F^{2} (354 variables) converged to $R_{\mathrm{F}}=0.0782 R_{\mathrm{wF} 2}=0.2134$ for 3877 reflections with $I>2 \sigma(I)$.
$\left[\mathrm{Cu}\left(\mathrm{H}_{4}\right.\right.$ peptea $\left.)\right]\left[\mathrm{ClO}_{4}\right]_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$: monoclinic, space group $C 2 / c$, $a=11.2720(4), b=36.0332(14), c=7.7793(2) \AA, \beta=108.732(1)^{\circ}$, $U=2998.6(2) \AA^{3}, D_{\mathrm{c}}=1.652 \mathrm{~g} \mathrm{~cm}^{-3}, Z=4 ; T_{\min }=0.318, T_{\max }=$ 0.377), 8685 reflections were measured and 2652 unique reflections ($2 \theta<$ $50^{\circ}, R_{\mathrm{int}}=0.056$) were used in the refinement. Full-matrix least-squares refinement on F^{2} (218 variables) converged to $R_{\mathrm{F}}=0.0723, R_{\mathrm{wF}^{2}}=0.1843$ for 1858 reflections with $I>2 \sigma(I)$. For all structures SMART diffractometer with graphite-monochromated $\mathrm{Mo}-\mathrm{K} \alpha$ radiation $(\lambda=0.71073$ A), SADABS absorption correction. CCDC 182/638.

1 J.-M. Lehn, Angew. Chem., Int. Ed. Engl, 1988, 27, 89; J.-M. Lehn, Science, 1993, 260, 1762; J.-M. Lehn, Supramolecular Chemistry, VCH, Weinheim, 1995; G. S. Hanan, C. R. Arana, J.-M. Lehn and D. Fenske, Angew. Chem., Int. Ed. Engl., 1995, 34, 1122.
2 E. C. Constable, Chem. Commun., 1997, 1079; E. C. Constable, Chem. Ind., 1994, 56; E. C. Constable, Prog. Inorg. Chem., 1994, 42, 67.
3 K. K. Ho, K. K. Cheung, S. M. Peng and C. M. Che, J. Chem. Soc., Dalton Trans., 1996, 1411; K. K. Ho, S. M. Peng, K. Y. Wang and C. M. Che, J. Chem. Soc., Dalton Trans., 1996, 1827; C. M. Che, Y. P. Wang, K. S. Yeung, K. Y. Wong and S. M. Peng, J. Chem. Soc., Dalton Trans., 1992, 2675.
4 E. C. Yang, M. C. Cheng, M. S. Tsai and S. M. Peng, J. Chem. Soc., Chem. Commun., 1994, 2377.
5 J. T. Sheu, C. C. Lin, I. Chao, C. C. Wang and S. M. Peng, Chem. Commun., 1996, 315.
6 S. J. Shieh, C. C. Chou, G. H. Lee, C. C. Wang and S. M. Peng, Angew. Chem., Int. Ed. Engl., 1997, 36, 56.
7 The synthesis of this ligand was first reported in ref. 6. This procedure improved the yield to as much as 60%.
8 S. Wagaw and S. L. Buchwald, J. Org. Chem., 1996, 61, 7240.

