New oligo-α-pyridylamino ligands and their metal complexes

Ming-hwa Yang, Tzu-Wei Lin, Chin-Cheng Chou, Hsiao-Ching Lee, Hsiao-Chi Chang, Gene-Hsiang Lee, Man-kit Leung* and Shie-Ming Peng*[†]

Department of Chemistry, National Taiwan University, Taipei, Taiwan

Three novel oligo- α -pyridylamino ligands, tripyridyldiamine (H₂tpda), tetrapyridyltriamine (H₃teptra), pentapyridyltetramine (H₄peptea) are synthesized; the crystal structures of their metal complexes with the all-*anti* configuration of the chelating ligands are reported.

Oligo- α -pyridines **I** exhibit an α -diimine functionality and chelating ability, they bind metal ions strongly and are used as building blocks for the self-assembly of metallosupramolecules.^{1–3} We are interested in developing a new type of ligand which might bind oligonuclear metal ions chain; the oligo- α -pyridylamino ligands **II**.^{4–6}

Here, we report the synthesis of three novel oligo- α -pyridylamino ligands, tripyridyldiamine (H₂tpda), tetrapyridyltriamine (H₃teptra), and pentapyridyltetramine (H₄peptea). The crystal structure of their metal complexes with the all-*anti* conformation of the chelating ligands are presented.

The tripyridyldiamine ligand was synthesized by treating 2.2 equiv. of chloropyridine with 1 equiv. of 2,6-diaminopyridine under basic conditions [eqn. (1)]. The crude product was rinsed with water and recrystallized from propan-2-ol.⁷ The iron complex of the ligand was synthesized by treating iron(II) chloride with 2 mol equiv. of H₂tpda in methanol [eqn. (2)]. The electronic spectrum (MeOH solution), shows maxima at 240 nm $(3.04 \times 10^4 \text{ dm}^3 \text{ mol}^{-1} \text{ cm}^{-1})$, 262 (3.67×10^4) , 278 (3.81×10^4) and 334 (3.72×10^4) .

$$2 \bigvee_{N} + H_{2N} \xrightarrow{N} H_{2} \xrightarrow{\text{benzene, ButOK}} H_{2}\text{tpda} \quad (1)$$

$$H_2$$
tpda + FeCl₂ $\xrightarrow{\text{methanol}}$ [Fe^{II}(H_2 tpda)₂]Cl₂ (2)

The molecular structure of $[Fe^{II}(H_2tpda)]^{2+}$ (Fig. 1)‡ reveals that the coordination geometry around Fe^{II} is octahedral with two tridentate H₂tpda ligands arranged in a *mer*-configuration. The H₂tpda ligands coordinate to the iron(II) in an *anti–anti– anti–anti* conformation. The three pyridyl groups of the H₂tpda ligand are essentially planar and are twisted. The dihedral angle between each pair of neighboring pyridyl planes is 38°. The short Fe–N distances, ranging from 1.981(2) to 2.005(2) Å, are consistent with the low spin state of Fe^{II}.

The tetrapyridyltriamine ligand was synthesized by the palladium-catalyzed cross-coupling⁸ of (6-bromo-2-pyri-

Fig. 1 ORTEP view of $[Fe(H_2tpda)_2]^{2+}$. Selected bond lengths (Å) and angles (°): Fe–N 1.981(2)–2.005(2), av. 1.995; *cis*-N–Fe–N 88.68(9)–91.85(9), av. 90.0, N(1)–Fe–N(5) 179.2(1), N(3)–Fe–N(8), 179.2(1), N(6)–Fe–N(10), 178.6(1); dihedral angles between interpyridyl planes, Py(N1)–Py(N3), 40.8(1), Py(N3)–Py(N5), 34.4(1), Py(N6)–Py(N8), 40.2(1), Py(N8)–Py(N10), 37.6(1).

dyl)(2'-pyridyl)amine and (6-amino-2-pyridyl)(2'-pyridyl)(2'-pyridyl)amine in the presence of catalyst $[Pd_2(dba)_3, dppp, Bu^{t}OK, and 18-crown-6]$ in refluxing benzene [eqn. (3)]. The crude product was recrystallized from propan-2-ol. H₃teptra was characterized on the basis of ¹H and ¹³C NMR spectroscopy, and mass spectrometry. ¹H NMR in (CD₃)₂SO clearly shows two singlets (δ 9.33, 9.07), four doublets (δ 8.19, 7.88, 7.72, 7.10) and three triplets (δ 7.62, 7.50, 6.84) which are consistent with the structural assignment.

The Cu^{II} complex of the ligand was synthesized by treating an equimolar amount of Cu(ClO₄)₂ and the H₃teptra in acetonitrile [eqn. (4)]. The electronic spectrum (MeCN solution), shows maxima at 239 nm (2.70×10^4 dm³ mol⁻¹ cm⁻¹), 270(sh) (1.59×10^4), 328 (3.77×10^4) and 368 (9.71×10^3).

The molecular structure of $[Cu^{II}(H_3\text{teptra})]^{2+}$ (Fig. 2)‡ reveals that the coordination geometry around Cu^{II} is between planar and tetrahedral with the monohelical H₃teptra ligand having an all-*anti* comformation. The four pyridyl groups of the H₃teptra ligand are planar and the dihedral angle between each

Chem. Commun., 1997 2279

Fig. 2 ORTEP view of $[Cu(H_3teptra)]^{2+}$. Selected bond lengths (Å) and angles (°): Cu–N 1.954(5)–1.982(5), av. 1.967; N(1)–Cu–N(3), 91.9(2), N(1)–Cu–N(5), 151.0(2), N(1)–Cu–N(7) 90.9(2), N(3)–Cu–N(5), 98.2(2) N(3)–Cu–N(7), 150.0(2), N(5)–Cu–N(7), 93.0(2); dihedral angles between interpyridyl planes, Py(N1)–Py(N3), 25.3(3), Py(N3)–Py(N5), 15.0(1), Py(N5)–Py(N7), 20.4(2).

pair of neighboring pyridyl planes is 25.3(3), 15.0(3), $20.4(3)^{\circ}$, respectively. The short Cu–N distances, ranging from 1.954(5) to 1.982(5) indicate a strong binding of the chelating ligand.

The synthesis of pentapyridyltetramine was similar to H_3 teptra [eqn. (5)]. H_4 peptea was characterized on the basis of its ¹H and ¹³C NMR and mass spectrometry data. Although the ¹H NMR spectrum of H_4 peptea [in (CD₃)₂SO] only shows two singlets (δ 9.33, 9.06), five doublets (δ 8.19, 7.90, 7.28, 7.19, 7.08) and three triplets (δ 7.62, 7.50, 6.84), the intergrated area of the triplet at δ 7.50 is equivalent to that originating from three protons when compared to the area of the other triplet, indicating the existence of two independent triplets with an identical chemical shift at δ 7.50.

The Cu^{II} complex of the ligand was synthesized by treating an equimolar solution of Cu(ClO₄)₂ and H₄peptea in acetonitrile and precipitated by adding diethyl ether [eqn. (6)]. The electronic spectrum (MeCN solution), shows maxima at 254 nm $(1.87 \times 10^4 \text{ dm}^3 \text{ mol}^{-1} \text{ cm}^{-1})$, 324 (1.97 × 10⁴), 344 (1.65 × 10⁴) and 378(sh) (6.21 × 10³).

 H_4 peptea + Cu(ClO₄)₂ \xrightarrow{MeCN} [Cu^{II}(H_4 peptea)][ClO₄]₂ (6)

The crystal structure of $[Cu^{II}(H_4peptea)]^{2+}$ (Fig. 3)‡ reveals that the coordination geometry around Cu^{II} is trigonal bipyramidal with the monohelical H₄peptea ligand existing in an all*anti* configuration. A crystallographic C_2 axis runs through the C(13)–N(5)–Cu chain. The three independent crystallographic pyridyl groups are planar and the dihedral angle between neighboring pyridine planes is *ca.* 21°.

In summary, the modified Buchwald's procedure⁸ leads to the synthesis of new types of oligo- α -pyridylamino ligands. Their metal complexes were studied. The complexes demonstrate the chelating ability of the ligands. Attempts to isolate the metal complexes with different coordination modes of the ligands, *e.g.* the all-*syn* configuration of the ligands which bind metal ions in a chain are being undertaken.

We thank the National Science Council of the Republic of China for financial support.

Fig. 3 ORTEP view of $[Cu(H_4peptea)]^{2+}$. Selected bond length (Å) and angles (°): Cu–N(1) 2.102(5), Cu–N(3) 1.972(4), Cu–N(5) 2.017(6); N(1)–Cu–N(1A), 112.2(3), N(1)–Cu–N(3) 87.3(2), N(1)–Cu–N(3A), 88.4(2), N(1)–Cu–N(5), 123.9(1), N(3)–Cu–N(3A), 172.3(3), N(3)–Cu–N(5), 93.8(1); dihedral angles between interpyridyl planes, Py(N1)–Py(N3), 22.2(3), Py(N3)–Py(N5), 19.0(3).

Footnotes and References

† E-mail: smpeng@chem35.ch.ntu.edu.tw

‡ *Crystal data*: for [Fe(H₂tpda)₂]Cl₂·2MeOH: monoclinic, space group $P2_1/n, a = 15.0179(2), b = 11.1499(2), c = 20.2308(1) Å, \beta = 98.864(1)^\circ$, $U = 3347.15(8) Å^3$, $D_c = 1.424$ g cm⁻³, Z = 4; $T_{min} = 0.236$, $T_{max} = 0.296$, 21345 reflections were measured and 7613 unique reflections ($2\theta < 55^\circ$, $R_{int} = 0.046$) were used in the refinement. Fullmatrix least-squares refinement on F^2 (457 variables) converged to $R_F = 0.0506 R_{wF2} = 0.1026$ for 5168 reflections with $I > 2\sigma(I)$.

[Cu(H₃teptra)][ClO₄]₂·MeCN: monoclinic, space group $P_{2_1/c}$, a = 12.0470(2), b = 14.4324(1), c = 15.4744(2) Å, $\beta = 92.883(1)^\circ$, U = 2687.08(6) Å³, $D_c = 1.629$ g cm⁻³, Z = 4; $T_{\min} = 0.2226$, $T_{\max} = 0.2830$, 14676 reflections were measured and 4721 unique reflections ($2\theta < 50^\circ$, $R_{int} = 0.0304$) were used in the refinement. Fullmatrix least-squares refinement on F^2 (354 variables) converged to $R_F = 0.0782 R_{wF2} = 0.2134$ for 3877 reflections with $I > 2\sigma(I)$.

[Cu(H₄peptea)][ClO₄]₂·2H₂O: monoclinic, space group *C*2/*c*, *a* = 11.2720(4), *b* = 36.0332(14), *c* = 7.7793(2) Å, β = 108.732(1)°, *U* = 2998.6(2) Å³, *D_c* = 1.652 g cm⁻³, *Z* = 4; *T_{min}* = 0.318, *T_{max}* = 0.377), 8685 reflections were measured and 2652 unique reflections (2 θ < 50°, *R_{int}* = 0.056) were used in the refinement. Full-matrix least-squares refinement on *F*² (218 variables) converged to *R_F* = 0.0723, *R_{wF2}* = 0.1843 for 1858 reflections with *I* > 2 σ (*I*). For all structures SMART diffractometer with graphite-monochromated Mo-K α radiation (λ = 0.71073 Å), SADABS absorption correction. CCDC 182/638.

- J.-M. Lehn, Angew. Chem., Int. Ed. Engl, 1988, 27, 89; J.-M. Lehn, Science, 1993, 260, 1762; J.-M. Lehn, Supramolecular Chemistry, VCH, Weinheim, 1995; G. S. Hanan, C. R. Arana, J.-M. Lehn and D. Fenske, Angew. Chem., Int. Ed. Engl., 1995, 34, 1122.
- 2 E. C. Constable, Chem. Commun., 1997, 1079; E. C. Constable, Chem. Ind., 1994, 56; E. C. Constable, Prog. Inorg. Chem., 1994, 42, 67.
- 3 K. K. Ho, K. K. Cheung, S. M. Peng and C. M. Che, J. Chem. Soc., Dalton Trans., 1996, 1411; K. K. Ho, S. M. Peng, K. Y. Wang and C. M. Che, J. Chem. Soc., Dalton Trans., 1996, 1827; C. M. Che, Y. P. Wang, K. S. Yeung, K. Y. Wong and S. M. Peng, J. Chem. Soc., Dalton Trans., 1992, 2675.
- 4 E. C. Yang, M. C. Cheng, M. S. Tsai and S. M. Peng, J. Chem. Soc., Chem. Commun., 1994, 2377.
- 5 J. T. Sheu, C. C. Lin, I. Chao, C. C. Wang and S. M. Peng, *Chem. Commun.*, 1996, 315.
- 6 S. J. Shieh, C. C. Chou, G. H. Lee, C. C. Wang and S. M. Peng, *Angew. Chem., Int. Ed. Engl.*, 1997, **36**, 56.
- 7 The synthesis of this ligand was first reported in ref. 6. This procedure improved the yield to as much as 60%.
- 8 S. Wagaw and S. L. Buchwald, J. Org. Chem., 1996, 61, 7240.

Received in Cambridge, UK, 3rd September 1997; 7/06439J