One-Pot Formation of Carbonates from the Reactions of Carbonyl Compounds with Samarium Diiodide and Methyl Chloroformate

Ling Lu(盧 凌), Jim-Min Fang*(方俊民), Gene-Hsiang Lee(李錦祥) and Yu Wang(王 瑜) Department of Chemistry, National Taiwan University, Taipei, Taiwan 106, R.O.C.

Treatment of carbonyl compounds with SmI₂ and methyl chloroformate in the presence of molecular sieves provides the cyclic carbonates or biscarbonates of pinacols. This one-pot reaction proceeds rapidly even with aliphatic ketones. The stereochemistry obtained by this procedure is different from that of conventional pinacolic couplings.

INTRODUCTION

Reductive couplings of carbonyl compounds¹ to form vicinal diols are generally carried out with metals (particularly Mg)² or low-valent metal ions such as Ce(II),³ Sm(II),⁴ V(II)⁵ and Ti(III)⁶ ions. Pinacols are also obtained from electrolytic reduction of carbonyl compounds.⁷ Intramolecular pinacolic couplings¹ of dicarbonyl compounds using metals, low-valent ions, or tributyltin hydride⁸ have been reported. Aldehydes are converted to bis-silylated pinacols using zinc metal in the presence of Me₃SiCl.⁹

One-electron reductions of carbonyls with SmI₂ to produce samarium ketyl radical anions have generated a lot of attention. On treating with SmI₂ in aprotic solvents, aromatic aldehydes, or aromatic ketones couple readily to give pinacols. Electrolyses of aromatic aldehydes or aromatic ketones in DMF or NMP by catalysis of SmCl₃ also give pinacols. However, SmI₂ is a slow reagent for the intermolecular couplings of aliphatic ketones. For example, twenty four hours is needed for completion of the pinacolic coupling of 2-heptanone on treating with SmI₂. Samarium dibromide is found to be a more efficient reagent for the pinacolic couplings of aliphatic ketones, although the preparative procedure of SmBr₂ is tedious.

We report herein that various carbonyl compounds react with SmI₂ and ClCO₂CH₃ in the presence of molecular sieves to give the carbonates of pinacols. This one-pot method is expedient, converting even aliphatic ketones to cyclic carbonates within twenty minutes.

RESULTS AND DISCUSSION

A dark blue THF solution of SmI₂ (2 equiv) was pre-

pared from samarium and 1,2-diiodoethane in the presence of molecular sieves. Methyl chloroformate (1 equiv) was added, followed by an appropriate carbonyl compound (1 equiv). After 10-20 minutes, the mixture was worked up to give the desired carbonates (Table 1). The reactions of ketones (entries 1-16) afforded cyclic carbonates 1-16. The yields were roughly the same using 1 or 4 equiv of SmI₂. The use of molecular sieves¹² appeared to accelerate the reaction rates. For example, 2-heptanone was treated with SmI₂ and ClCO₂CH₃ in the presence of molecular sieves for 20 min to give the carbonate 5a (83%). The pinacolic coupling of 2-heptanone was completed in 4 h using SmI₂ and molecular sieves, giving 6,7-dimethyl-6,7-dodecanediol 5b in 80% yield, whereas the reaction requires 24 h in the absence of molecular sieves.^{4a}

Pinacolic coupling of an unsymmetric ketone led to a product having two newly formed stereogenic centers. Carbonates 4, 5a and 8, derived from the coupling reactions of unsymmetric ketones (entries 4, 5 and 8), existed as mixtures of diastereomeric isomers (1:1). The coupling reaction of 4-tert-butylcyclohexanone with SmI₂/ClCO₂CH₃ gave the cyclic carbonate 12 as a mixture of two isomers (87:13), out of three possible products. 13 The major isomer of 12 (cis configuration) was shown by an X-ray analysis to have two axial C-O bonds. The ¹³C NMR spectrum of the major isomer showed seven signals, whereas that of the minor isomer (trans configuration) was complicated, indicating its unsymmetric nature with axial and equatorial C-O bonds. On treating with SmI₂/ClCO₂CH₃, 2,5-hexanedione cyclized to give a cis bicyclic carbonate 16.66 The reaction of acetophenone with SmI₂/ClCO₂CH₃ occurred stereoselectively to form a cis carbonate 6a, whereas the reaction of α-tetralone gave exclusively a trans carbonate 15. The structures of 6a and 15 were unambiguously determined by

Table 1. The Reaction of Carbonyl Compounds with SmI $_2$ (2 equiv)/ClCO $_2$ Me (1 equiv) in THF at Room Temperature

	equiv)/ClCO2Me (l equiv) in THF at Room T	emperature			مار	
Entry	Substrate	Product (yield, ratio o	f isomers)				,
1			1 (86%)	13	\	12 (71%, 87:13)	
2	D ₃ C CD ₃		((OU <i>7</i> 6)				13 (67%)
	530 003	/ \	2 (80%)	14	Î		
3	O H ₅ C ₂ C ₂ H ₅	$H_5C_2 + C_2H_5$ $H_5C_2 - C_2H_5$	3 (70%)	15		د ب ب	14 (80%)
4	H ₅ C ₂ CH ₃	O O O O O O O O O O O O O O O O C O	4 (78%,1:1)	-			15 (53%, <i>trans</i>)
5	H ₁₁ C ₅ CH ₃	O O O H ₁₁ C ₅ v ₁ (v ₂ CH ₃ H ₃ C C ₅ H ₁₁	5a (83%,1:1)	16			16 (80%, cis)
6	О СН3	H ₃ CCH ₃	6a (68%, <i>cis</i>)	17	H ₅ C ₂ H	O H ₅ C ₂ -1 H C ₂ H ₅	17 (75%,1:1)
	CH ₃ O CH ₃	сн ₃ о осн ₃	7 (83%, 3:1)	18	Р		СН₃
8	Ph CH₃	PhCH ₂ — CH ₃ H ₃ C CH ₂ Ph	8 (75%,1:1)	19	, in	18a (82%, meso	o) CH₃
9	$\stackrel{\circ}{\diamondsuit}$		9 (85%)	20	сн₃о	CH ₃ O O(19 (82%, <i>meso</i>)	CH₃
10			10 (83%)	20	NC H	CH ₃ O O O O	CH₃
11		J.	11 (80%)			20 (74%, meso)	DC

12

21
$$C_{2}H_{5}O$$
 $C_{2}H_{5}O$ $C_{2}H_{5}O$

X-ray diffraction methods. The reaction of 4-methoxyace-tophenone gave the carbonate 7 as a mixture of two isomers (3:1).

The reaction of propionaldehyde with SmI₂/ ClCO₂CH₃ (entry 17) gave an isomeric mixture (1:1) of the cyclic carbonate 17, whereas the reactions of benzaldehydes produced the biscarbonates 18a-20 in a stereospecific manner. Biscarbonate 18a was saponified to give a product identical to meso-hydrobenzoin, showing the a'-H resonance at 8 4.80, whereas the corresponding protons of dl-hydrobenzoin occurred at a higher field, δ 4.67. A similar phenomenon was observed in the related cyclic carbonates 18c and 18d (see below). The α' -H of trans isomer 18d, due to the shielding effect of the adjacent phenyl groups, exhibited at a higher field, δ 5.42, than the cis-isomer 18c at δ 5.71. The biscarbonates 19 and 20, obtained from the coupling reactions of 4-substituted benzaldehydes, were tentatively assigned to have meso configurations by analogy to that of 18a as two compounds displayed their α' -protons at δ 5.81 and 5.90.

On treating with SmI₂/ClCO₂CH₃, benzophenone and 3-oxo esters were reduced and carbonated subsequently to give carbonates 21-25 (entries 21-25). Carbonates 23 and 25 were unstable on silica gel column and underwent decarbonation to give allyl crotonate and ethyl 1-cyclopentenecarboxylate, respectively. Carbonate 24 could be purified by chromatography on a silica gel column. The ¹H NMR

spectrum of 24 indicated its *trans* configuration as the H-1 and H-2 exhibited a large coupling constant 10 Hz. Since H-1 and the carbonate group had a *cis* relationship, elimination of CH_3CO_2H *via* an E2 mechanism did not occur.

There are two possible pathways for the formation of pinacolates (Scheme I). A carbonyl undergoes one-electron reduction with SmI2 to give a ketyl radical A. In a nonpolar solvent, A might exist as tight ion pairs with oxygenmetal bonds to diminish the electrostatic repulsion on coupling to give the pinacolate C. Alternatively, the ketyl radical A might be further reduced by a second molecule of SmI2 to give a samarium species B, which would add nucleophilically to the carbonyl to give the pinacolate D. The bis-coordinated pinacolate C and the chelated pinacolate D might also be interconvertible, and either pinacolate would lead to pinacols upon protonation. When a carbonyl compound is treated with SmI2 in the presence of ClCO2CH3, the intermediates A or B can be trapped to give E or F (Scheme II). One-electron transfer from SmI₂ to the radical E can also afford the samarium species F. The carbonate intermediate G can be generated either by a nucleophilic addition of F to the carbonyl compound, or by a radical coupling between E and the carbonyl compound followed by a subsequent electron-transfer. Intramolecular cyclization of G would yield cyclic carbonates, but further reaction with a second molecule of ClCO₂CH₃ would furnish biscarbonates.

Scheme I

As shown in the example of 2-heptanone, the pinacolic coupling requires 24 h (giving 5b), whereas the reaction in the presence of ClCO₂CH₃ and molecular sieves is completed in 20 min (giving 5a). The great acceleration in formation of carbonate 5a is attributable to trap of ketyl radical A with ClCO₂CH₃ to shift the equilibrium between the car-

Scheme II

bonyl compound and A.

Theoretically, formation of a biscarbonate (e.g. 18a) requires 1 equiv of ClCO₂CH₃ (proportioned to the carbonyl compound), whereas formation of a cyclic carbonate (e.g. 6a) only requires 0.5 equiv of ClCO₂CH₃. The reaction of benzaldehyde with SmI₂ (1 equiv) and ClCO₂CH₃ (0.5 equiv) in the presence of molecular sieves gave a meso biscarbonate 18a (38%), a meso hydrobenzoin 18b (37%) and a cis cyclic carbonate 18c (11%). The inter- and intramolecular carbonations of the intermediate $G(R^1, R^2 = H,$ Ph) appeared to be competitive. When 1 equiv of ClCO₂CH₃ was used (entry 18), the reaction gave exclusively the biscarbonate 18a. Treatment of acetophenone (1 equiv) with SmI₂ (1 equiv) and ClCO₂CH₃ (0.5 equiv) in the presence of molecular sieves gave the cyclic carbonate 6a in a lower yield (54%), by comparison with 68% in entry 6. In this case, no biscarbonated product was observed even when an excess of CICO₂CH₃ (1 equiv) was employed. It seemed that the intermolecular biscarbonation of a congested intermediate $G(R^1, R^2 = Me, Ph)$ was disfavored.

Most pinacolic couplings of aldehydes or unsymmetric ketones result in two diastereomers.¹⁴ For example,^{4a} the

SmI₂-mediated pinacolic coupling of benzaldehyde gives hydrobenzoin containing meso- and dl-isomers (44:56).4a The meso/dl ratio increased to 7:3 when the pinacolic coupling was conducted in the presence of molecular sieves. The stereochemical outcome may be considered as the competition between dipolar and chelate transition states H-K (Fig. 1). The transition states I and J (Z = Sm) are disfavored due to the steric effects between the two large groups (L). The transition state H of the dipolar mode would give the erythro pinacolate, and hence the meso-pinacol upon protonation. On the other hand, the transition state K of the chelate mode would give the threo pinacolate and lead to the dl-pinacol upon protonation. When the SmI₂-mediated reaction is conducted in the presence of CICO₂CH₃, the chelate transition state K' with the seven-membered ring would not be so favorable as K with the five-membered ring. However, the dipolar transition state $H'(Z = CO_2CH_3)$ is preferable and leads to the formation of the meso biscarbonate 18a. In this case, the meso selectivity may also account

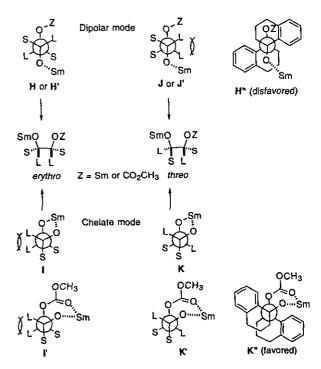


Fig. 1. The stereochemistry in pinacolic couplings (Z = Sm) and the related C-C bond forming reactions (Z = CO₂CH₃). The transition states I, I', J or J' are disfavored due to the steric effect between two large groups (L). The transition state H (or H') of dipolar mode leads to erythro pinacolate, cis cyclic carbonate and meso biscarbonate, whereas the transition state K (or K') of chelate mode leads to threo pinacolate, trans cyclic carbonate and dl biscarbonate.

for the transition state \mathbf{I}' (L = Ph) which exerts a π - π interaction instead of a steric effect. If benzaldehyde was treated with SmI₂-molecular sieves in THF for 20 min, and then ClCO₂CH₃ (1 equiv) was added to trap the resulting pinacolates, meso biscarbonate 18a and trans cyclic carbonate 18d were obtained in a ratio of 7:3 (same as the meso/dl ratio of pinacolic coupling). The stereoselectivity increased (18a/18d = 9:1) when equimolar amounts of benzaldehyde and ClCO₂CH₃ were premixed prior to addition to the suspension of SmI₂ and molecular sieves in THF. If ClCO₂CH₃ was added prior to benzaldehyde (entry 18), the reaction gave the meso product 18a exclusively. The reactions of 4-methoxybenzaldehyde and 4-cyanobenzaldehyde also showed the meso-selectivity.

The reactions of unsymmetric aliphatic ketones (entries 4, 5, and 8) are not stereoselective. The reaction of acetophenone (entry 6) gave a *cis* cyclic carbonate 6a, whereas the reaction of α -tetralone (entry 15) gave a *trans* cyclic carbonate 15. The *cis* selectivity for 6a may be attributable to a reason similar to that described for 18a *via* transition states H' and I' (L = Ph). By examining the transition states for the

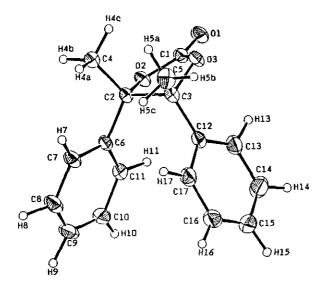
reaction of tetralone, one can see that the carbonate and OSm groups are displayed in the rings of the dipolar transition state H", which may be disfavored by severe steric effects. The transition state K", leading to the observed trans carbonate 15, is less congested and procures a stabilization by chelation.

Alcohols, including diols, are often protected or activated as carbonates for applications in polymerization and organic synthesis. ¹⁶ We have demonstrated an efficient one-pot method for preparation of carbonates from a variety of carbonyl compounds in a short reaction time, even with the substrates of aliphatic carbonyls. Methyl chloroformate not only functioned as a carbonating agent, it played an important role in acceleration of the coupling reactions. Reactions conducted under such conditions showed different stereochemistry from pinacolic couplings using more traditional methods.

Crystal Data

Molecular structures of five compounds, 6a, 8-trans, 12-major, 12-minor, and 15, were determined by single

Table 2. Crystal Data of Compounds 6a, 8-trans, 12-major, 12-minor and 15

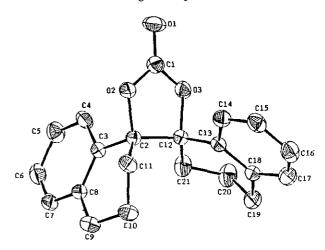

Compound	6a	8-trans	12-major	12-minor	15
Space group	P2 ₁ /n	C2/c	P2 ₁ /c	P2 _i /c	P2 _i /n
a, Å	13.602(4)	9.721(3)	25.195(6)	9.878(3)	8.494(4)
b, Å	7.015(3)	16.361(5)	6.6690(2)	7.975(4)	16.849(4)
c, Å -	15.040(4)	10.606(3)	12.224(3)	25.940(7)	11.357(2)
β, deg	96.90(3)	107.35(2)	91.60(2)	96.26(2)	90.56(3)
V, Å ³	1424.6(8)	1610.2(8)	2053.2(9)	2031(1)	1625.2(9)
\mathbf{Z}	4	4	4	4	4
D(calc), g.cm ⁻³	1.251	1.223	1.089	1.100	1.309
λ(Å) _:	1.5418	1.5418	1.5418	0.7707	1.5418
F(000)	57 0	634	746	744	682
unit cell detn; #, (20 range)	25, (35-52 deg.)	25, (33-47 deg.)	25, (26-46 deg.)	25, (17-23 deg)	25, (39-53 deg.)
scan type	θ/2θ	9/29	θ/2θ	9/20	9/20
20 scan width, deg	$2(0.75+0.15\tan\theta)$	$2(0.9+0.15\tan\theta)$	$2(1.0+0.15\tan\theta)$	$2(0.6+0.35\tan\theta)$	$2(0.7+0.15\tan\theta)$
2 0 max, deg	140.0	149.0	120.0	50.0	140.0
mμ, cm ⁻¹	8.164	5.971	5.201	0.665	6.545
Crystal size, mm	$0.4 \times 0.5 \times 0.6$	$0.4 \times 0.5 \times 0.6$	$0.05 \times 0.05 \times 0.5$	$0.25 \times 0.25 \times 0.3$	$0.32 \times 0.4 \times 0.4$
Temperature, K	298	298	298	298	298
No. of unique refins	2529	1657	3013	3563	3050
No. of obs reflns $(I > 2\sigma < (I))$	2101	1169	1418	1599	2269
R_f, R_w^*	0.054; 0.056	0.047; 0.040	0.086; 0.092	0.046; 0.042	0.104; 0.103
GOF .	2.97	1.98	1.80	1.53	3.85
Minimized function	Σ wl F_o - F_c l ²	Σ wl F_o - F_c l ²	Σ wl F_o - F_c l 2	Σ wl F_o - F_c l ₂	ΣwlFo-Fol2
g(second. ext. coeff.) $\times 10^4$	3.00(4)	0.059(8)	0.31(2)	0.71(6)	0.33(4)
$(\Delta/\sigma)_{\max}$	0.0045	0.0079	0.0028	0.0002	0.0011
(Δρ) _{max, min} eÅ ⁻³	-0.20; 0.25	-0.12; 0.19	-0.31; 0.24	-0.14; 0.14	-0.29; 0.89

 $R_f = [SF_0 - F_c I/F_0]$

 $R_w = Sqrt[\Sigma w!F_0-F_c!^2/\Sigma w!F_0!^2]$

GOF = Sqrt[Σ wlF₀-F_cl²/(No. of reflns - No. of params.)]

crystal X-ray diffraction. The data were collected on a CAD 4 diffractometer using CuK_α or MoK_α radiation. The relevant experimental conditions as well as the essential crystal data and final results of the least squares refinement are all given in Table 2. The ORTEP drawing of each compound is displayed and the stereochemistries are clearly indicated. All bond distances and bond angles are as expected.



ORTEP Drawing of Compound 6a

ORTEP Drawing of Compound 8-trans

ORTEP Drawing of Compound 12-major

ORTEP Drawing of Compound 12-minor

ORTEP Drawing of Compound 15

EXPERIMENTAL

Melting points are uncorrected. 1 H NMR spectra were recorded at 200 or 300 MHz; 13 C NMR spectra were recorded at 50 or 75 MHz. CHCl₃ (δ = 7.24 ppm) was used as an internal standard in 1 H NMR spectra. Mass spectra were recorded at an ionizing voltage of 70 or 20 eV. Merck silica gel 60F sheets were used for analytical thin-layer chromatography. Column chromatography was performed on silica gel (70-230 mesh) or alumina (neutral); gradients of EtOAc and n-hexane were used as eluents. HPLC was performed on a Hibar Lichrosorb Si 60 (7 μ m) column (25 cm \times 1 cm i.d.) with the indicated eluent of a 5 mL/min flow rate. THF was distilled from sodium benzophenone ketyl under N_2 .

General Procedure for the Preparation of Carbonates

In an oven-dried round-bottomed flask (50 mL) was

placed samarium metal (668.2 mg, 4.44 mmol), 1,2-diiodoethane (1.25 g, 4.44 mmol) and molecular sieves (4 Å, 200 mg). The air was evacuated by pump. The flask was inflated with argon and capped with septum. Anhydrous THF (12 mL) was added *via* syringe. The mixture was vigorously stirred at room temperature (30 °C) for 15-20 min to give a deep blue suspension. The formed suspension was stirred for 20 additional min and used readily for the coupling reaction.

Methyl chloroformate (0.16 mL, 2.12 mmol) was added via syringe. The mixture was stirred for 2-3 min, an appropriate carbonyl compound (2.12 mmol) in THF (2 mL) was added dropwise over a period of 2 min. The reaction occurred exothermically, the deep blue suspension changed to yellowish green color after stirring for 10-20 min. The septum was removed, and the mixture was stirred for 10 additional min in the air to become a yellow suspension. The mixture was filtered and rinsed with CH_2Cl_2 (2 × 25 mL), and the filtrate was concentrated by rotary evaporation. The residue was passed through a short column packed with alumina (neutral, 20-25 g), and eluted with EtOAc to give the desired carbonate products.

2,3-Dimethyl-2,3-butanediol cyclic carbonate (1)17

The reaction of acetone (123 mg, 2.12 mmol) with SmL/ClCO₂CH₃ according to the general procedure gave the title carbonate (132 mg, 86%). White solid; mp 99-100 °C; TLC (EtOAc/hexane (5:95)) $R_f = 0.3$; IR (KBr) 1770 (carbonate) cm⁻¹; ¹H NMR (CDCl₃) δ 1.35 (12 H, s); ¹³C NMR (CDCl₃) δ 22.2 (4 C), 85.9 (2 C), 153.8; MS m/z (rel intensity) 144 (1, M⁺), 85 (25), 59 (100).

Perdeuterio 2,3-dimethyl-2,3-butanediol cyclic carbonate (2)

The reaction of perdeuterioacetone (136 mg, 2.12 mmol) with SmI₂/ClCO₂CH₃ according to the general procedure gave the title carbonate (133 mg, 80%). White solid; mp 124-125 °C; TLC (EtOAc/hexane (15:85)) R_f = 0.14; ¹³C NMR (CDCl₃) δ 20.4, 20.7, 20.9, 21.2, 21.5, 21.7, 21.9, 85.6, 153.8.

3,4-Diethyl-3,4-hexanediol cyclic carbonate (3)

The reaction of diethyl ketone (182 mg, 2.12 mmol) with $SmI_2/ClCO_2CH_3$ according to the general procedure gave the title carbonate (148 mg, 70%). Oil; TLC (EtOAc/hexane (5:95)) $R_f = 0.35$; IR (neat) 1789 cm⁻¹; ¹H NMR (CDCl₃) δ 0.95 (12 H, t, J = 7.7 Hz), 1.73-1.88 (8 H, m); ¹³C NMR (CDCl₃) δ 8.2, 24.4, 91.2, 154.0; MS m/z (rel intensity) 201 (3, $M^* + 1$), 127 (14), 87 (29), 57 (100); HRMS Calcd for $C_{11}H_{21}O_3$: 201.1491. Found: 201.1495.

3,4-Dimethyl-3,4-hexanediol cyclic carbonate (4)

The reaction of methyl ethyl ketone (153 mg, 2.12 mmol) with SmI₂/ClCO₂CH₃ according to the general proce-

dure gave the title carbonate (143 mg, 78%) as a mixture of two isomers (1:1). Oil; TLC (EtOAc/hexane (5:95)) $R_f = 0.31$; IR (neat) 1779 cm⁻¹; ¹H NMR (CDCl₃) δ 0.99 (6 H, t, J = 7.4 Hz), 1.33 (6 H, s), 1.52-1.66 (2 H, m), 1.77-1.92 (2 H, m); ¹³C NMR (CDCl₃) δ 8.1/8.2, 18.0/18.8, 27.0/27.9, 88.6/88.7, 154.1; MS m/z (rel intensity) 173 (56, M⁺ + 1), 143 (56), 73 (100), 56 (77); HRMS Calcd for $C_9H_{16}O_3$: 173.1177. Found: 173.1180.

6,7-Dimethyl-6,7-dodecanediol cyclic carbonate (5a)

The reaction of 2-heptanone (242 mg, 2.12 mmol) with SmI₂/ClCO₂CH₃ according to the general procedure gave the title carbonate (225 mg, 83%) as a mixture of two isomers (1:1). Oil; TLC (EtOAc/hexane (5:95)) R_f = 0.6; IR (KBr) 1796 (carbonate) cm⁻¹; ¹H NMR (CDCl₃) δ 0.87 (6 H, m), 1.22-1.38 (12 H, m), 1.32 (6H, s), 1.40-1.58 (2H, m), 1.70-1.77 (2 H, m); ¹³C NMR (CDCl₃) δ 13.9, 18.8/19.4, 22.4, 23.4/23.5, 32.1, 34.3/34.9, 88.4, 154.1; MS m/z (rel intensity) 257 (100, M⁺ + 1), 195 (68); HRMS Calcd for C₁₅H₂₉O₃: 257.2117. Found: 257.2119.

2,3-Diphenyl-2,3-butanediol cyclic carbonate (6a)

The reaction of acetophenone (254.7 mg, 2.12 mmol) with SmI₂/ClCO₂CH₃ according to the general procedure gave the title carbonate (194 mg, 68%), which had the *cis* configuration as shown by an X-ray analysis. White solid; mp 105-106 °C; TLC (EtOAc/hexane (10:90)) R_f = 0.43; IR (KBr) 1791 cm⁻¹; ¹H NMR (CDCl₃) δ 1.94 (6 H, s), 6.87-6.92 (4 H, m), 7.03-7.10 (6 H, m); ¹³C NMR (CDCl₃) δ 22.5, 90.3, 124.9, 127.8, 138.4, 154.3; MS m/z (rel intensity) 268 (71, M*), 224 (87), 209 (30), 181 (24), 121 (29), 104 (100); HRMS Calcd for C₁₇H₁₆O₃: 268.1099. Found: 268.1111.

2,3-Bis(4-methoxyphenyl)-2,3-butanediol cyclic carbonate (7)

The reaction of 4'-methoxyacetophenone (292.6 mg, 2.12 mmol) with SmI₂/ClCO₂CH₃ according to the general procedure gave the title carbonate (288 mg, 83%) as a mixture of two isomers (3:1). White solid; mp 88-89 °C; TLC (EtOAc/hexane (30:70)) $R_f = 0.31$; IR (KBr) 1797 cm⁻¹; ¹H NMR (CDCl₃, major/minor = 3:1) δ 1.30 (s)/1.38 (s), 3.82 (s)/3.79 (s), 6.92 (d, J = 8.2 Hz)/6.81 (d, J = 8.2 Hz), 7.29 (d, J = 8.2 Hz)/7.08 (d, J = 8.2 Hz); ¹³C NMR (CDCl₃, major/minor) δ 24.8/22.6, 55.3/55.1, 89.9/90.3, 113.8/113.1, 126.4/126.2, 129.8/130.6, 147.9, 159.6/159.0; MS m/z (relintensity) 328 (23, M⁺), 241 (23), 134 (100); HRMS Calcd for C₁₉H₂₀O₅: 328.1310. Found: 328.1310.

2,3-Dibenzyl-2,3-butanediol cyclic carbonate (8)

The reaction of benzyl methyl ketone (284.5 mg, 2.12 mmol) with $SmI_2/ClCO_2CH_3$ according to the general procedure gave the title carbonate (253.3 mg, 75%) as a mixture of two isomers (1:1). White solid; mp 95.5-96.5 °C; TLC (EtOAc/hexane (10:90)) $R_f = 0.5$; IR (KBr) 1785 cm⁻¹; ¹H

NMR (CDCl₃, cis/trans) δ 1.23 (3 H, s)/1.30 (3 H, s), 2.64/2.75 (2 H, d, J = 14.0 Hz), 3.25/3.38 (2 H, d, J = 14.0 Hz), 7.26-7.31 (10 H, m); ¹³C NMR (CDCl₃) δ 18.9/19.0, 40.2/40.6, 88.1, 127.2, 128.4, 130.5/130.7, 134.7, 153.6; MS m/z (rel intensity) 296 (11, M⁺), 205 (100), 161 (96), 91 (37); HRMS Calcd for $C_{19}H_{20}O_3$: 296.1412. Found: 296.1414. Anal. Calcd for $C_{19}H_{22}O_5$: C, 77.0, H. 6.80. Found: C, 76.8, H, 6.70. The trans isomer, mp 90-91 °C, was obtained by recrystallization from CHCl₃/Et₂O, and the configuration was confirmed by an X-ray analysis.

Bis(cyclobutyl)-1,1'-diol cyclic carbonate (9)

The reaction of cyclobutanone (148.6 mg, 2.12 mmol) with $SmI_2/ClCO_2CH_3$ according to the general procedure gave the title carbonate (131.3 mg, 85%). White solid; mp 68-69 °C; TLC (EtOAc/hexane (5:95)) $R_f = 0.5$; IR (KBr) 1781 (carbonate) cm⁻¹; ¹H NMR (CDCl₃) δ 1.59-1.78 (2 H, m), 1.94-2.11 (2 H, m), 2.44 (8 H, t, J= 7.8 Hz); ¹³C NMR (CDCl₃) δ 12.6, 29.6, 87.5, 153.0; MS m/z (rel intensity) 169 (4, M* + 1), 152 (20), 96 (100), 68 (74), 55 (46); Anal. Calcd for $C_9H_{12}O_3$: C, 64.27; H, 7.19. Found: C, 64.26; H, 6.91.

Bis(cyclopentyl)-1,1'-diol cyclic carbonate (10)

The reaction of cyclopentanone (178.3 mg, 2.12 mmol) with $SmI_2/ClCO_2CH_3$ according to the general procedure gave the title carbonate (172.4 mg, 83%). White solid; mp 77.5-78.5 °C; TLC (EtOAc/hexane (5:95)) R_f = 0.53; IR (KBr) 1777 (carbonate) cm⁻¹; ¹H NMR (CDCl₃) δ 1.69-1.99 (16 H, m); ¹³C NMR (CDCl₃) δ 22.7, 33.7, 95.9, 154.0; MS m/z (rel intensity) 197 (5, M⁺ + 1), 124 (20), 111 (77), 97 (46), 84 (100), 67 (46), 55 (78); HRMS Calcd for $C_{11}H_{17}O_3$: 197.1177. Found: 197.1169.

Bis(cyclohexyl)-1,1'-diol cyclic carbonate (11)

The reaction of cyclohexanone (208 mg, 2.12 mmol) with SmI₂/ClCO₂CH₃ according to the general procedure gave the title carbonate (190 mg, 80%). White solid; mp 167-168 °C; TLC (EtOAc/hexane (5:95)) $R_f = 0.53$; IR (KBr) 1758 cm⁻¹; ¹H NMR (CDCl₃) δ 1.09-1.34. (4 H, m), 1.53-1.76 (12 H, m), 1.87-1.95 (4 H, m); ¹³C NMR (CDCl₃) δ 21.8, 24.9, 30.4, 87.2, 154.1; MS m/z (rel intensity) 224 (M⁺, 100); Anal. Calcd for $C_{13}H_{20}O_3$: C, 69.61; H, 8.99. Found: C, 69.67; H, 9.02.

Bis(4-tert-butylcyclohexyl)-1,1'-diol cyclic carbonate (12)

The reaction of 4-tert-butylcyclohexanone (327 mg, 2.12 mmol) with SmI₂/ClCO₂CH₃ according to the general procedure gave the title carbonate (253 mg, 71%) as a mixture of two isomers (87:13) as shown by the ¹H NMR analysis. Two isomers were separated by HPLC with elution of EtOAc/hexane (5:95). The configuration of the major isomer was determined to have two axial C-O bonds by an X-

ray analysis. **Major isomer**: White solid; mp 171-172 °C; t_R 9 min; IR (KBr) 1768 cm⁻¹; ¹H NMR (CDCl₃) δ 0.81 (3 H, s), 0.83-0.98 (1 H, m), 1.28-1.42 (4 H, m), 1.69-1.74 (2 H, m), 1.93-1.98 (1 H, m); ¹³C NMR (CDCl₃, 75 MHz) δ 22.8, 27.4, 30.9, 32.3, 47.0, 86.7, 154.1. **Minor isomer**: White solid; mp 175-176 °C; t_R 11 min; IR (KBr) 1774 cm⁻¹; ¹H NMR (CDCl₃) δ 0.83 (3 H, s), 1.02-1.45 (2 H, m), 1.38-1.77 (12 H, m), 2.05-2.25 (4 H, m); ¹³C NMR (CDCl₃) δ 22.9 23.9, 27.4, 31.6, 32.2, 32.4, 32.7, 46.4, 47.0, 86.9, 153.8; MS m/z (rel intensity) 336 (1, M⁺), 280 (100); HRMS Calcd for C₂₁H₃₆O₃: 336.2664. Found: 336.2663.

Bis(tetrahydro-4*H*-pyranyl)-1,1'-diol cyclic carbonate (13)

The reaction of tetrahydro-4*H*-pyranone (212.3 mg, 2.12 mmol) with SmI₂/ClCO₂CH₃ according to the general procedure gave the title carbonate (164 mg, 67%). White solid; mp 199-200 °C; TLC (EtOAc/hexane (10:90)) R_f = 0.47; IR (KBr) 1774 cm⁻¹; ¹H NMR (CDCl₃) δ 1.72-1.77 (8 H, m), 3.69-3.77 (4 H, m), 3.94-3.97 (4 H, m); ¹³C NMR (CDCl₃) δ 30.6, 63.4, 84.2, 152.7; MS m/z (rel intensity) 228 (9, M*), 166 (23), 140 (54), 101 (36), 84 (100), 56 (58); HRMS Calcd for C₁₁H₁₆O₅: 228.0997. Found: 228.0996.

Bis[(4-ethylenedioxy)cyclohexyl]-1,1'-diol cyclic carbonate (14)

The reaction of 1,4-cyclohexanedione mono-ethylene ketal (331.1 mg, 2.12 mmol) with $SmI_2/CICO_2CH_3$ according to the general procedure gave the title carbonate (289 mg, 80%). White solid; mp 227-228 °C; TLC (EtOAc/hexane (10:90)) $R_f = 0.31$; IR (KBr) 1789 cm⁻¹; ¹H NMR (CDCl₃) δ 1.65-1.96 (16 H, m), 3.88-3.97 (8 H, m); ¹³C NMR (CDCl₃) δ 28.2, 30.3, 64.1, 64.3, 85.6, 107.1, 153.3; MS m/z (rel intensity) 340 (60, M⁺), 310 (21), 181 (36), 99 (100); Anal. Calcd for $C_{17}H_{24}O_7$: C, 59.99; H, 7.11. Found: C, 59.95: H, 7.36.

Bis[3,4-dihydro-1(2H)-naphthyl]-1,1'-diol cyclic carbonate (15)

The reaction of α -tetralone (310 mg, 2.12 mmol) with SmI₂/ClCO₂CH₃ according to the general procedure gave the title carbonate (180 mg, 53%), which had the *trans* configuration as shown by an X-ray analysis. White solid; mp 217.5-218 °C; TLC (EtOAc/hexane (5:95)) R_f = 0.28; IR (KBr), 1775 cm⁻¹; ¹H NMR (CDCl₃) δ 1.36-1.64 (4 H, m), 1.64-1.96 (4 H, m), 2.63-2.80 (4 H, m), 7.24 (2 H), 7.26-7.32 (4 H, m), 7.45-7.49 (2 H, m); ¹³C NMR (CDCl₃) δ 18.6, 28.7, 33.2, 88.5, 126.1, 127.2, 128.8, 129.3, 134.2, 138.0, 155.1; MS m/z (rel intensity) 320 (25, M⁺), 276 (32), 130 (100); HRMS Calcd for $C_{21}H_{20}O_3$: 320.1412. Found: 320.1409.

1,2-Dimethyl-1,2-cyclobutanediol cyclic carbonate (16)

The reaction of 2,5-hexanedione (242 mg, 2.12 mmol) with SmI₂/ClCO₂CH₃ according to the general procedure gave a *cis* carbonate **16** (241 mg, 80%). White solid; mp 110-111 °C; TLC (EtOAc/hexane (5:95)) $R_f = 0.23$; IR (KBr) 1786 cm⁻¹; ¹H NMR (CDCl₃) δ 1.40 (6 H, s), 2.04-2.15 (2 H, m), 2.36-2.47 (2 H, m); ¹³C NMR (CDCl₃) δ 18.2, 30.5, 86.5, 153.6; MS m/z (rel intensity) 114 (54, M⁺ - 28), 97 (65), 83 (61), 55 (100); Anal. Calcd for C₇H₁₀O₃: C, 59.14; H, 7.09. Found: C, 59.53; H, 7.09.

3,4-Hexanediol cyclic carbonate (17)

The reaction of propionaldehyde (123.1 mg, 2.12 mmol) with $SmI_2/ClCO_2CH_3$ according to the general procedure gave the title carbonate (115 mg, 75%) as a mixture of two isomers (1:1). Oil; TLC (EtOAc/hexane (10:90)) $R_f = 0.28$; IR (neat) 1780 (carbonate) cm⁻¹; ¹H NMR (CDCl₃) δ 1.04 (3 H, t, J = 7.2 Hz), 1.54-1.78 (4 H, m), 4.52/4.56 (2 H, t, J = 6.2 Hz); ¹³C NMR (CDCl₃, 75 MHz) δ 8.7, 26.9, 82.5, 154.7; MS m/z (rel intensity) 145 (6, M* + 1), 129 (22), 85 (36), 59 (100); HRMS Calcd for $C_7H_{13}O_3$: 145.0864. Found: 145.0868.

1,2-Diphenylethane-1,2-diyl dimethyl dicarbonate (18a) and 1,2-Diphenyl-1,2-ethanediol cyclic carbonate (18c)

The reaction of benzaldehyde (225 mg, 2.12 mmol) with Sml₂/ClCO₂CH₃ (1 equiv) according to the general procedure gave a *meso* biscarbonate **18a** (287 mg, 82%), which yielded *meso*-1,2-diphenyl-1,2-ethanediol (**18b**) upon saponification (saturated aqueous NaOH, MeOH). If equimolar amounts of benzaldehyde and ClCO₂CH₃ were premixed and subjected to the reaction with Sml₂ according to the general procedure, **18a** (72%) and a trans cyclic carbonate **18d** (8%) were obtained. The reaction of benzaldehyde (225 mg, 2.12 mmol) with Sml₂/ClCO₂CH₃ (0.5 equiv) according to the general procedure gave **18a** (177 mg, 38%), *meso* pinacol **18b** (111 mg, 37%) and *cis* cyclic carbonate **18c** (37.3 mg, 11%).

18a: White solid; mp 176.5-177 °C; TLC (EtOAc/hexane (5:95)) $R_f = 0.2$; HPLC (EtOAc/hexane (5:95)) $t_R = 7$ min; IR (KBr) 1743 cm⁻¹; ¹H NMR (CDCl₃) δ 3.69 (6 H, s, OCH₃), 5.91 (2 H, s), 7.16-7.30 (10 H, m); ¹³C NMR (CDCl₃) δ 55.0, 80.2, 127.6, 128.1, 128.7, 134.9, 154.7; MS m/z (rel intensity) 330 (0.3, M⁺), 254 (19, M⁺ - CH₃OCO₂H), 165 (100), 121 (74); HRMS Calcd for C₁₈H₁₈O₆: 330.1103. Found: 330.1113.

18c: White solid; mp 95.5-96.5 °C; HPLC (EtOAc/hexane (5:95)) $t_R = 9$ min; IR (KBr) 1815 cm⁻¹; ¹H NMR (CDCl₃) δ 5.71 (2 H, s), 7.42-7.59 (10 H, m); ¹³C NMR (CDCl₃) δ 85.3, 126.0, 129.2, 129.8, 134.8, 153.6; MS m/z (rel intensity) 240 (65, M⁺), 195 (35), 167 (50), 90 (100);

HRMS Calcd for C₁₅H₁₂O₃: 240.0786. Found: 240.0771.

18d: White solid; mp 97.5-98.0 °C; HPLC (EtOAc/hexane (5:95)) t_R = 13 min; IR (KBr) 1817 cm⁻¹; ¹H NMR (CDCl₃) δ 5.42 (2 H, s), 7.28-7.43 (10 H, m); ¹³C NMR (CDCl₃) δ 85.3, 126.0, 129.2, 129.7, 134.8, 154.0.

1,2-Bis(4-methoxyphenyl)ethane-1,2-diyl dimethyl dicarbonate (19)

The reaction of *p*-anisaldehyde (289 mg, 2.12 mmol) with SmI₂/ClCO₂CH₃ according to the general procedure gave the title carbonate (389 mg, 82%) as a single isomer. White solid; mp 173.5-174 °C; TLC (EtOAc/hexane (10:90)) R_f = 0.33; IR (KBr) 1739 cm⁻¹; ¹H NMR (CDCl₃) δ 3.67 (6 H, s, OCH₃), 3.76 (6 H, s, OCH₃), 5.81 (2 H, s), 6.79 (4 H, d, J = 8.4 Hz), 7.12 (4 H, d, J = 8.5 Hz); ¹³C NMR (CDCl₃) δ 54.9, 55.1, 79.9, 113.5, 127.2, 129.0, 154.7, 159.7; MS m/z (rel intensity) 390 (17, M⁺), 314 (17), 271 (40), 195 (100), 151 (92); HRMS Calcd for C₂₀H₂₂O₈: 390.1315. Found: 390.1316.

1,2-Bis(4-cyanophenyl)ethane-1,2-diyl dimethyl dicarbonate (20)

The reaction of 4-cyanobenzaldehyde (278 mg, 2.12 mmol) with SmI₂/ClCO₂CH₃ according to the general procedure gave the title carbonate (298 mg, 74%) as a single isomer. White solid; mp 194.5-195.5 °C; TLC (EtOAc/hexane (10:90)) R_f = 0.4; IR (KBr) 1749 cm⁻¹; ¹H NMR (CDCl₃) δ 3.73 (6 H, s), 5.90 (2 H, s), 7.27 (4 H, d, J = 8.4 Hz), 7.59 (4 H, d, J = 8.4 Hz); ¹³C NMR (CDCl₃) δ 55.4, 78.8, 113.0, 128.0 130.3, 132.2, 139.4, 154.3; MS m/z (rel intensity) 380 (7, M⁺), 190 (26), 146 (100); HRMS Calcd for C₂₀H₁₆O₆N₂: 380.1008. Found: 380.1000.

Diphenylmethyl methyl carbonate (21)

The reaction of benzophenone (386 mg, 2.12 mmol) with SmI₂/ClCO₂CH₃ according to the general procedure gave the title carbonate (451 mg, 88%). White solid; mp 65-66 °C; TLC (EtOAc/hexane (15:85)) $R_f = 0.6$; IR (KB_T) 1711 cm⁻¹; ¹H NMR (CDCl₃) δ 3.85 (3 H, s, OCH₃), 4.28 (1 H, s), 7.32-7.45 (10 H, m); ¹³C NMR (CDCl₃) δ 53.5, 81.0, 127.3, 127.9, 128.0, 141.8, 174.9; MS m/z (rel intensity) 242 (1, M*), 183 (100); HRMS Calcd for $C_{15}H_{14}O_3$: 242.0942. Found: 242.0941.

(2-Ethoxycarbonyl-1-methyl)ethyl methyl carbonate (22)

The reaction of ethyl acetoacetate (276 mg, 2.12 mmol) with $SmI_2/ClCO_2CH_3$ according to the general procedure gave the title carbonate (354 mg, 88%). Oil; TLC (EtOAc/hexane (30:70)) R_f = 0.27; IR (neat) 1738 cm⁻¹; ¹H NMR (CDCl₃) δ 1.23 (3 H, t, J = 7.2 Hz), 1.34 (3 H, d, J = 7.4 Hz), 2.49 (1 H, dd, J = 16.0, 5.8 Hz), 2.69 (1 H, dd, J = 16.0, 7.2 Hz), 3.75 (3 H, s, OCH₃), 4.13 (2 H, q, J = 7.2 Hz), 5.1 (1 H, m); ¹³C NMR (CDCl₃) δ 14.0, 19.8, 40.7, 54.6,

60.6,71.3, 154.9, 169.9; MS m/z (rel intensity) 191 (3, M⁺ + 1), 145 (34), 114 (54), 69 (100); HRMS Calcd $C_8H_{14}O_5$: 190.0841. Found: 190.0847.

(2-Alloxycarbonyl-1-methyl)ethyl methyl carbonate (23) and Allyl crotonate (26)

The reaction of allyl acetoacetate (301 mg, 2.12 mmol) with $SmI_2/ClCO_2CH_3$ according to the general procedure gave the title carbonate **23**, which was unstable and yielded **26** (214 mg, 80%) on silica gel column or in CDCl₃ solution. **23**: 1H NMR (CDCl₃) δ 1.14-1.15 (3 H, m), 2.49-2.67 (2 H, m), 3.65 (3 H, s), 4.47-4.57 (2 H, m), 5.05-5.27 (3 H, m), 5.74-5.84 (1 H, m). ^{13}C NMR (CDCl₃) δ 19.6, 40.4, 54.6, 65.3, 71.1, 118.3, 131.5, 154.8, 169.7. 26: MS m/z (rel intensity) 126 (15, M*), 85 (20), 77 (21), 69 (100), 59 (82); HRMS Calcd for $C_7H_{10}O_2$: 126.0681. Found: 126.0690.

(2-Ethoxycarbonyl)cyclohex-1-yl methyl carbonate (24)

The reaction of ethyl 2-oxo cyclohexanecarboxylate (361 mg, 2.12 mmol) with SmI₂/ClCO₂CH₃ according to the general procedure gave the title carbonate (439 mg, 90%). Oil; TLC (EtOAc/hexane (20:80)) R_f = 0.45; IR (KBr) 1792, 1731 cm⁻¹; ¹H NMR (CDCl₃) δ 1.16 (3 H, t, J = 7.4 Hz) 1.22-1.47 (4 H, m), 1.52-1.82 (2 H, m), 1.90-2.12 (2 H, m), 2.44 (1 H, dt, J = 10.0, 4.0 Hz), 3.68 (3 H, s), 4.00-4.12 (2 H, m), 4.78 (1 H, dt, J = 10.0, 4.4 Hz); ¹³C NMR (CDCl₃) δ 13.9, 23.5, 24.2, 28.3, 30.5, 48.2, 54.4, 60.4, 76.6, 154.8, 173.1; MS m/z (rel intensity) 231 (100, M⁺ + 1), 230 (30, M⁺), 185 (32), 155 (67); HRMS Calcd for C₁₁H₁₈O₅: 230.1154. Found: 230.1144.

(2-Ethoxycarbonyl)cyclopent-1-yl methyl carbonate (25) and Ethyl 1-cyclopentenecarboxylate (27)

The reaction of methyl 2-oxocyclopentanecarboxylate (331 mg, 2.12 mmol) with SmI₂/ClCO₂CH₃ according to the general procedure gave the title compound 25 as a mixture of isomers, which were unstable and yielded 27 (228 mg, 77%) on silica gel column or in CDCl₃ solution. 25: Oil; TLC (EtOAc/hexane (20:80)) $R_f = 0.31$; IR (neat) 1789, 1746 cm⁻¹; ¹H NMR (CDCl₃) δ 1.16-1.26 (3 H, m), 1.73-2.14 (6 H, m), 2,44-2.58 (1 H, m), 3.70/3.72 (3 H, s), 3.97- $4.09 (2 \text{ H, m}), 5.12-5.13 (1 \text{ H, m}); {}^{13}\text{C NMR (CDCl}_3) \delta 13.9,$ 23.1, 32.1, 37.7, 50.1, 54.3, 60.4, 81.6, 154.9, 173.5; MS m/z (rel intensity) 217 (44, M⁺ + 1), 141 (96), 95 (92), 67 (100), 55 (68); HRMS Calcd for C₁₀H₁₆O₅: 216.0997. Found: 216.0998. 27: Oil; TLC (EtOAc/hexane (30:70)) R_f = 0.7; IR (KBr) 1774 cm⁻¹; 1 H NMR (CDCl₃) δ 1.23 (3 H, t, J = 7.4 Hz, 1.92 (2 H, m), 2.40-2.54 (4 H, m), 4.13 (2 H, q, J = 7.4 Hz), 6.71 (1 H, m); ¹³C NMR (CDCl₃) δ 14.2, 23.0, 31.2, 33.2, 59.9, 136.7, 143.4, 165.3; MS m/z (rel intensity) 140 (8, M^{\dagger}), 95 (6), 84 (100); HRMS Calcd for $C_8H_{12}O$: 140.0837. Found: 140.0846.

ACKNOWLEDGMENTS

We thank the National Science Council of the Republic of China for financial support.

Received January 29, 1997.

Key Words

Samarium diiodide; Carbonates; Molecular sieves; Stereochemistry.

REFERENCES

- For reviews, see (a) Kahn, B. E.; Rieke, R. D. Chem. Rev. 1988, 88, 733. (b) Robertson, G. M. in Comprehensive Organic Synthesis, Trost, B. M.; Fleming, I. Eds. Pergamon: Oxford, 1991, Vol. 3, pp 563-611. (c) Pons, J.-M.; Santelli, M. Tetrahedron 1988, 44, 4295. (d) Wirth, T. Angew. Chem., Int. Ed. Engl. 1996, 35, 61. (e) Molander, G. A.; Harris, C. R. Chem. Rev. 1996, 96, 307.
- Fürstner, A.; Csuk, R.; Rohrer, C.; Weidmann, H. J. Chem. Soc., Perkin Trans 1 1988, 1729 and the references cited therein.
- 3. Imamoto, T.; Kusumoto, T.; Hatanake, Y.; Yokoyama, M. *Tetrahedron Lett.* **1982**, *23*, 1353.
- (a) Namy, J. L.; Souppe, J.; Kagan, H. B. Tetrahedron Lett. 1983, 24, 765. (b) Souppe, J.; Danon, L.; Namy, J. L.; Kagan, H. B. J. Organomet. Chem. 1983, 250, 227. (c) Namy, J. L.; Collin, J.; Zhang, J.; Kagan, H. B. J. Organomet. Chem. 1987, 328, 81. (d) Molander, G. A.; Kenny, C. J. Am.. Chem. Soc. 1989, 111, 8236, and the references cited therein. (e) Chiana, J. L.; Cabri, W.; Hanessian, S. Tetrahedron Lett. 1991, 32, 1125. (f) Uenishi, J.; Masuda, S.; Wakabayashi, S. Tetrahedron Lett. 1991, 32, 5097. (g) Csuk, R.; Hu, Z.; Abdou, M.; Kratky, C. Tetrahedron 1991, 47, 7037. (h) Hou, Z.; Miyano, T.; Yamazaki, H.; Wakatsuki, Y. J. Am. Chem. Soc. 1995, 117, 4421. (i) Nomura, R.; Matsuno, T.; Endo, T. J. Am. Chem. Soc. 1996, 118, 11666.
- (a) Konstantatos, J.; Vrachnou-Astra, E.; Katsaros, N.; Katakis, D. J. Am. Chem. Soc. 1980, 102, 3035.
 (b) Konradi, A. W.; Kemp, S. J.; Pedersen, S. F. J. Am. Chem. Soc. 1994, 116, 1316 and the references cited therein.
- (a) Mukaiyama, T.; Sato, T.; Hanna, J. Chem. Lett. 1973,
 (b) Corey, E. J.; Danheiser, R. L.; Chan-

- drasekaran, S. J. Org. Chem. 1976, 41, 260. (c) Chen, T. H.; Shaven, A. J. Organomet. Chem. 1984, 268, C1. (d) Clerici, A. J. Org. Chem. 1983, 48, 1690. (e) Cleric, A.; Porta, O. Tetrahedron Lett. 1982, 23, 3517. (f) Nakayama, J.; Yamaoka, S.; Hoshino, M. Tetrahedron Lett. 1988, 29, 1399. (g) Handa, Y.; Inanaga, J. Tetrahedron Lett. 1987, 28, 5717. (h) Clerici, A.; Clerici, L.; Porta, O. Tetrahedron Lett. 1996, 37, 3035.
- (a) Schäfer, H. J. Angew. Chem., Int. Ed. Engl. 1981, 20, 911.
 (b) Léonard, E.; Duñach, E.; Périchon, J. J. Chem. Soc., Chem. Commun. 1989, 276.
- (a) Hays, D. S.; Fu, G. C. J. Am. Chem. Soc. 1995, 117, 7283.
 (b) Hiyama, T.; Obayashi, M.; Mori, I.; Nozaki, H. J. Org. Chem. 1983, 48, 912.
- 9. So, J.-H.; Park, M.-K.; Boudjouk, P. J. Org. Chem. 1988, 53, 5871.
- For reviews on SmI₂, see: (a) Kagan, H. B; Namy, J. L. Tetrahedron 1986, 42, 6573. (b) Inanaga, J. J. Syn. Org. Chem. 1989, 47, 200. (c) Soderquist, J. A. Aldrich. Acta 1991, 24, 15. (d) Molander, G. A. Chem. Rev. 1992, 92, 29. (e) Brandukova, N. E.; Vygodskii, Y. S.; Vinogradova, S. V. Russ. Chem. Rev. 1994, 63, 345. (f) Molander, G. A.; Harris, C. R. Chem. Rev. 1996, 96, 307.
- 11. Lebrun, A.; Namy, J.-L.; Kagan, H. B. Tetrahedron Lett. 1993, 34, 2311.
- Advantageous use of molecular sieves in organic reactions, see: (a) Hanson, R. M.; Sharpless, K. B. J. Org. Chem. 1986, 51, 1922. (b) Narasaka, K.; Inoue, M.; Yamada, T. Chem. Lett. 1986, 1967. (c) Mikami, K.; Terada, M.; Nakai, T. J. Am. Chem. Soc. 1989, 111, 1940.
- 13. The SmI₂-promoted Barbier-type reaction of 4-tertbutylcyclohexanone with (2-bromoethyl)benzene gives the major addition product having an axial hydroxyl group (cis to the t-Bu group). The SmI₂-mediated cou-

- pling of 4-tert-butylcyclohexanone with styrene gives the major product having an equatorial hydroxyl group (trans to the t-Bu group). See, (a) Inanaga, J.; Ojikawa, O.; Handa, Y.; Otsub, K.; Yamaguchi, M. J. Alloys Compounds 1993, 192, 197. (b) Inanaga, J.; Katsuki, J.; Ujikawa, O.; Yamaguchi, M. Tetrahedron Lett. 1991, 32, 4921.
- 14. For the stereochemistry of pinacolic couplings, see: Taniguchi, N.; Kaneta, N.; Uemura, M. J. Org. Chem. 1996, 61, 6088 and the references cited therein.
- (a) Stocker, J. H.; Kern, D. H. J. Org. Chem. 1968, 33, 1270.
 (b) Perkle, W.; Sikkenga, D. J. Org. Chem. 1975, 40, 3430.
 (c) Trost, B. M.; Curran, D. P. J. Am. Chem. Soc. 1980, 102, 5699.
 (d) Whitesell, J. K.; Battacharaya, A.; Aguilar, D. A.; Henke, K. J. Chem. Soc., Chem. Commun. 1982, 988.
 (e) Evans, D. A.; Chapman, K. T.; Bisaha, J. J. Am. Chem. Soc. 1988, 110, 1238.
 (f) Solladie-Cavallo, A. Tetrahedron 1991, 47, 249.
- 16. (a) Greene, T. W.; Wuts, P. G. N. Protective Groups in Organic Synthesis, 2nd ed., Wiley: New York, p. 104.
 (b) Burk, R. M.; Roof, M. B. Tetrahedron Lett. 1993, 34, 395.
 (c) Kang, S.-K.; Jeon, J.-H.; Nam, K.-S.; Park, C.-H.; Lee, H.-W. Synth. Commun. 1994, 24, 305 and the references cited therein. (d) Myers, A. G.; Widdowson, K. L. Tetrahedron Lett. 1988, 29, 6389.
 (e) Teranishi, K.; Nakao, H.; Komoda, A.; Hisamatsu, M.; Yamada, T. Synthesis 1995, 176.
 (f) Scholl, M.; Lim, C.-K.; Fu, G. C. J. Org. Chem. 1995, 60, 6229.
 (g) Kundu, B.; Shukla, M.; Shukla, S. J. Chem. Res. (S) 1994, 427.
 (h) Ghosh, A. K.; Duong, T. T.; Mckee, S. P. Tetrahedron Lett. 1991, 32, 4251.
 (i) McGhee, W.; Riley, D. J. Org. Chem. 1995, 60, 6205.
- 17. Budzikiewicz, H.; Djerassi, C.; Williams, D. H. Mass Spectrometry of Organic Compounds Holden-Day, Inc.: San Francisco, 1967, p. 494.

