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Abstract: A full-vectorial finite element method based eigenvalue algo-
rithm is developed to analyze the band structures of two-dimensional (2D)
photonic crystals (PCs) with arbitray 3D anisotropy for in-plane wave propa-
gations, in which the simple transverse-electric (TE) or transverse-magnetic
(TM) modes may not be clearly defined. By taking all the field components
into consideration simultaneously without decoupling of the wave modes
in 2D PCs into TE and TM modes, a full-vectorial matrix eigenvalue
equation, with the square of the wavenumber as the eigenvalue, is derived.
We examine the convergence behaviors of this algorithm and analyze
2D PCs with arbitrary anisotropy using this algorithm to demonstrate its
correctness and usefulness by explaining the numerical results theoretically.

© 2007 Optical Society of America

OCIS codes: (230.3990) Microstructure devices; (160.3710) Liquid crystals; (260.2110) Elec-
tromagnetic theory; (999.9999) Photonic crystals.

References and links
1. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58,

2059–2062 (1987).
2. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486–

2489 (1987).
3. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton

University Press, Princeton, NJ, 1995).
4. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, “All-silica single-mode optical fiber with photonic

crystal cladding,” Opt. Lett. 21, 1547–1549 (1996).
5. S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, “Guided modes in photonic

crystal slabs,” Phys. Rev. B 60, 5751–5758 (1999).
6. P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, “Microcavities in photonic crystals: Mode symmetry, tunability,

and coupling efficiency,” Phys. Rev. B 54, 7837–7842 (1996).
7. M. Qiu and S. He, “A nonorthogonal finite-difference time-domain method for computing the band structure of a

two-dimensional photonic crystal with dielectric and metallic inclusions,” J. Appl. Phys. 87, 8268–8275 (2000).
8. L. Zhang, N. G. Alexopoulos, D. Sievenpiper, and E. Yablonovitch, “An efficient finite-element method for the

analysis of photonic band-gap materials,” in 1999 IEEE MTT-S Dig. 4, 1703–1706 (1999).
9. C. P. Yu and H. C. Chang, “Compact finite-difference frequency-domain method for

the analysis of two-dimensional photonic crystals,” Opt. Express 12, 1397–1408 (2004),
http://www.opticsinfobase.org/abstract.cfm?URI=oe-12-7-1397

#86994 - $15.00 USD Received 28 Aug 2007; revised 12 Nov 2007; accepted 13 Nov 2007; published 14 Nov 2007

(C) 2007 OSA 26 November 2007 / Vol. 15,  No. 24 / OPTICS EXPRESS  15797



10. P. J. Chiang, C. P. Yu, and H. C. Chang, “Analysis of two-dimensional photonic crystals using a multidomain
pseudospectral method,” Phys. Rev. E 75, 026703 (2007).

11. I. H. H. Zabel and D. Stroud, “Photonic band structures of optically anisotropic periodic arrays,” Phys. Rev. B
48, 5004–5012 (1993).

12. Z. Y. Li, B. Y. Gu, and G. Z. Yang, “Large absolute band gap in 2D anisotropic photonic crystals,” Phys. Rev.
Lett. 81, 2574–2577 (1998).

13. C. Y. Liu and L. W. Chen, “Tunable band gap in a photonic crystal modulated by a nematic liquid crystal,” Phys.
Rev. B 72, 045133 (2005).

14. S. M. Hsu, M. M. Chen, and H. C. Chang, “Investigation of band structures for 2D non-diagonal anisotropic
photonic crystals using a finite element method based eigenvalue algorithm,” Opt. Express 15, 5416–5430 (2007),
http://www.opticsinfobase.org/abstract.cfm?URI=oe-15-9-5416

15. G. Alagappan, X. W. Sun, P. Shum, M. B. Yu, and D. den Engelsen, “Symmetry properties of two-dimensional
anisotropic photonic crystals,” J. Opt. Soc. Am. A 23, 2002–2013 (2006).

16. G. E. Antilla and N. G. Alexopoulos, “Scattering from complex three-dimensional geometries by a curvilinear
hybrid finite-element-integral equation approach,” J. Opt. Soc. Am. A 11, 1445–1457 (1994).

17. L. Zhang and N. G. Alexopoulos, “Finite-element based techniques for the modeling of PBG materials,” Elec-
tromagnetics 19, 225–239 (1999).

18. D. Sievenpiper, L. Zhang, R. F. J. Broas, N. G. Alexopoulos, and E. Yablonovitch, “High-impedance electromag-
netic surfaces with a forbidden frequency band,” IEEE Trans. Microwave Theory Tech. 47, 2059–2074 (1999).

19. J. Jin, The Finite Element Method in Electromagnetics (John Wiley and Sons, Inc., New York, 2002).
20. M. Koshiba and Y. Tsuji, “Curvilinear hybrid edge/nodal elements with triangular shape for guided-wave prob-

lems,” J. Lightwave Technol. 18, 737–743 (2000).
21. Z. Y. Li, B. Y. Gu, and G. Z. Yang, “Large absolute band gap in 2D anisotropic photonic crystals,” Phys. Rev.

Lett. 81, 2574–2577 (1998).
22. P. Yeh and C. Gu, Optics of Liquid Crystal Displays (John Wiley and Sons, Inc., New York, 1999).

1. Introduction

Photonic crystals (PCs) are structures formed by periodically-organized materials that may cre-
ate some frequency ranges, named the photonic band gaps (PBGs), in which the electromag-
netic (EM) waves are forbidden to propagate. With this peculiar property, PCs are especially
characterized by the capability of achieving an extremely high degree of control over the propa-
gation of EM waves. This significant character makes PCs quite different from other structures
and has drawn much attention for them. Therefore, since the pioneering works in [1,2], many
efforts have been devoted to the potential applications of PCs, especially the two-dimensional
(2D) PCs [3-6] which can be fabricated easily. This paper concerns in-plane wave propagations
in 2D PCs.

The fundamental characteristics of PCs are highly related to the configurations and prop-
erties of materials of the unit cell. Various kinds of numerical methods have been employed
to accomplish the analysis of band structures for 2D PCs. The plane-wave expansion (PWE)
method [3] and the finite-difference time-domain (FDTD) method [7] are two familiar schemes.
In addition, some famous numerical schemes, such as the finite element method (FEM) [8], the
finite-difference frequency-domain (FDFD) method [9], and the pseudospectral method (PSM)
[10], have been utilized for this analysis likewise. To obtain the complete band structures for 2D
PCs from these numerical models, the wave modes are often decoupled into transverse-electric
(TE) and transverse-magnetic (TM) modes, and then the eigen frequencies of these two sets
of modes are separately solved. In other words, these numerical models are based on a scalar
algorithm in which the scalar equations for the TE and TM modes are manipulated apart to
construct the band structures for 2D PCs.

If the 2D PCs are composed of isotropic materials, the above-mentioned numerical mod-
els are perfectly sufficient to perform the analysis of band structures. However, sometimes the
anisotropic materials are intentionally introduced into the 2D PC structures for the purpose
of altering the patterns of the band structures, and thus controlling the behaviors of the PBGs
[11-13]. For the 2D PCs made of diagonal anisotropic materials, these numerical models may
still be capable of obtaining the complete band structures provided that the completeness of the
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irreducible Brillouin zone (IBZ) for constructing the band structures is carefully modified [14].
Nevertheless, in situations where the permittivity and permeability tensors of the anisotropic
PCs are not in the diagonal form, the correct band structures can not be obtained using these
numerical models through separating TE and TM modes. Recently some more general models
have been developed to investigate 2D non-diagonal anisotropic PCs [14,15]. But in those re-
searches, the anisotropy was still restricted for the guarantee that the wave modes can simply
be decoupled into TE and TM modes and the scalar algorithm can still be applied.

For the analysis of band structures of 2D PCs with arbitrary 3D anisotropy, the traditional
scalar algorithm is obviously insufficient, and a different algorithm beyond the scope of the
scalar algorithm is absolutely necessary. For example, a finite element-integral equation (FE-
IE) method [16] has been formulated for treating planar PBG structures with finite thickness
[17,18], which were essentially 3D problems. However, the matrix eigenvalue equation formu-
lated was not a standard one with the coefficient matrix elements depending on the eigenvalue
to be searched, and some iteration procedure was needed for finding the eigenvalues [17]. In
this paper, a full-vectorial FEM based eigenvalue algorithm, which is capable of analyzing the
band structures of 2D PCs with arbitrary permittivity and permeability tensors, is proposed.
To deal with the most general situation of 2D problems with 3D material anisotropy, we si-
multaneously take all the components of the electric or magnetic fields into consideration, and
successfully achieve a generalized full-vectorial matrix eigenvalue equation for the analysis of
band structures. The matrix equation obtained is in the form of a standard matrix eigenvalue
equation. The thorough derivation of this full-vectorial FEM based eigenvalue algorithm is de-
scribed in Section 2 in detail. Then several 2D PCs with square and triangular lattices, including
the isotropic and anisotropic cases, are analyzed in Section 3. From these numerical results and
corresponding theoretical explanations, the performance of this algorithm is examined, and the
correctness and usefulness of this algorithm are demonstrated. The conclusion is summarized
in Section 4.

2. Formulation

2.1. The governing equation

Under the source-free condition and with a time (t) dependence of the form exp( jωt) being
implied, Maxwell’s curl equations can be expressed as

∇×E = − jωμ0[μr]H (1)

∇×H = jωε0[εr]E (2)

where ω is the angular frequency, μ0 and ε0 are the permeability and permittivity of free space,
and [μr] and [εr] are, respectively, the relative permeability and permittivity tensors of the
medium given by

[μr] =

⎡
⎣

μxx μxy μxz

μyx μyy μyz

μzx μzy μzz

⎤
⎦ (3)

[εr] =

⎡
⎣

εxx εxy εxz

εyx εyy εyz

εzx εzy εzz

⎤
⎦ . (4)

From Eqs. (1) and (2), we can derive the vectorial wave equation as

∇× ([p]∇×Φ)− k2
0[q]Φ = 0 (5)
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Fig. 1. The cross-section of a 2D PC and the corresponding unit cell for (a) the square
lattice and (b) the triangular lattice.

where k0 = ω√μ0ε0 is the wavenumber in free space, Φ is either the electric field E or the
magnetic field H, and the tensors [p] and [q] are, respectively, given by

[p] =

⎡
⎣

pxx pxy pxz

pyx pyy pyz

pzx pzy pzz

⎤
⎦ =

⎡
⎣

μxx μxy μxz

μyx μyy μyz

μzx μzy μzz

⎤
⎦
−1

(6)

[q] =

⎡
⎣

qxx qxy qxz

qyx qyy qyz

qzx qzy qzz

⎤
⎦ =

⎡
⎣

εxx εxy εxz

εyx εyy εyz

εzx εzy εzz

⎤
⎦ (7)

for Φ = E and

[p] =

⎡
⎣

pxx pxy pxz

pyx pyy pyz

pzx pzy pzz

⎤
⎦ =

⎡
⎣

εxx εxy εxz

εyx εyy εyz

εzx εzy εzz

⎤
⎦
−1

(8)

[q] =

⎡
⎣

qxx qxy qxz

qyx qyy qyz

qzx qzy qzz

⎤
⎦ =

⎡
⎣

μxx μxy μxz

μyx μyy μyz

μzx μzy μzz

⎤
⎦ (9)

for Φ = H.
In this paper, we will consider 2D PCs with two kinds of spatial configuration, the square-

and triangle-arranged lattices, as shown in Fig. 1(a) and (b), respectively, where a is the lattice
distance and r is the radius of the parallel cylinders. The square region, enclosed by sides
I, II, III, and VI, in Fig. 1(a) indicates the unit cell of the 2D PC with square lattice, while
the hexagonal region, surrounded by sides I, II, . . . ,VI, in Fig. 1(b) denotes the unit cell of the
2D PC with triangular lattice. For these 2D PCs which are uniform along the z direction and
periodic in the x-y plane, the field distribution Φ of the wave modes in the PCs for the in-plane
propagation can be expressed as

Φ(x,y,z) = Φt(x,y)+ ẑΦz(x,y) (10)

where Φt and Φz, both assumed to be function of x and y, are the transverse and longitudinal
field components of Φ, respectively. Substituting Eq. (10) into Eq. (5) and using

∇ = ∇t + ∇z (11)
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where ∇t and ∇z are, respectively, the transverse and longitudinal parts of the ∇ operator, Eq.
(5) can be separated into its transverse component

∇t ×
⎛
⎝

⎡
⎣

0 0 0
0 0 0
0 0 pzz

⎤
⎦∇t ×Φt +

⎡
⎣

0 0 0
0 0 0

pzx pzy 0

⎤
⎦∇t × ẑΦz

⎞
⎠

− k2
0

⎛
⎝

⎡
⎣

qxx qxy 0
qyx qyy 0
0 0 0

⎤
⎦Φt +

⎡
⎣

0 0 qxz

0 0 qyz

0 0 0

⎤
⎦Φz

⎞
⎠ = 0 (12)

and its longitudinal component

∇t ×
⎛
⎝

⎡
⎣

0 0 pxz

0 0 pyz

0 0 0

⎤
⎦∇t ×Φt +

⎡
⎣

pxx pxy 0
pyx pyy 0
0 0 0

⎤
⎦∇t × ẑΦz

⎞
⎠

− k2
0

⎛
⎝

⎡
⎣

0 0 0
0 0 0

qzx qzy 0

⎤
⎦Φt +

⎡
⎣

0 0 0
0 0 0
0 0 qzz

⎤
⎦Φz

⎞
⎠ = 0. (13)

Equations (12) and (13) can be used to construct a full-vectorial eigenvalue algorithm for the
analysis of band structures of 2D anisotropic PCs with arbitrary permeability and permittivity
tensors under the in-plane wave propagation.

2.2. The FEM based matrix eigenvalue equation

Notice that all field components are involved simultaneously in Eqs. (12) and (13). Therefore, to
develop an FEM based matrix eigenvalue equation according to Eqs. (12) and (13), the simple
edge or nodal elements are apparently insufficient. In addition, to achieve better accuracy and
efficiency, a higher order element which can model the curved geometry in the structures better
is preferred. Consequently, the curvilinear hybrid edge/nodal element [19,20], as shown in Fig.
2, is adopted for the discretization of the FEM. An edge element with eight variables, φ t1–φt8,
based on linear tangential and quadratic normal (LT/QN) vector basis functions and a quadratic
nodal element with six variables, φz1–φz6, are employed for the transverse and longitudinal field
components, respectively. The vector-based shape function for the curvilinear edge element,
x̂{U}+ ŷ{V}, and the scalar-based shape function for the curvilinear nodal element, {N}, are
listed in Table 1, where {φ e

t } and {φ e
z } are, respectively, the edge- and nodal-variable vectors

for each element, Li (i = 1,2,3) are the simplex coordinates, |J| is the Jacobian, the determinant

1
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6
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Fig. 2. Curvilinear hybrid edge/nodal element.
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of the Jacobian matrix, [J], defined by

[J] =

⎡
⎢⎣

∂x
∂L1

∂y
∂L1

∂x
∂L2

∂y
∂L2

⎤
⎥⎦ (14)

and |∇tLi| j and |J| j are, respectively, the values of |∇tLi| (i = 1,2,3) and |J| at the nodal point
j ( j = 1,2, . . . ,6).

The relation of differentiation between the Cartesian coordinate system and the simplex co-
ordinate system can be written as

⎡
⎢⎣

∂
∂L1
∂

∂L2

⎤
⎥⎦ = [J]

⎡
⎢⎣

∂
∂x
∂
∂y

⎤
⎥⎦ (15)

and the integration of a function f (x,y) in the Cartesian coordinate system can be performed in
the simplex coordinate system through

∫ ∫

e
f (x,y)dxdy =

∫ 1

0

[∫ 1−L1

0
f (L1,L2,L3) |J(L1,L2,L3)|dL2

]
dL1. (16)

Hence, the required computation for element matrices associated with the governing equation
can be obtained directly in the simplex coordinate system.

Dividing the structure domain into a number of curvilinear hybrid edge/nodal elements, the
field Φ in each element can be expanded as

Φ = Φt + ẑΦz =

⎡
⎣

{U}T{φ e
t }

{V}T{φ e
t }

{N}T{φ e
z }

⎤
⎦ (17)

where T denotes transpose. Applying Galerkin’s method, assembling all element matrices, and
incorporating the periodic boundary conditions (PBCs) [14] given by

Table 1. Vector- and scalar-based shape functions

edge {φ e
t } x̂{U}+ ŷ{V} nodal {φ e

z } {N}
φt1 |J|1|∇tL3|1(L1∇tL2) φz1 L1(2L1 −1)
φt2 |J|2|∇tL1|2(L2∇tL3) φz2 L2(2L2 −1)
φt3 |J|3|∇tL2|3(L3∇tL1) φz3 L3(2L3 −1)

LT/QN φt4 |J|2|∇tL3|2(L2∇tL1) quadratic φz4 4L1L2

φt5 |J|3|∇tL1|3(L3∇tL2) φz5 4L2L3

φt6 |J|1|∇tL2|1(L1∇tL3) φz6 4L3L1

φt7 4L1L2∇tL3/|∇tL3|4
φt8 4L2L3∇tL1/|∇tL1|5
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Φ|I = e− jkxaΦ|III (18)

∂Φ
∂x

∣∣∣
I
= e− jkxa ∂Φ

∂x

∣∣∣
III

(19)

∂Φ
∂y

∣∣∣
I
= e− jkxa ∂Φ

∂y

∣∣∣
III

(20)

Φ|II = e− jkyaΦ|IV (21)

∂Φ
∂x

∣∣∣
II

= e− jkya ∂Φ
∂x

∣∣∣
IV

(22)

∂Φ
∂y

∣∣∣
II

= e− jkya ∂Φ
∂y

∣∣∣
IV

(23)

for square-arranged lattice and

Φ|I = e− j(kx

√
3a
2 +ky

a
2 )Φ|IV (24)

∂Φ
∂x

∣∣∣
I
= e− j(kx

√
3a
2 +ky

a
2 ) ∂Φ

∂x

∣∣∣
IV

(25)

∂Φ
∂y

∣∣∣
I
= e− j(kx

√
3a
2 +ky

a
2 ) ∂Φ

∂y

∣∣∣
IV

(26)

Φ|II = e− jkyaΦ|V (27)

∂Φ
∂x

∣∣∣
II

= e− jkya ∂Φ
∂x

∣∣∣
V

(28)

∂Φ
∂y

∣∣∣
II

= e− jkya ∂Φ
∂y

∣∣∣
V

(29)

Φ|III = e j(kx

√
3a
2 −ky

a
2 )Φ|VI (30)

∂Φ
∂x

∣∣∣
III

= e j(kx

√
3a
2 −ky

a
2 ) ∂Φ

∂x

∣∣∣
VI

(31)

∂Φ
∂y

∣∣∣
III

= e j(kx

√
3a
2 −ky

a
2 ) ∂Φ

∂y

∣∣∣
VI

(32)

for triangle-arranged lattice, where kx and ky are, respectively, the wavenumbers in the x and y
directions, and the subscript denotes the side label of the unit cell, as defined in Fig. 1(a) and
(b), Eqs. (12) and (13) can be transformed into the matrix form as

[K]{φ}− k2
0[M]{φ} = {0} (33)

where {0} is a null vector, and the variable vector {φ} and the matrices, [K] and [M], are given
by

{φ} =
[ {φt}

{φz}
]

(34)

[K] =
[

[Ktt ] [Ktz]
[Kzt ] [Kzz]

]
(35)

[M] =
[

[Mtt ] [Mtz]
[Mzt ] [Mzz]

]
(36)
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with

[Ktt ] = ∑
e

∫ ∫
[pzz

∂{V}
∂x

∂{V}T

∂x
− pzz

∂{V}
∂x

∂{U}T

∂y

− pzz
∂{U}

∂y
∂{V}T

∂x
+ pzz

∂{U}
∂y

∂{U}T

∂y
]dxdy (37)

[Ktz] = ∑
e

∫ ∫
[pzx

∂{V}
∂x

∂{N}T

∂y
− pzy

∂{V}
∂x

∂{N}T

∂x

− pzx
∂{U}

∂y
∂{N}T

∂y
+ pzy

∂{U}
∂y

∂{N}T

∂x
]dxdy (38)

[Kzt ] = ∑
e

∫ ∫
[pxz

∂{N}
∂y

∂{V}T

∂x
− pxz

∂{N}
∂y

∂{U}T

∂y

− pyz
∂{N}

∂x
∂{V}T

∂x
+ pyz

∂{N}
∂x

∂{U}T

∂y
]dxdy (39)

[Kzz] = ∑
e

∫ ∫
[pxx

∂{N}
∂y

∂{N}T

∂y
− pxy

∂{N}
∂y

∂{N}T

∂x

− pyx
∂{N}

∂x
∂{N}T

∂y
+ pyy

∂{N}
∂x

∂{N}T

∂x
]dxdy (40)

[Mtt ] = ∑
e

∫ ∫
[qxx{U}{U}T +qxy{U}{V}T

+qyx{V}{U}T +qyy{V}{V}T ]dxdy (41)

[Mtz] = ∑
e

∫ ∫
[qxz{U}{N}T +qyz{V}{N}T ]dxdy (42)

[Mzt ] = ∑
e

∫ ∫
[qzx{N}{U}T +qzy{N}{V}T ]dxdy (43)

[Mzz] = ∑
e

∫ ∫
[qzz{N}{N}T ]dxdy. (44)

where ∑e extends over all different elements. Equation (33) is the desired matrix eigenvalue
equation in the proposed full-vectorial algorithm for the analysis of 2D anisotropic PCs with
arbitrary permittivity and permeability tensors.

3. Numerical results

In the following, the band structures of several 2D PCs will be analyzed using the proposed
full-vectorial algorithm. For the cases in which the wave modes can be decoupled into TE and
TM modes, we also show the results obtained from the scalar algorithm in [14] for comparison
and discussions.

3.1. Isotropic PCs

To understand the characteristics of this full-vectorial algorithm, we start from the band-
structure analysis of two familiar 2D isotropic PCs. The first is formed by square-arranged
parallel alumina rods with relative permittivity ε = 8.9 and radius r = 0.2a in the air, and the
second consists of triangle-arranged dielectric cylinders with relative permittivity ε = 11.4 and
radius r = 0.2a in the air. The first BZ for the 2D PC with square lattice is shown in Fig. 3(a), in
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Fig. 3. The first BZ of a 2D PC with (a) square lattice and (b) triangular lattice.

which four sub-zones are marked. For isotropic PCs, considering all the possible directions of
the wave vector k in any single sub-zone, identical to the IBZ, is sufficient for the construction
of complete band structures. Similarly, the six sub-zones in the first BZ for the 2D PC with
triangular lattice, as shown in Fig. 3(b), are exactly the same as isotropic PCs. Consequently,
the band structures of the two isotropic PCs considered here can be completely constructed
from sub-zones Γ-X-M and Γ-M-K, respectively. The band structures of these two PCs ob-
tained from the full-vectorial algorithm are, respectively, shown in Fig. 4(a) and (b), in which
the band structures constructed from the scalar algorithm [14] are also plotted for comparison.
The blue solid lines denote the results obtained using the full-vectorial algorithm, and the red
and green circular dots represent, respectively, the results of the TE and TM modes calculated
from the scalar algorithm. With the validation using the scalar algorithm, it is believed that the
full-vectorial algorithm can correctly construct the band structures of the TE and TM modes
for 2D isotropic PCs.

We further examine the convergence behaviors of the full-vectorial algorithm, compared
with the scalar algorithm. For the 2D PC with square lattice, k is fixed at the X point in the
first BZ and various numbers of elements are used to search the eigen frequencies of several
bands for both TE and TM modes. The convergence behaviors of the first and third bands for
the TE mode are, respectively, shown in Fig. 5(a) and (b), and those for the TM mode are,
respectively, shown in Fig. 5(c) and (d). In Fig. 5(a) and (b), the lines with blue triangles, blue
squares, and red circles represent the results calculated from the E-formulation full-vectorial
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Fig. 5. The convergence behaviors of the full-vectorial algorithm for the 2D isotropic PC
with square lattice compared with the scalar algorithm as k is fixed at the X point. (a) TE
first band; (b) TE third band; (c) TM first band; (d) TM third band.

algorithm, the H-formulation full-vectorial algorithm, and the TE scalar algorithm, respectively.
It can be seen that the eigen frequencies obtained from the E- and H-formulation full-vectorial
algorithms will converge to the same value with enough number of elements used, although
their convergence behaviors are obviously different from each other. On the other hand, the
agreement of the convergence behaviors between the H-formulation full-vectorial algorithm
and the TE scalar algorithm provides a powerful support for the correctness of this full-vectorial
algorithm. According to the definitions in [14], the TE mode is composed of H z, Ex, and Ey

components, and the unknown field component to be solved in the scalar algorithm for the TE
mode is Hz. Therefore, when the H-formulation is employed in the full-vectorial algorithm, H z

will appear in the unknown field vector explicitly, and it is quite reasonable that the results from
these two algorithms would be consistent with each other.

In Fig. 5(c) and (d), the lines with green circles represent the results calculated from the
TM scalar algorithm, and the lines with blue triangles and blue squares stand for the same
meanings as in Fig. 5(a) and (b). Because the unknown field component to be solved in the
scalar algorithm for the TM mode is Ez, it is no surprise that its convergence behaviors agree
well with those of the E-formulation full-vectorial algorithm.

As for the 2D PC with triangular lattice, k is fixed at the M point in the first BZ, and the coun-
terparts of Fig. 5(a), (b), (c), and (d) are displayed in Fig. 6(a), (b), (c), and (d), respectively.
We can observe that the convergence behaviors of the E- and H-formulation full-vectorial al-
gorithms, and the scalar algorithms for the TE and TM modes for triangular lattice are similar
to those for square lattice. Hence, the discussions for the square lattice can be applied to the tri-
angular lattice as well, and the correctness of the proposed full-vectorial algorithm for solving
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Fig. 6. The convergence behaviors of the full-vectorial algorithm for the 2D isotropic PC
with triangular lattice compared with the scalar algorithm as k is fixed at the M point. (a)
TE first band; (b) TE third band; (c) TM first band; (d) TM third band.

the band structures of isotropic 2D PCs is verified again.

3.2. Anisotropic PCs

We then study the case of 2D anisotropic PCs. To provide a structure for real applications,
the materials used to comprise the PCs are chosen carefully. The anisotropic material Te, a
kind of positive uniaxial crystal with principal indices of no = 4.8 and ne = 6.2, can be used
to provide a chance of obtaining the absolute band gap [21]. In addition, liquid crystals (LCs)
are widely used in the research of tunable PCs for the convenient change of the anisotropy
by simply rotating the LC molecules, and the tunable PBGs can be achieved [13]. To utilize
the advantages of these two materials collectively, we consider a 2D anisotropic PC which is
composed of triangle-arranged LC columns in the background of Te, as depicted in Fig. 7(a).
The radius r of the LC columns is 0.45a and the components of the relative permittivity tensor
[εr] of the nematic LCs (5CB) [22] we use are given as

εxx = n2
o +(n2

e −n2
o)sin2 θc cos2 φc (45)

εxy = εyx = (n2
e −n2

o)sin2 θc sinφc cosφc (46)

εxz = εzx = (n2
e −n2

o)sinθc cosθc cosφc (47)

εyy = n2
o +(n2

e −n2
o)sin2 θc sin2 φc (48)

εyz = εzy = (n2
e −n2

o)sinθc cosθc sinφc (49)

εzz = n2
o +(n2

e −n2
o)cos2 θc (50)
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Fig. 7. (a) Cross-section of the 2D anisotropic PC with triangular lattice. (b) Schematic
definition of rotation angles for the LC molecule.

where no = 1.5292 and ne = 1.7072 are, respectively, the ordinary and extraordinary refractive
indices of the nematic LCs, θc is the angle between the crystal c-axis and the z-axis, and φc

represents the angle between the projection of the crystal c-axis on the x-y plane and the x-axis,
as defined in Fig. 7(b).

With the introduction of anisotropic materials into the PC structures, the four sub-zones in
the first BZ for the 2D PC with square lattice, as shown in Fig. 3(a), and the six sub-zones in
the first BZ for the 2D PC with triangular lattice, as shown in Fig. 3(b), must be taken into
consideration for the construction of complete band structures [14]. Fig. 8 shows the complete
band structures for this 2D PC of θc = 0◦, 30◦, 45◦, 60◦, and 90◦, and φc = 30◦. Notice that for
the special cases, i.e. θc = 0◦ or 90◦, the scalar algorithm in [14] can be employed to obtain the
band structures as well. Consequently, in Fig. 8(a) and (e), for the cases of θ c = 0◦ and 90◦,
respectively, not only the results from the full-vectorial algorithm, represented by the blue solid
lines, but also those from the scalar algorithm, represented by the red and green circular dots,
are displayed. It can be seen that, even for anisotropic PCs, the results of these two algorithms
still agree with each other very well provided that the wave modes can be decoupled into the
TE and TM modes. The significance of the full-vectorial algorithm is conspicuously revealed
from Fig. 8(b), (c), and (d). These band structures can not be obtained from the scalar algorithm
because the wave modes in the PC are hybrid ones when θ c is not exactly 0◦ or 90◦. However, by
taking advantage of the full-vectorial algorithm, we can construct these band structures smartly.

In Fig. 8, the red region stands for the absolute band gap for all directions in the x-y plane
of this PC, and the shadowed regions represent ignorable parts as a result of the symmetry
conditions and the basic principle of periodic structures [14]. We can see that there always exist
absolute band gaps for this PC of different θc’s when φc = 30◦. To systematically understand the
influences of θc and φc on the absolute band gaps and clearly demonstrate how the anisotropy
affects the wave modes in the PC structures, we analyze the band structures of more different
θc’s and φc’s. Fig. 9 shows the normalized frequency range of the absolute band gap versus
φc for five different θc’s from 0◦ to 90◦. We can find out that the absolute band gap can be
noticeably tuned by changing θc regardless of the value of φc, and the upper limit of the absolute
band gap is much dependent on θc than the lower limit for this PC. On the other hand, it is seen
that, for every fixed θc, the normalized frequency range of the absolute band gap almost keeps
constant when φc increases from 0◦ to 90◦.

For θc = 0◦ or 90◦, the above phenomenon is absolutely reasonable and can be directly under-
stood by the aid of Fig. 8(a) and (e), from which we can observe that the normalized frequency
range of the absolute band gap is determined by the TM modes which are independent of the
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Fig. 8. The band structures of the 2D anisotropic PC with triangular lattice of (a) θc = 0◦
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Fig. 10. The variation of the absolute band gap limits for the 2D anisotropic PC with trian-
gular lattice versus φc for five different θc’s from 0◦ to 90◦.

value of φc since the electric field is perpendicular to the x-y plane. However, for θ c = 30◦, 45◦,
and 60◦, this φc-independent phenomenon seems unreasonable. Theoretically, in these condi-
tions all the wave modes, including those to determine the absolute band gap, in the PC are
hybrid ones and are expected to be dependent on the anisotropy of the PC structure, which is
related to the orientation of the LC molecules. Consequently, rotating the LC molecules around
the z-axis should influence the absolute band gap in some way. To confirm this theoretical ar-
gument concretely, the numerical data are presented in another way which can obviously show
the variation of the absolute band gap. Specifically, for every fixed θ c, the calculated absolute
band gap limits for any φc are normalized through the transformation defined as

ωa
2πc

∣∣∣∣
normalized

=
ωa
2πc

−
ωa
2πc

∣∣∣∣
max

+
ωa
2πc

∣∣∣∣
min

2
(51)

where ωa/2πc
∣∣
max and ωa/2πc

∣∣
min are, respectively, the maximum and minimum values of

the limits for φc from 0◦ to 90◦. The results after the transformation of Eq. (51) are shown in

#86994 - $15.00 USD Received 28 Aug 2007; revised 12 Nov 2007; accepted 13 Nov 2007; published 14 Nov 2007

(C) 2007 OSA 26 November 2007 / Vol. 15,  No. 24 / OPTICS EXPRESS  15810



Fig. 10. It is seen that the absolute band gap limits indeed vary with φ c for θc = 30◦, 45◦, and
60◦. We also observe that the upper limit is still much dependent on φ c than the lower limit for
this PC, just as their dependence on θc. Another interesting phenomenon is that the variations
of the upper and lower limits are opposite, i.e. when the upper limit reaches the maximum
value, the lower limit will reach the minimum value, and vice versa. Finally, it is noticed that
the variation of the limits has a period of 60◦ over φc. This phenomenon can be reasonably
accepted because the unit cell of a PC with triangular lattice is a hexagon and rotating the LC
molecules around the z-axis by 60◦ dose not really change the PC structure due to the rotation
symmetry. Based on these numerical results and theoretical discussions, the correctness and
usefulness of the proposed full-vectorial algorithm have been clearly demonstrated.

4. Conclusion

We have successfully developed a full-vectorial FEM based eigenvalue algorithm for the analy-
sis of band structures of 2D PCs with arbitrary 3D anisotropy for in-plane wave propagations. In
this full-vectorial algorithm, we attempt an idea of considering all the field components simul-
taneously and formulate a matrix eigenvalue equation to deal with the most general situation
of 2D anisotropic PC problems. The relationship of the traditional scalar algorithm and this
full-vectorial algorithm is described through the analysis of isotropic PCs first. Then, we exam-
ine how the rotation of the LC molecules in the considered anisotropic PC structure influences
the wave modes and the absolute band gap. The effects of θ c and φc on the behaviors of the
absolute band gap limits are discussed in detail. By considering the numerical results carefully
and explaining the observed phenomena theoretically, we demonstrate the performance and
significance of this full-vectorial algorithm, and see that a deeper insight about 2D anisotropic
PCs can be obtained through this full-wave analysis.
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