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Abstract

Asian options have payoffs that depend on the average price of the underlying asset such as stocks, commodities, or
financial indices. As exact closed-form formulas do not exist for these popular options, how to price them numerically
in an efficient and accurate manner has been extensively investigated. There are two types of Asian options, fixed-strike
and floating-strike Asian options. Excellent lower-bound formulas for both types of options have been derived by Rogers
and Shi. These formulas are extremely easy to calculate, but they restrict the option’s maturity to exactly 1 year. This paper
extends the Rogers—Shi formulas to general maturities. Numerical experiments are performed to compare the formulas
with many other numerical methods in the literature and under a wide variety of situations. They confirm the extreme
accuracy of the formulas.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Asian options have payoffs that depend on the arithmetic average price of the underlying asset, which can
be stocks, commodities, or financial indices. They are therefore useful for hedging future transactions whose
cost is related to the average price of the underlying asset. In fact, Asian options were originally issued in 1987
when Bankers Trust’s Tokyo office used them for pricing average options on crude oil contracts, thus the
name Asian option [1]. Today, they are commonly traded on currencies and commodity products. The price
of the Asian option is less subject to price manipulation. Hence the averaging feature is popular in many thinly
traded markets and embedded in complex derivatives such as the “refix” clauses in convertible bonds. This
averaging feature furthermore makes Asian options enjoy lower volatilities than their underlying assets, thus
cheaper relative to standard options on the same underlying assets.

Exact closed-form formulas have not been available for pricing Asian options since their introduction by
Ingersoll [2]. The source of the difficulty lies in the technical fact that the average of lognormal random
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variables is not lognormally distributed. (A random variable is lognormal if its logarithm is normally distrib-
uted.) As a result, how to price Asian options numerically in an efficient and accurate manner has been exten-
sively investigated in the literature. Approaches to the problem of valuing Asian options in the literature
include:

. Monte-Carlo simulation [3-5];

. Binomial tree [6-8];

. Convolution method [9];

. Direct integration [10,117;

. Partial differential equation (PDE) [12-15];
. Fourier transform (FFT) [16];

. Approximate analytic method [17-25].

NN BN

All of the above methods involve some tradeoffs between numerical accuracy and computational efficiency.
This paper follows the approximate analytic method, whose chief advantage is its high efficiency.
The asset price is assumed to follow the geometric Browning motion

— By+ot
S, = Se? ™,

where ¢ is the volatility, « = » — 62 /2, r is the risk-free interest rate, S is the current asset price at time 0, S, is
the asset price at time ¢, and B, is a Browning motion with By = 0. It is most intuitive to think of B, as being
normally distributed with mean 0 and variance 7. The asset price is therefore lognormally distributed. This
distributional assumption is standard in finance [26,27]. The particular form of the drift term o can be justified
on economic grounds; any other forms result in arbitrage opportunities, which should disappear in efficient
markets [28].

The payoff of a fixed-strike Asian call option at maturity date 7 is max(0, S,y — K), where S,.. = % _fOT S,dt
denotes the average price of the underlying asset over the period [0, 7], and K > 0 is called the strike price. The
payoff of the floating-strike Asian call option is similar. It is max (0, S,.. — Sr), where Sy is the asset price at
maturity. The arbitrage-free price of the Asian option equals its discounted expected payofT, that is, e’ E[pay-
off]. This claim can again be justified by arbitrage considerations.

This paper generalizes the lower-bound formulas of Rogers and Shi [23] from 7 = 1 (year) to a general T by
extending the techniques of Thompson [25]. The formulas will turn out to be very easy to evaluate. Extensive
numerical experiments are then conducted to verify the extreme accuracy of the formulas as compared to
many other well-known methods in the literature.

This paper is organized as follows. Section 2 introduces mathematical preliminaries for later use. Section 3
presents the pricing formulas. Section 4 describes the numerical results. Conclusions are given in Section 5.

2. Mathematical preliminaries

First the correlation matrix between % fOT B,ds and B, is established.

Theorem 1. The correlation matrix between * fOT Byds and B, equals
Cov(B,, B;) Cov (B,,% fOT B, ds) ; t L)
Cov(B,% Jy Bods) Cov(k [y Buds,} Jy B,ds) (l-35) %

where 0 <t < T.

Proof. See Appendix. [

Next we establish the correlation matrix between % for B,ds — By and B,.
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Theorem 2. The correlation matrix between % fOT Byds — Br and B, equals
Cov(B,,B,)

1713
Cov(By,} [y Bods — Br)
Cov (B} Jy Byds—Br) Cov(} Jy Buds — Br.} J, Byds — Br)
where 0 <t < T.

Proof. See Appendix. [
Let 0 < 0,0, and —1 < p < 1. Suppose (X, Y) ~ ¢(u,, i,

2 2
., 07,
with means p, and p,, variances o2 and aﬁ, and correlation p. Then its density function is given by
2
expd — Lo (x,
flx,y) =

p) is a bivariate normal random variable
e
(1-p?)

2) -n) () (2)])

ay

2n0,0,4/1 — p?

for —oo < x,y < oo. The following is a known fact concerning bivariate normal random variables [29].
Fact 3. If (X, Y) ~ ¢(u,, s, 02, aﬁ, p), then the conditional distribution of X given ¥ = y is normal with mean
fte + 5 (v — ) and variance o7(1 — p?)
Let X =B,and ¥ =1 fOT B;ds. Theorem 1 and Fact 3 imply that the conditional distribution of X given
Y = y is normal with mean 3”;72’/2)” and variance ¢ — %2, (T - %)2, in other words,
B, given N /OTBSds —y ~ N<3t(T—t/2)y B 342

- 4
and variance ¢ — 3

t2
- (1-3) ).
T? T3< 2)
47%

Similarly, Theorem 2 and Fact 3 imply that the distribution of X given Y — By = z is normal with mean —
in other words,

1 T
B, given —/ B,ds— By =z ~ N(—
T Jo

(1)

3z
272

2727 4713)°

Let &(-) denote the standard normal distribution function and /(+) the indicator function. The moment gen-
erating function My (A4) of the random variable X is defined for all real values of 4 by
My (4) = E[e™] :/

2)
" e f(x)dx

o0

if X is continuous with density function f(x). The next result is standard in probability theory [29].

Fact 4. If X ~ ¢(u, 6?), then My(4) = exp (,uA + %Az) for all real values of A.
The following theorem will simplify our notations later.

Theorem 5. Suppose X ~ ¢(u,,03), Y ~ ¢(u,,03), and ¢ = Cov(X,Y). Then
o2 +c
E[*1(Y > 0)] = e“x*?cb(“y)
Oy
Proof. See Appendix. [

Theorem 6. For any random variable X with density function fy(x),

The next general theorem about expectations is critical to the development of our pricing formulas
¢ I/TE(S KX >p)di =
6/1 T 0 t ) l) -

7 [ B - KX =
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Proof. See Appendix. [
The final theorem can be proved in the same way as Theorem 6.
Theorem 7. For any random variable X with density fx(x),
o1 /TE(S, S X s ) di= - /TE(S, SeX = ) () de.
AT Jo T Jo

3. The pricing formulas

In this section, we will derive lower-bound formulas for both fixed-strike and floating-strike Asian options.
It is useful to recall that S, = S - exp(aB, + at) with & = r — 6> /2. We will use the simpler notation x™ for the
function max(x, 0).

3.1. An analytic formula for fixed-strike Asian options

Define the event set 4 = {a) : % fOT S,dt > K } The value of the fixed-strike Asian option, Viyeq, €quals

e’TE[<% /OTS,dt— 1<)+ = erTEK% /OTS[dr—K>I(A)} = e’TEK% /OT(S[ —K)dt)l(A)}
—eE K% /OT(S, - K)I(A)dt)} - e;T /OTE[(S, — K)I(4)]dt
> e;T /0 CE[(S, — K)I(A)] de

for any event set A'. The reason for the last inequality is + fOT S, dt <K for we A —A4. We will fix
A = {a) 1 fOT B,dt > y} for a y to be determined later. This particular event set is chosen for the tractability

it provides in deriving the desired lower-bound formula, which will turn out to be extremely accurate.
We now seek the value of that maximizes the lower bound

T T T [T 1 T
- /OE[(S,—K)I(A)]dt: - /OE(SI—K,?/O Btdt>v>dt~

Theorem 6 says any random variable X with density fyx(x) satisfies

€

01

T 1 T
a?/o E(S,—K,X>y)dt——f/0 E(S; — K|X = 7)fx(y)dt.

Thus the desired value of y (call it y*) must satisfy

1 T
—/ E(SIX =) dt = K.
T Jo

Given X =1 fOT B,dt as dictated by our choice for 4’, the above identity becomes

1 [ 3T —t/2)y"c o’ 3 02

by Eq. (1) and Fact 4. This identity determines 7" uniquely. We now have the lower bound:

1 T 1 T
Viixed = GVT{? / E[(SGGB’+M — K)] (T / B,ds > V*>] dl‘}. (3)
0 0
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It remains to calculate the expectation. Fix ¢t € [0,7]. Let Ny =0oB, + af+1logS, N, = % fOT B, dt — y*,
u; = E(N;), > = Var(N,), and ¢ = Cov(N,N,). Then inequality (3) becomes

1 /7 1 7 3 fuy+e Uy
) > o Tl 2 N1 _ —e T = ity e _
Viked = € {T/o El(e K)I(N, > 0)]dt} e {T/o e <I>< p ) Kd?(az) dt}

by Theorem 5. As u; = at + log S, uy = —y*, a2 = ¢*t, 65 = T/3, and ¢ = ot(1 — ¢/2T) according to Theorem
1, we finally obtain the desired lower-bound formula:

S [T e (= +ot(l—5) —*
lee > e—rT = / eott+7¢ L i S dt — Ko . 4
el {T 0 ( T/3 VT/3 @

3.2. An analytic formula for floating-strike Asian options

The steps here parallel those in the previous section. Define the event set 4 = {w i1 fOT S, dr > ST}. The
value of the fixed-strike Asian option, Vygating, €quals

¢ TE <% /0 Ts,dt—sr>+] :e‘rTE[(% /0 TS,dt—&)I(A)} :e"TE[(% /0 T(S,—ST)dI)I(A)}
:e"TE[% /O T(S,—ST)I(A)dt] :# /0 "S- $)1(4)]dr
> % OTE[(S,—ST)I(A’)]dt

for any event set 4. The reason for the last inequality is % fOT S,dt < S7 for we A —A. We will fix
A = {co P+ fOT B;dt — By > y} for a y to be determined later. This particular event set is chosen for the trac-

tability it provides in deriving the desired lower-bound formula, which will turn out to be extremely accurate.
We now seek the value of y that maximizes the lower bound

e [T e [T 1 /7
—/ E[(S,—ST)I(A’)]dt:—/ E(S,—ST,—/ B;df—BT>V) dr.
T Jo T Jo T Jo

Table 1

Comparison with the tree algorithms of Hull and White [6] and Hsu and Lyuu [8] and the PDE method of Forsyth et al. [14]

n Hull-White PDE Hsu-Lyuu Eq. (4)
Case 1: S=100, X=100,r=0.1, 6 =0.1, T=0.25

50 1.8486 1.8478 1.8714720 -

100 1.8501 1.8492 1.9095930 -

200 1.8508 1.8503 1.8891953 -

400 1.8512 1.8509 1.8703678 -

00 1.8516 1.8514 1.8515402 1.851588
Case 2: S=100, X=100,r=0.1, 6=0.5, T=5

50 28.3899 28.3573 28.3893142 -

100 28.3972 28.3842 28.3973455 -

200 28.4011 28.3952 28.4013633 -

400 28.4031 28.4003 28.4032833 -

00 28.4051 28.4054 28.4052033 28.364100

The parameters are from Tables 3 and 4 of Forsyth et al. [14]. The numbers quoted for the Hull-White method are based on calculations
using the finest grids. The parameter n denotes the number of time periods. The oo-row lists the extrapolated option values wherever
available. The exact value in Case 1 is conjectured to be 1.8515 £ 0.0001 and that in Case 2 is conjectured to be 28.40525 + 0.00015 [14].
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Theorem 7 says any random variable X with density fx(x) satisfies

01

T 1 T

Thus the desired value of y (call it y*) must satisfy

17 17
_/ E(S,|X:y*)dt:—/ E(Sr|X = y7)d.
T Jo T Jo

Given X =1 fOT B,dt — By as dictated by our choice for 4’, the above identity becomes

1 [ (=)o a’ 3t 30y*  To?
?/0 S-exp{T—i—aH—?<t—ﬁ>}dI—S-exp (ozt— 3 +T>

Table 2

Comparison with Zhang [1,15] and Hsu and Lyuu [8]

X g r Exact AA2 AA3 Hsu-Lyuu Eq. (4)
95 0.05 0.05 7.1777275 7.1777244 7.1777279 7.178812 7.177726
100 2.7161745 2.7161755 2.7161744 2.715613 2.716168
105 0.3372614 0.3372601 0.3372614 0.338863 0.337231
95 0.09 8.8088392 8.8088441 8.8088397 8.808717 8.808839
100 4.3082350 4.3082253 4.3082331 4.309247 4.308231
105 0.9583841 0.9583838 0.9583841 0.960068 0.958331
95 0.15 11.0940944 11.0940964 11.0940943 11.093903 11.094094
100 6.7943550 6.7943510 6.7943553 6.795678 6.794354
105 2.7444531 2.7444538 2.7444531 2.743798 2.744406
90 0.10 0.05 11.9510927 11.9509331 11.9510871 11.951610 11.951076
100 3.6413864 3.6414032 3.6413875 3.642325 3.641344
110 0.3312030 0.3312563 0.3311968 0.331348 0.331074
90 0.09 13.3851974 13.3851165 13.3852048 13.385563 13.385190
100 49151167 4.9151388 49151177 4.914254 4.915075
110 0.6302713 0.6302538 0.6302717 0.629843 0.630064
90 0.15 15.3987687 15.3988062 15.3987860 15.398885 15.398767
100 7.0277081 7.0276544 7.0277022 7.027385 7.027678
110 1.4136149 1.4136013 1.4136161 1.414953 1.413286
90 0.20 0.05 12.5959916 12.5957894 12.5959304 12.596052 12.595602
100 5.7630881 5.7631987 5.7631187 5.763664 5.762708
110 1.9898945 1.9894855 1.9899382 1.989962 1.989242
90 0.09 13.8314996 13.8307782 13.8313482 13.831604 13.831220
100 6.7773481 6.7775756 6.7773833 6.777748 6.776999
110 2.5462209 2.5459150 2.5462598 2.546397 2.545459
90 0.15 15.6417575 15.6401370 15.6414533 15.641911 15.641598
100 8.4088330 8.4091957 8.4088744 8.408966 8.408519
110 3.5556100 3.5554997 3.5556415 3.556094 3.554687
90 0.30 0.05 13.9538233 13.9555691 13.9540973 13.953937 13.952421
100 7.9456288 7.9459286 7.9458549 7.945918 7.944357
110 4.0717942 4.0702869 4.0720881 4.071945 4.070115
90 0.09 14.9839595 14.9854235 14.9841522 14.984037 14.982782
100 8.8287588 8.8294164 8.8289978 8.829033 8.827548
110 4.6967089 4.6956764 4.6969698 4.696895 4.694902
90 0.15 16.5129113 16.5133090 16.5128376 16.512963 16.512024
100 10.2098305 10.2110681 10.2101058 10.210039 10.208724
110 5.7301225 5.7296982 5.7303567 5.730357 5.728161

The parameters are from Table 1 of [1]. The “Exact”-column is from [15], and the AA2 and AA3 columns are from [1]. The options are
calls with S =100 and 7 = 1.
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by Eq. (2) and Fact 4. This identity determines y" uniquely. We now have the lower bound:

1 [ 1 [
Vﬂoating = erT{? / E|:(SeUBl+M - ST)I (T / Bs ds — BT > ”/*)} dt} (5)
0 0

It remains to calculate the expectation. Fix 7 € [0,T]. Let Ny = 0B, + at + logS, N, = % fOT B,dt — By — ",
u; = E(N,), 6 = Var(N;), and ¢ = Cov(N;,N,). Note that

2
E[eN‘I(N2 > 0)] — e“ﬁr%@(ﬂ)
)

by Theorem 5. Inequality (5) becomes

1

T
Viixed = e—rT{T / E[(CNI — ST)I(Nz > O)]df}
0

Asuy = ot +1ogS, u, = —y*, 07 = 0’1, 03 = T/3, and ¢ = —a#* /(2T according to Theorem 2, the desired low-
er bound obtains:

Table 3

Comparison with Zhang [1,15] and Hsu and Lyuu [8] under a wide range of volatilities

X 4 Exact AA2 AA3 Hsu-Lyuu Eq. (4)
95 0.05 8.8088392 8.80884 8.80884 8.808717 8.808839
100 4.3082350 4.30823 4.30823 4.309247 4.308231
105 0.9583841 0.95838 0.95838 0.960068 0.958331
95 0.1 8.9118509 891171 8.91184 8.912238 8.911836
100 49151167 491514 491512 4.914254 4915075
105 2.0700634 2.07006 2.07006 2.072473 2.069930
95 0.2 9.9956567 9.99597 9.99569 9.995661 9.995362
100 6.7773481 6.77758 6.77738 6.777748 6.776999
105 4.2965626 4.29643 4.29649 4.297021 4.295941
95 0.3 11.6558858 11.65747 11.65618 11.656062 11.654758
100 8.8287588 8.82942 8.82900 8.829033 8.827548
105 6.5177905 6.51763 6.51802 6.518063 6.516355
95 0.4 13.5107083 13.51426 13.51182 13.510861 13.507892
100 10.9237708 10.92507 10.92474 10.923943 10.920891
105 8.7299362 8.72936 8.73089 8.730102 8.726804
95 0.5 15.4427163 15.44890 15.44587 15.442822 15.437069
100 13.0281555 13.03015 13.03107 13.028271 13.022532
105 10.9296247 10.92800 10.93253 10.929736 10.923750
95 0.6 - - - 17.406402 17.396428
100 - - - 15.128426 15.118595
105 - - - 13.113874 13.103855
95 0.8 - - - 21.349949 21.326144
100 - - - 19.288780 19.265518
105 - - - 17.423935 17.400803
95 1.0 - - - 25.252051 25.205238
100 - - - 23.367535 23.321951
105 - - - 21.638238 21.593393

The parameters are from Table 2 of [1]. The options are calls with S = 100, » = 0.09, and T = 1.
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2
Se~'T T T 2r (= —%
Vﬂoating =z — e P —2r ] - e“T+Td§ —2 dr
0 T/

T 3 JT/3
_ s |1 /Te““razz’(P 5 dr — e[ T 3 b : (6)
T Jo T/3 7/3

4. Numerical evaluation

We proceed to confirm the accuracy of our formulas by extensive numerical experiments. Because floating-
strike Asian options are equivalent to fixed-strike Asian options [32], we will limit the evaluation to fixed-strike
Asian options. Tables 1-6 are for fixed-strike options, which are our focus. Table 7 considers floating-strike
options. To start with, Table 1 compares formula (4) with the trinomial tree algorithm of Hull and White [6],
the PDE method of Forsyth et al. [14], and the binomial tree algorithm of Hsu and Lyuu [8]. All calculated
option prices are close to each other despite their being based on different methodologies.

Table 2 compares formula (4) with the methods of Zhang [1,15] and Hsu and Lyuu [8]. Our formula pro-
duces results that are never more than 0.042% away from the PDE method of Zhang [15], whose data are gen-
erally accepted to be exact. Table 3 continues the experiments of Table 2 but under a very wide range of
volatilities, up to ¢ = 100%. The reason for these settings is that many pricing formulas deteriorate as the

Table 4

Comparison with Ju [22], Zhang [15], and Hsu and Lyuu [8]

X o Exact TE6 Hsu-Lyuu Eq. (4)
95 0.05 15.1162646 15.11626 15.116230 15.116264
100 11.3036080 11.30360 11.304034 11.303605
105 7.5533233 7.55335 7.554073 7.553278
95 0.1 15.2138005 15.21396 15.213921 15.213761
100 11.6376573 11.63798 11.637813 11.637525
105 8.3912219 8.39140 8.391189 8.390833
95 0.2 16.6372081 16.63942 16.637276 16.636109
100 13.7669267 13.76770 13.767043 13.765476
105 11.2198706 11.21879 11.220047 11.217842
95 0.3 19.0231619 19.02652 19.023236 19.018567
100 16.5861236 16.58509 16.586222 16.581024
105 14.3929780 14.38751 14.393083 14.387081
95 0.4 21.7409242 21.74461 21.740973 21.729124
100 19.5882516 19.58355 19.588307 19.575938
105 17.6254416 17.61269 17.625501 17.612310
95 0.5 24.5718705 24.57740 24.571913 24.547903
100 22.6307858 22.62276 22.630828 22.606509
105 20.8431853 20.82213 20.843226 20.818216
95 0.6 - - 27.425278 27.382898
100 - - 25.655297 25.612978
105 - - 24.013011 23.970344
95 0.8 - - 33.031740 32.928877
100 - - 31.535716 31.434324
105 - - 30.133505 30.033063
95 1.0 - - 38.361352 38.158663
100 - - 37.085174 36.886054
105 - - 35.881483 35.685358

The exact values are from Table 7 of [15]. TE6 stands for Ju’s Taylor expansion method. The parameters are from Table 2 of [22] and
Table 7 of [15]. The options are calls with S = 100, » = 0.09, and T = 3.



Table 5

Comparison with the one-dimensional PDE method of Vecer [30] and the binomial tree algorithm of Hsu and Lyuu [8§]

X o T=1 T=3
Exact PDEI1 PDE2 Hsu-Lyuu Eq. (4) Exact PDEI1 PDE2 Hsu-Lyuu Eq. (4)

95 0.05 8.8088392 8.8088241 8.8088241 8.808717 8.8088389 15.1162646 15.1162526 15.1162526 15.116230 15.11626440
100 4.3082350 4.3080602 4.3080602 4.309247 4.3082311 11.3036080 11.3035792 11.3035792 11.304034 11.30360450
105 0.9583841 0.9583277 0.9583277 0.960068 0.9583309 7.5533233 7.5531978 7.5531978 7.554073 7.55327778
95 0.1 8.9118509 8.9118054 8.9118054 8.912238 8.9118360 15.2138005 15.2137661 15.2137661 15.213921 15.21376080
100 49151167 4.9150253 4.9150253 4.914254 4.9150753 11.6376573 11.6376011 11.6376011 11.637813 11.63752500
105 2.0700634 2.0700251 2.0700251 2.072473 2.0699297 8.3912219 8.3911498 8.3911498 8.391189 8.39083318
95 0.2 9.9956567 9.9956323 9.9956323 9.995661 9.9953622 16.6372081 16.6371770 16.6371770 16.637276 16.6361089

100 6.7773481 6.7773279 6.7773279 6.777748 6.7769994 13.7669267 13.7668950 13.7668950 13.767043 13.7654757

105 4.2965626 4.2964614 4.2964614 4.297021 4.2959409 11.2198706 11.2198412 11.2198412 11.220047 11.2178420

95 0.3 11.6558858 11.6558892 11.6558892 11.656062 11.6547575 19.0231619 19.0230953 19.0231388 19.023236 19.0185667

100 8.8287588 8.8287699 8.8287699 8.829033 8.8275482 16.5861236 16.5860134 16.5861083 16.586222 16.5810236

105 6.5177905 6.5178134 6.5178134 6.518063 6.5163551 14.3929780 14.3927638 14.3929591 14.393083 14.3870805

95 0.4 13.5107083 13.5107373 13.5107373 13.510861 13.5078924 21.7409242 21.7359140 21.7409067 21.740973 21.7291244

100 10.9237708 10.9238047 10.9238049 10.923943 10.9208908 19.5882516 19.5801909 19.5882367 19.588307 19.5759378

105 8.7299362 8.7299785 8.7299789 8.730102 8.7268042 17.6254416 17.6129231 17.6254290 17.625501 17.6123103

95 0.5 15.4427163 15.4427436 15.4427631 15.442822 15.4370694 24.5718705 24.5164835 24.5718583 24.571913 24.5479028

100 13.0281555 13.0281668 13.0282104 13.028271 13.0225321 22.6307858 22.5534589 22.6307744 22.630828 22.6065085

105 10.9296247 10.9295940 10.9296853 10.929736 10.9237503 20.8431853 20.7378307 20.8431724 20.843226 20.8182163

95 0.6 - 17.4057119 17.4063840 17.406402 17.3964280 - 27.1922830 27.4252385 27.425278 27.3828984

100 - 15.1272033 15.1284092 15.128426 15.1185950 - 25.3547907 25.6552489 25.655297 25.6129780

105 - 13.1117954 13.1138637 13.113874 13.1038552 - 23.6323908 24.0129680 24.013011 23.9703437

95 0.8 - 21.3206229 21.3500057 21.349949 21.3261438 - 31.8446547 33.0316957 33.031740 32.9288767

100 - 19.2465024 19.2888389 19.288780 19.2655176 - 30.1240393 31.5356736 31.535716 31.4343240

105 - 17.3646285 17.4239955 17.423935 17.4008033 - 28.4742281 30.1334450 30.133505 30.0330626

95 1.0 - 25.0465250 25.2521580 25.252051 25.2052379 - 35.4451734 38.3595938 38.361352 38.1586628

100 - 23.1006194 23.3676388 23.367535 23.3219514 - 33.7509030 37.0830464 37.085174 36.8860543

105 - 21.2980435 21.6383464 21.638238 21.5933927 - 32.1020703 35.8789184 35.881483 35.6853580

PDEI is based on the 100 x 2000 grid over [0, ] x [—1,1]. PDE2 is based on the 100 x 10,000 grid over [0, T] x [—1,9]. The parameters and numerical data for “Exact” and Hsu—

Lyuu are from Tables 3 and 4. The numerical data for PDE1 and PDE2 are from [31]. The options are calls with § = 100 and » = 0.09.

FTLI-TILL (£L00T) §8I uonvindwio) puv souvwayivpy payddy | nndg "q-x uoyd M-y

61L1



1720 K.-W. Chen, Y.-D. Lyuu | Applied Mathematics and Computation 188 (2007) 1711-1724

Table 6

Comparison with Fusai [32], Zhang [15], and Hsu and Lyuu [8]

X o Hsu-Lyuu Fusai Exact Monte Carlo Eq. (4)
95 0.05 8.808717 8.80885 8.8088392 8.81 8.808839
100 4.309246 4.30824 4.3082350 4.31 4.308231
105 0.960069 0.95839 0.9583841 0.95 0.958331
95 0.10 8.912238 8.91185 8.9118509 8.91 8.911836
100 4.914254 491512 49151167 491 4.915075
105 2.072473 2.07007 2.0700634 2.06 2.069930
90 0.30 14.984037 14.98396 - 14.96 14.982782
100 8.829033 8.82876 8.8287588 8.81 8.827548
110 4.696895 4.69671 - 4.68 4.694902
90 0.50 18.188933 18.18885 - 18.14 18.182957
100 13.028271 13.02816 13.0281555 12.98 13.022532
110 9.124414 9.12432 - 9.10 9.117950
90 0.60 19.964542 - - 19.94 19.954163
100 15.128426 - - 15.13 15.118595
110 11.342769 - - 11.36 11.332282
90 0.80 23.622784 - - 23.61 23.598025
100 19.288780 - - 19.33 19.265518
110 15.739790 - - 15.74 15.716408
90 1.00 27.305012 - - 27.25 27.256476
100 23.367535 - - 23.36 23.321951
110 20.051542 - - 20.03 20.006949

The parameters and Monte Carlo results for ¢ < 0.5 are from Table 1 of [25]. The Monte Carlo results for ¢ > 0.5 are based on 2 x 10
simulation paths. The options are calls with S = 100, » = 0.09, and T = 1. The Hsu-Lyuu algorithm’s computed option values and the
exact option values are from Table 3. The “Fusai” column is from Table 3 of [32] with the most computing times.

volatility rises. The table shows our formula agrees very well with other methodologies even under high vol-
atilities. In fact, for ¢ € [60%, 100%)], the formula produces results that are never more than 0.21% away from
what the Hsu—Lyuu algorithm generates. (The Hsu-Lyuu algorithm is known to be extremely accurate under
high volatilities.) Hence the formula’s performance is degraded only slightly by high volatility.

Table 4 compares formula (4) with the approximate formula of Ju [22], the PDE method of Zhang [15], and
the binomial tree algorithm of Hsu and Lyuu [8]. This time, we not only let the volatility go up to 100% but
also raise the maturity to 3 years. The reason for these settings is that many formulas deteriorate as the matu-
rity increases. Again our formula agrees very well with other methodologies. In fact, even for ¢ € [60%, 100%)],
the formula produces results that are never more than 0.55% away from what the Hsu—Lyuu algorithm gen-
erates. (The Hsu-Lyuu algorithm is known to be extremely accurate for long maturities.)

Table 5 compares formula (4) with the one-dimensional PDE method of Vecer [30] as implemented by Hsu
[31] and the binomial tree algorithm of Hsu and Lyuu [8]. The two algorithms are currently the fastest general
pricing algorithms for Asian options. Here we let the volatility ¢ go up to 100% and the maturity 7 stand at 1
and 3 years. Table 6 compares formula (4) with Zhang [15], Monte Carlo simulation, Hsu and Lyuu [8], and
the transform method of Fusai [33] with the volatility as high as 100%. Again the formula agrees very well with
all the methodologies in both tables.

In summary, our formula for the fixed-strike Asian option approximates the true value very well. It dete-
riorates with increasing volatility and/or maturity, but only very slightly. Our formula is furthermore extre-
mely efficient.

5. Conclusions
This paper generalizes the lower-bound pricing formulas of Rogers and Shi [23] and Thompson [25] for

fixed-strike and floating-strike Asian options. Extensive numerical comparisons with other known methods
in the literature confirm the extreme accuracy of our efficient formulas. This holds even under difficult situa-
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tions where the maturity is long and/or the volatility is high. We conclude that the simple formulas (4) and (6)
are extremely efficient and accurate in pricing Asian options. The results have practical applications in hedging
such options.

Appendix

In this appendix, we will prove the theorems stated but left unproven in the main text.

Theorem 1. The correlation matrix between - fOT Byds and B, equals

Cov(B,, B;) COV(B,,% OTBSds) [ ; t( _ﬁ)]
Cov(B. 4 Jy B.ds) Cov(k [y B.ds k[ B.ds) | L4(1 ’

_ L) I
2T 3

where 0 <t < T.

Proof. First, Cov(B,,B,) = Var(B,) = t by the definition of Brownian motion. Next,

17 17 17 17
Cov(B,,T /0 Bsds) E<B,T /O Bsds> E(B,)E<T /0 Bsds) E(T /0 B,Bsds)

I 1/ I I 1 /7
:?/0 E(B,Bs)ds:?/OE(B,BS)ds—i—?/t E(B,Bs)ds:?/osds—i—?/t tds

Finally, note that

1 [r 1 [ 1 /7 1 r
Cov (— / B.ds,— / By ds) = Var (— / By ds) = — Var < / B, ds).
T Jy T Jy T Jy T 0

It is a fact that

varl [ 7018, - sy 0 = [0 - s

(see [34]). Hence,
! Var(/TB ds) ! /T( T)*ds d O
—_— s = — S — = —.
7? 0 7 Jo 3

Theorem 2. The correlation matrix between % fOT Byds — Br and B, equals
Cov(B,, B,) Cov(By,4 Jy Bods — Br) , =2
Cov(B, 4 3 Bods—Br) Cov(} [ Bids— By} [y Bods — Br) [ ] ’
where 0 <t < T.

Proof. First,

i i 17
COV(B,,?/O Bsds—BT> :E{B(T/O BA.ds—BT)]—E[B]E(T/O BSds—BT>
1 [ I t t —£
E{B[(T/O Bsds—BT)]T/O E(B,Bs)ds—tf?(T—i)—tfﬁ.
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Next,

1 /7 1 /7 1 /7 1 r
COV(—/ Bst *BT,—/ BSdS BT> = Var<—/ BSdS BT> = —zVar</ BSdS BT)
T Jy T Jy T Jy T 0
1 T T
=7 {Var (/ B, ds) + Var(Br) — 2Cov (/ B, ds, BT>]
0 0

_ 1 T3+T 2 _T
T2 \3 2) ~ 3

where the next-to-last identity is due to Theorem 1. [

Theorem 5. Suppose X ~ ¢(p,,037), Y ~ d(pu,, y) and ¢ = Cov(X,Y). Then

E[¥I(Y > 0)] = e ("ya—“>
y

Proof. From the definition of expectation,

2
1 X—fly 2 X[y iy Y-y
= e e s () (22)
E[e“I(Y >0 :/ / - - . { dydx.
e ) —o0 Jo 2moc0,4/1 — p? Y

Let u = (x — p,)/0ox and v = (y — u,)/0,. Then dxdy = 6,6, dudv, and the above formula becomes

/oc /oo 1 e (w=pr? 2 (1-p?)
UGx+ iy 2102 ellox 12
e"7 e <Mdvdu— / / e 00 dodu
2
—o0 J-w/a, 21N/ 1 —p \/1 - /oy
- ,n- 2zd d
14('
e Al vdu.

27'[\/ 1— / /H}/’Ty
w = (u— pv)/4/1 — p? Then dw = du/+/1 — p?, and the above formula becomes

o2

" - wtE e8] Lﬂ( (un\/l 1)2

= / / e T VI dyydy = & / e _/ h
/oy V2n J-

w—axy/ 1 pz)z (w— m\/l—pz)z .
is a density function, V_ f ~— 7 dw= 1. The above equation now becomes

Change the variable again:

#y/“y

1 —
Le 77—
As \/ﬂe

o
et [ o)
—/ e 2 dv.
V2n — /0y

With one more change of variable £k = v — o,p, we have dk = dv, and the above equation finally becomes

o2

e Y e o2 4 c

© 2/ e Sk = e o[ L op) meFa( ). O
V2n y Oy Oy

Foxp
Theorem 6. For any random variable X with density function fx(x),

o1 (7 I
af/o E(S, — K, X > /)dl——}/o E(S, — K|X =9)fx(y)ds
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Proof. By the definition of expectation,

01

T

Exchange the integral and the partial derivative to get

/ / ay/ K)fp,x (B, X)dX dB,dt.

Above, f3 x(B,,X) is the joint density function of B, and X. (Technically, the integral must be uniformly con-
vergent for the interchange to be valid. It can be shown to be the case with our options.) By Leibniz’s rule, the
above equals

% /0 ' /_ Z—(SI—K)thX(B,, )dB,dr — / / K)fB,X(B,,y)ﬁg;dB,dt

/ / — K)f5,x(Bi|y)fx (y)dB, dt

:‘?/OE( SKW =) O
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