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Abstract

This article investigates how a policy-maker should choose a density ceiling and how the optimal
policy is affected by the underlying demand and technology parameters. We assume that developed
properties reduce open space, and thereby harm urban residents. However, landowners will ignore
this negative externality, and will thus develop property more densely than is socially optimal. A reg-
ulator can correct this by imposing a density ceiling control. The regulator should force developers to
develop less densely when (1) land development becomes less risky, (2) the development costs are
expected to grow more rapidly, and (3) the rents of undeveloped land are lower. This is because
under these three scenarios, a social planner will choose to develop vacant land sooner, and thereby
develop it less densely.
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1. Introduction

Regulators generally prefer development density restrictions over all other policies to
curb urban growth.1 The existing literature (see, e.g., Cunningham, 2004; Turnbull,
1991) investigates how density restrictions affect expected development timing in certainty
and in a risky environment. By contrast, this article derives what the policy-maker’s
choices should be in a risky environment, and discusses how the optimal policy is affected
by the underlying demand and technology parameters.

This article considers a real estate industry that consists of homogeneous landowners
and renters. While developed properties reduce open space, and thus generate a negative
external effect on urban residents,2 no one cares who provide these properties. In order to
characterize this aggregate consumption–production externality (Tresch, 2002),3 we
assume that each renter will pay a lower rent if the industry develops property more den-
sely. There are two sources of market inefficiencies in our model: market power and the
externality from congestion. While a monopolist in the real estate market can internalize
the externality, it cannot follow the exact choices of a social planner because it ignores the
welfare of renters. As compared to a social planner, the monopolist will value rents for
houses less, and will therefore delay development. However, at their respective develop-
ment option exercise points, both the social planner and the monopolist have the same
marginal value from developing properties, and thus both will develop vacant land at
the same density.

When the real estate market is not monopolized, landowners will develop property at a
higher density than would be socially optimal. Consequently, the regulator can impose a
density ceiling control policy to correct the tendency of landowners to overdevelop.4 In
response, landowners will develop vacant land earlier than planned.5 It is optimal for a
social planner to develop vacant land sooner, and thereby develop it less densely when
(1) land development becomes less risky, (2) the development costs are expected to grow
more rapidly, and (3) the rents of undeveloped land are lower. As a result, under these
three scenarios the regulator should implement a more stringent density ceiling control
policy.

The remainder of this article is organized as follows. Section 2 presents the basic model.
Section 3 solves choices regarding the timing and density of development for both the
decentralized and the centralized economy. Section 4 presents the comparative-statics
results that show how various exogenous forces affect the optimal density control policy
1 Based on a survey of 191 US jurisdictions in 1991, Pivo (1992, p. 4) finds that among 31 separate policies that
are used to control urban growth, density ceiling regulation is the most popular, with 89% of the cities in the
sample adopting it.

2 While Anderson (1993) has set a theoretic model that captures the externality from congestion, he focuses on
the use of Pigouvian taxes rather than density ceiling control.

3 Laffont (1988, pp. 193–200) provides an example regarding the relationship between the consumption–
production externality and optimal taxation.

4 Some articles also point out that externalities are one main reason for implementing zoning regulations. See,
e.g., Fischel (1985).

5 See also a recent survey by Turnbull (2005) who points out that the literature on land use restrictions
recognizes that the market response to land use regulation as actually implemented may differ considerately from
the ultimate policy goal.
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chosen by the regulator and the timing of development chosen by landowners. Section 5
concludes and offers directions for further study.
2. The model

Consider a real estate industry that is composed of N identical risk-neutral landowners.
Suppose that at date t = 0, this industry has undeveloped land that is normalized at one
unit. At any time t P 0, landowner i (i = 1, . . .,N) is able to develop property on a scale
equal to qi, and thus at a density equal to Nqi, given that each landowner has 1/N units
of undeveloped land. We also assume that the development cost for landowner i, which
is fully irreversible, is equal to (see Quigg, 1993; Williams, 1991)6

Cðx1ðtÞ; qiÞ ¼ x1ðtÞqg
i ; g > 0; ð1Þ

where x1(t) is a disturbance term that captures supply shocks such as unexpected changes
in weather or labor market conditions. We allow the housing production technology to
have either increasing (g < 1), constant (g = 1), or decreasing (g > 1) returns to scale.

We assume that the rent per unit of developed property is given by

RðtÞ ¼ x2ðtÞQb�1S�a; 1 P b > a > 0; ð2Þ

where x2(t) denotes the macroeconomic shock from the demand side, Q is the aggregate
demand for developed property, and S ¼

PN
i¼1qi is the aggregate supply of developed

property, which is also equal to the average density of development, given that the indus-
try initially has one unit of undeveloped land. In Eq. (2), we assume that the rent of devel-
oped property is affected by two different measures of the scale of developed property.
First, we assume a non-positive (internal) effect of Q on R(t) with a size measured by
b � 1. Given that 1 P b, it indicates that the rent per unit of developed property is non-
increasing with the scale of developed property. Second, we assume a negative external
effect of S on R(t) with a size measured by coefficient a; we call this effect external because
the utility of a renter will be lower as the aggregate supply of developed property is high-
er.7 However, no individual renters can have an appreciable effect on S, and therefore, all
renters will take the external effect as exogenously given when deciding whether to rent
developed property. The rent function as specified in Eq. (2) is more generalized than that
of Capozza and Li (1994) and Williams (1991), who not only assume that rents are unaf-
fected by the aggregate demand for developed property (i.e., b = 1), but also abstract from
the consumption–production externalities (i.e., a = 0).8

Both the supply shock, x1(t), and the demand shock, x2(t), follow geometric Brownian
motions given by

dxiðtÞ ¼ aixiðtÞdt þ rixiðtÞdXiðtÞ; ð3Þ
6 McFarlane (1999) argues that investment on land development will be fully irreversible if demolition costs are
extremely high. Similarly, Riddiough (1997) suggests that irreversibility is a reasonable assumption for real estate
in which the physical asset is long-lived and switching costs to alternative uses are quite high. Turnbull (2005)
argues that the irreversibility assumption may not be realistic, but provides analytically tractable solutions.

7 The detailed proof is available upon request.
8 Childs et al. (1996) and Grenadier (1996) also abstract from the consumption–production externalities.
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where i = 1 or 2. Each variable xi(t) has a constant expected rate of growth ai and a constant
variance of the growth rate r2

i . Each dXi(t) is an increment to a standard Wiener process,
with E{dXi(t)} = 0, E{dXi(t)}

2 = dt, and E(dX1(t)dX2(t)) = r12r1r2dt, where �1 6 r12 6 1.
When property development exhibits negative externalities as shown in Eq. (2), the

market outcome will be inefficient. The policies adopted to correct this include develop-
ment density restrictions, and price controls such as property taxes, building fees, and enti-
tlement fees. We abstract from these price control instruments, and instead focus only on
density ceiling control. By following the literature that applies non-cooperative dynamic
games to environmental management (see, e.g., Jou, 2001, 2004), we model density ceiling
control as a hierarchical game. At the lower level of the game, landowners compete for the
choices regarding the date and the scale of land development in a Cournot–Nash environ-
ment. At the upper level is a Stackelberg game in which the regulator acts as the leader and
a landowner acts as the follower. The regulator should anticipate the scale chosen by the
landowner, and then set the density ceiling at the socially optimal level accordingly.

We assume that the riskless rate of interest q is constant per unit of time and that the
undeveloped property per unit has a constant positive return given by net cash inflow per
unit of time cx2(t). We further assume that c > 0, an assumption implying that a land-
owner has no option value for abandoning the undeveloped property. We also abstract
from both the time-to-build problem that usually occurs in the real estate industry (see,
e.g., Bar-Ilan and Strange, 1996; Grenadier, 2000), and the redevelopment problem
addressed in Williams (1997). Consequently, in what follows, each landowner as well as
the social planner will make his respective development decisions once and for all.

3. Choices of the date and the density of development

Without risk of confusion, we use x1(t) = x1 and x2(t) = x2 in what follows. Consider
any instant s after vacant land is developed. Given that redevelopment is prohibited,
the value of developed property is equal to the time t expected present value of the future
cash flow given by9

W aðx2;Q; qiÞ ¼ Et

Z 1

t
e�qðs�tÞqiRðsÞds ¼ qi

ðq� a2Þ
x2Qb�1S�a; ð4Þ

where qiR(s) is the cash inflow for landowner i at instant s, which is the product of the rent
per unit of developed property, R(s) in Eq. (2), and the scale of developed property he
owns, qi.

Define the value of vacant land from time t to any future time T as Wb(x2,T), where T

denotes the date at which vacant land is developed. For later usage, we will calculate the
value of vacant land if undeveloped forever (i.e., T approaches infinity), which is equal to
the time t expected present value of the future flow given by

W bðx2;1Þ ¼ Et

Z 1

t
e�qðs�tÞ cx2ðsÞ

N
ds ¼ cx2

Nðq� a2Þ
: ð5Þ

We will investigate how to design optimal density controls by analyzing both the decen-
tralized and the centralized economy. There are two sources of market inefficiencies in
9 Here and in what follows, we assume that q > a2 so as to ensure that Wa(Æ) given by Eq. (4) and Wb(Æ) given by
Eq. (5) are both finite. We also use subscripts ‘‘a’’ and ‘‘b’’ to represent ‘‘after’’ and ‘‘before’’ development in a
decentralized economy, respectively.
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our model: market power and the externality from congestion. Consequently, both a land-
owner and the social planner will have different choices regarding the timing and the den-
sity of development.

3.1. The decentralized economy

First consider the case in which the economy is decentralized. Landowner i needs to
choose an appropriate date T and density qi to maximize the expected value of the vacant
land. This is defined as

V dðx1; x2Þ ¼ max
T ;qi

Et

Z T

t
e�qðs�tÞ cx2ðsÞ

N
dsþ

Z 1

T
e�qðs�tÞqix2ðsÞQb�1S�ads� e�qðT�tÞx1ðT Þqg

i

� �
;

ð6Þ

subject to the evolution of x1(t) and x2(t) defined in Eq. (3).10 Eq. (6) indicates that the
expected present value of returns to the vacant land is the sum of the expected present va-
lue of rents received until time T, the expected present value of land rent beginning at the
time of development, less the expected present value of the developing costs. Following
Capozza and Li (1994), Eq. (6) can be rewritten as

V dðx1; x2Þ ¼ W bðx2;1Þ þ Zdðx1; x2Þ; ð7Þ
where

Zdðx1; x2Þ ¼ max
T ;qi

Et e�qðT�tÞ
Z 1

T
e�qðs�T Þ qix2ðsÞQb�1S�a � cx2ðsÞ

N

� �
ds� x1ðT Þqg

i

� �� �
:

ð8Þ
In Eq. (8), Zd(x1,x2) is the net value of a perpetual warrant to exchange the fixed qi units of
developed properties for 1/N units of vacant land.

Define Wd(x1,x2) as the intrinsic value of the warrant if exercised at time t. Substituting
T = t into Eq. (8) yields its value as given by

W dðx1; x2Þ ¼ max
qi

fW aðx2;Q; qiÞ � W bðx2;1Þ � x1qg
i g; ð9Þ

where the term in braces are the value of developed properties, Wa(x2,Q,qi), minus the
opportunity costs of obtaining it, namely, the value of vacant land if undeveloped forever,
Wb(x2,1), and the costs of development, x1qg

i . To maximize the intrinsic value at time t, the
optimal scale of development, denoted by qd, must satisfy the first-order condition for qi:

ofW aðx2;Q; qiÞ � x1qg
i g

oqi

¼ 0; ð10Þ

which says that at the optimal scale of development, the expected marginal benefit of an
additional scale of development must be equal to the marginal cost of developing it. Given
that the intrinsic value of the warrant, if exercised at the optimal exercise date T, may be
denoted by Wd(x1(T),x2(T)), we can rewrite Eq. (8) as

Zdðx1; x2Þ ¼ max
T

Etfe�qðT�tÞW dðx1ðT Þ; x2ðT ÞÞg: ð11Þ
10 Here and in what follows, we use subscript ‘‘d’’ to represent ‘‘the decentralized economy.’’
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The solution for Zd(x1,x2) must satisfy the fundamental differential equation of optimal
stopping given by

1

2
r2

1x2
1

o
2Zdð�Þ
ox2

1

þ r12r1r2x1x2

o
2Zdð�Þ

ox1ox2

þ 1

2
r2

2x2
2

o
2Zdð�Þ
ox2

2

þ a1x1

oZdð�Þ
ox1

þ a2x2

oZdð�Þ
ox2

� qZdð�Þ ¼ 0:

ð12Þ

The solution to Eq. (12) is given by

Zdðx1; x2Þ ¼ A1dxb1
2 x1�b1

1 þ A2dxb2
2 x1�b2

1 ; ð13Þ

where A1d and A2d are constants to be determined, and b1, b2, and the overall volatility,
denoted by r2, are respectively equal to

b1 ¼
1

2
� ða2 � a1Þ

r2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
� ða2 � a1Þ

r2

� �2

þ 2ðq� a1Þ
r2

s
;

b2 ¼
1

2
� ða2 � a1Þ

r2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
� ða2 � a1Þ

r2

� �2

þ 2ðq� a1Þ
r2

;

s

r2 ¼ r2
1 � 2r12r1r2 þ r2

2:

ð14Þ

Landowner i simultaneously chooses the timing and the scale of development. As indi-
cated by Dixit and Pindyck (1994, p. 139), when uncertainty arises, we are unable to deter-
mine a non-stochastic timing. Instead, the development rule takes the form where
landowner i will not develop until the supply shock, x1, declines to a certain level, denoted
by x1d, and the demand-shift factor, x2, rises to another level, denoted by x2d. When these
two trigger levels are reached, landowner i will develop vacant land at a scale denoted by
qd. The two critical levels, x1d and x2d, together with A1d and A2d in Eq. (13), are solved
from the boundary conditions given by

lim
x2!0

Zdðx1; x2Þ ¼ 0; ð15Þ

Zdðx1d; x2dÞ ¼ W dðx1d; x2dÞ; ð16Þ
oZdðx1d; x2dÞ

ox1

¼ oW dðx1d; x2dÞ
ox1

; ð17Þ

oZdðx1d; x2dÞ
ox2

¼ oW dðx1d; x2dÞ
ox2

: ð18Þ

Eq. (15) is the limit condition, which states that the option value of vacant land is worth-
less as the demand-shift factor approaches zero. Eq. (16) is the value-matching condition
which states that at the optimal timing of development, landowner i should be indifferent
as to whether vacant land is developed or not. Eqs. (17) and (18) are the smooth-pasting
conditions, which require that landowner i not obtain any arbitrage profits from deviating
from the optimal timing of development.

Eqs. (15)–(18) are satisfied by the value function Zd(Æ) that is linearly homogeneous in
x1 and x2, and thus we can define y = x2/x1, zd(y) = Zd(x1,x2)/x1,wa(y,Q,qi) =
Wa(x2,Q,qi)/x1, and wd(y) = Wd(x1, x2)/x1 (see Williams, 1991). Note that a higher value
of y indicates that the state of nature is better because it comes from a larger value of x2
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and/or a smaller value of x1, i.e., when demand for developed property is increased and/or
the cost of developing land is reduced. Eq. (4) can then be rewritten as

waðy;Q; qiÞ ¼
qiyQb�1S�a

ðq� a2Þ
; ð19Þ

while Eqs. (15)–(18) can be rewritten as

lim
y!0

zdðyÞ ¼ 0; ð20Þ

zdðydÞ ¼ wdðydÞ; ð21Þ
ozdðydÞ

oy
¼ owdðydÞ

oy
; ð22Þ

where yd (=x2d/x1d) is the development timing chosen by landowner i. Define Qd as the
aggregate scale (density) of development chosen by all landowners as a whole. In Cour-
not–Nash equilibrium, all landowners will choose the same scale of development such that
Q = S = Nqd = Qd. To solve a landowner’s choice of development timing, we can first
solve A1d and A2d from Eqs. (20) and (22), respectively. We can then substitute these val-
ues and impose the Cournot–Nash equilibrium condition on Eq. (21). Referring to the re-
sult as T �dðyd;QdÞ yields

T �dðyd;QdÞ ¼ � 1� 1

b1

� �
yd

N
ðQb�a � cÞ
ðq� a2Þ

þ Qd

N

� �g

¼ 0: ð23Þ

On the other hand, dividing Eq. (10) by x1 yields

ofwaðy;Q; qiÞ � qg
i g

oqi

¼ 0: ð24Þ

Imposing y = yd and the Cournot–Nash equilibrium condition on Eq. (24), and referring
its result as D�dðyd;QdÞ yields

D�dðyd;QdÞ ¼
ðN � 1þ b� aÞ

Nðq� a2Þ
ydQb�a�1

d � g
Qd

N

� �g�1

¼ 0: ð25Þ

Solving Eqs. (23) and (25) simultaneously yields

yd ¼
gðq� a2Þ

ðN � 1þ b� aÞN ðg�2ÞM
ðg=ðb�aÞÞ�1
d ; ð26Þ

Qd ¼ M1=ðb�aÞ
d ; ð27Þ

where

Md ¼ c 1� ðN � 1þ b� aÞ
gN

1� 1

b

� ��1
" #�1

:11 ð28Þ

We have obtained analytically tractable solutions for both the choice of date, yd, and
choice of density, Qd. However, to gain more insights regarding how the underlying exog-
11 It is required that terms inside the brackets on the right-hand side of Eq. (28) be positive. We adopt this
requirement here and in what follows, which is more likely to hold if a, g, a1, and q are larger or N, r, and a2 are
smaller.



28 T. Lee, J.-B. Jou / Journal of Housing Economics 16 (2007) 21–36
enous forces affect yd and Qd, we will focus on both the condition for deriving yd given by
Eq. (23), and for deriving Qd given by Eq. (25). Eq. (23) implicitly defines the positive
dependence of yd on Qd, and Eq. (25) implicitly defines the positive dependence of Qd

on yd. We derive these two relationships in Eqs. (A1)–(A7) in Appendix A.
We assume that landowners compete in a Cournot–Nash environment. Alternatively, we

may assume that landowners compete in a Stackelberg environment. If two landowners com-
pete in this environment, then three equilibria may arise.12 One of these three is exactly the
same as the one that we obtain in the Cournot–Nash environment. We focus on this one
because it is the only one for which we are able to obtain analytically tractable solutions.

3.2. The centralized economy

Consider the case of the centralized economy. A social planner will internalize the neg-
ative externality before choosing the development timing and density. We can thus impose
Nqi = S = Q on Eqs. (1) and (5), and then multiply the results by N, thus yielding the
social development cost function, and the social value of vacant land if undeveloped for-
ever, respectively:13

CAðx1;QÞ ¼ Nx1

Q
N

� �g

; ð10Þ

W Bðx2;1Þ ¼
cx2

ðq� a2Þ
: ð50Þ

The social rent function is given by imposing Q = S on Eq. (2), thus yielding

RA ¼ x2Qb�a�1: ð20Þ
Given the social rent function in Eq. (20), the total social surplus is equal to the area under
the demand curve shown by Eq. (20), that is,

R0Aðx2;QÞ ¼
Z Q

0

x2ðsÞqb�a�1dq ¼ x2Qb�a

ðb� aÞ : ð200Þ

Consider any instant s after development. The social value of developed property is equal
to the time t expected present value of the total social surplus given by

W Aðx2;QÞ ¼ Et

Z 1

t
e�qðs�tÞ x2ðsÞQb�a

ðb� aÞ ds ¼ x2Qb�a

ðq� a2Þðb� aÞ : ð40Þ

The social planner will choose an appropriate date and scale to maximize the expected
present discounted value of social welfare. This is defined as

V cðx1; x2Þ ¼ W Bðx2;1Þ þ Zcðx1; x2Þ; ð70Þ
where

Zcðx1; x2Þ ¼ max
T ;Q

Et e�qðT�tÞ
Z 1

T
x2ðsÞ

Qb�a

ðb� aÞ � c

� �
ds� Nx1ðT Þ

Q
N

� �g� �� �
: ð80Þ
12 We can follow Grenadier (1996) to prove this. The detailed proof is available upon request.
13 Here and in what follows, we use the subscript ‘‘c’’ to represent ‘‘ the centralized economy,’’ while subscript

‘‘A’’ and ‘‘B’’ represent ‘‘after’’ and ‘‘before’’ development in a centralized economy.
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In Eq. (80), Zc(x1,x2) is the social value of a perpetual warrant to exchange the fixed Q

units of developed properties for one unit of vacant land.
Define Wc(x1,x2) as the intrinsic value of the warrant if exercised at time t, that is,

W cðx1; x2Þ ¼ max
Q
fW Aðx2;QÞ � W Bðx2;1Þ � CAðx1;QÞg: ð90Þ

To maximize the intrinsic value at time t, the optimal scale, denoted by Qc, must satisfy the
first-order condition for Q:

ofW Aðx2;QÞ � CAðx1;QÞg
oQ

¼ 0: ð100Þ

Given that the intrinsic value of the warrant, if exercised at the optimal exercise date T,
may be devoted by Wc(x1(T), x2(T)), we can write Eq. (80) as

Zcðx1; x2Þ ¼ max
T

Etfe�qðT�tÞW cðx1ðT Þ; x2ðT ÞÞg: ð110Þ

Following similar arguments to those for the case of decentralized economy yields

Zcðx1; x2Þ ¼ A1cx
b1
2 x1�b1

1 þ A2cx
b2
2 x1�b2

1 ; ð130Þ

where A1c and A2c are constants to be determined. Define yc(=x2c/x1c) as the timing to
develop vacant land and Qc as the density chosen by the social planner, respectively.
Applying similar conditions as shown by Eqs. (20), (21), (22) and (24), and imposing
the constraint Q = Qc on those conditions yields the counterparts of Eqs. (23) and (25)
as given by

T �cðyc;QcÞ ¼ � 1� 1

b1

� �
yc

ðq� a2Þðb� aÞ ½Q
b�a
c � c� þ N

Qc

N

� �g

¼ 0; ð29Þ

D�cðyc;QcÞ ¼
1

ðq� a2Þ
ycQ

b�a�1
c � g

Qc

N

� �g�1

¼ 0: ð30Þ

Solving Eqs. (29) and (30) simultaneously yields

yc ¼
gðq� a2Þ

N ðg�1Þ M ðg=ðb�aÞÞ�1
c ; ð31Þ

Qc ¼ M1=ðb�aÞ
c ; ð32Þ

where

M c ¼ c 1� b� a
g

1� 1

b1

� ��1
" #�1

: ð33Þ

Eq. (29) implicitly defines the dependence of yc on Qc, while Eq. (30) implicitly defines
the dependence of Qc on yc. We derive these two relationships in Eqs. (B1)–(B7) in
Appendix B.
4. Comparative-statics results

Comparing Eqs. (26)–(31), and (27)–(32) yields the result stated in Proposition 1 below.
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Proposition 1. As compared to asocial planner, (a) a sole owner of all vacant land will

develop property later, but at the same density; (b) a landowner will develop property later but

more densely if the real estate market is not monopolized.

Proof. If N = 1, Md = Mc such that Qd = Qc and yd > yc. If N > 1, Md > Mc such that
Qd > Qc and yd > yc. h

We explain the intuition behind Proposition 1(a) as follows. Both a sole owner of all
vacant land and a social planner can internalize the external effect of congestion. However,
the sole landowner cares about the welfare of himself only, while the social planner cares
about the social welfare in the form of consumer surplus and development resource sup-
plier’s surplus. The value of developed property is thus higher from the viewpoint of the
social planner than from the sole landowner. As a result, the social planner will exercise
the development option earlier than the sole landowner. At their respective development
option exercise points, however, the marginal values of developed property for both are
exactly the same. Consequently, both will choose the same scale of development.

We use Fig. 1 to explain the intuition behind Proposition 1(b), where the real estate
market is not monopolized. The lines TdTd and TcTc depict the dependence of the choice
of the date on the density of development defined in Eqs. (23) and (29), respectively. On
the other hand, the lines DdDd and DcDc depict the dependence of the choice of the density
on the date of development defined in Eqs. (25) and (30), respectively.

Fig. 1 shows that the line TcTc lies below the line TdTd, indicating that when the density
of development is fixed, a social planner will exercise the development option earlier than a
landowner. Fig. 1 also shows that the line DcDc lies to the right of the line DdDd. This indi-
cates that when the timing of development is fixed, the social planner will develop property
more densely than the landowner because the social marginal value from developing
vacant land will be larger than its private marginal value. Allowing for the interaction
of choices of the development timing and density, however, Fig. 1 indicates that the social
planner will develop earlier but less densely than the landowner. This is shown by point A,
which denotes the equilibrium for the centralized economy at the intersection of lines TcTc

and DcDc, for which the optimal density is Qc and the optimal date of development is yc.
y
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Fig. 1. Difference between the centralized and the decentralized economy when the real estate is not monopolized.
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By contrast, point B denotes the equilibrium for a landowner in the decentralized econ-
omy, at the intersection of lines TdTd and DdDd, for which the optimal density is Qd

and the optimal date of development is yd. Proposition 1(b) then follows because Qd > Qc

and yd > yc.
Proposition 1(b) indicates that a landowner will develop more densely than the socially

optimal level when the real estate market is not monopolized. Therefore, a social planner
can impose a density control policy to correct this inefficient outcome. We now explain the
way to design this policy, and how a landowner responds to it by using Fig. 1. As
mentioned in Section 2, our model presents a hierarchical game. At the lower level, a land-
owner competes with the other landowners in a Cournot–Nash environment, and chooses
both a density level equal to Qd and a date of development equal to yd. At the upper level,
the regulator acts as the leader and the landowner acts as the follower. The regulator, who
anticipates that the density chosen by the landowner will be above the socially optimal
level, Qc, will thus set the density at this optimal level. Under this regulation, a landowner
will be forced to develop property at the date given by y1

d, which is later than the date of
development chosen by the regulator, yc, but is earlier than that chosen by the landowner
in the absence of any regulation, yd. The fact that y1

d < yd implies the following
proposition:

Proposition 2. When the real estate market is not monopolized, a landowner will develop

earlier in response to the density ceiling control policy.

The results of Proposition 2 are in line with the extant literature including Titman
(1985), Turnbull (1991), and Cunningham (2004).14 First, Titman argues that the initi-
ation of height restrictions may enhance development because of the consequent
decrease in uncertainty regarding the optimal height of the buildings (see Titman, p.
506). Second, Turnbull employs a perfect foresight dynamic model to investigate the
residential development process of an urban area, and classifies the area into three
sites—A, B, and C. He then shows that binding density ceilings can exhibit different
effects on the choice of the timing of development for these three sites. In particular,
the effects stated in Proposition 2 resemble those for site C. Finally, Cunningham
applies the model of Capozza and Li (1994), and suggests that the density ceiling reg-
ulation corresponds to the situation in which capital intensity is fixed. Cunningham
then shows that, as compared to the case where capital intensity is allowed to be var-
ied, the incentive for a landowner to develop will be higher when capital intensity is
fixed.15

Most studies on density ceiling regulation focus on how landowners react to this
policy. By contrast, we investigate the design of this policy by incorporating the pro-
duction–consumption externality into the objective function of a regulator. Specifically,
we discuss the upper level of the hierarchical game in which the regulator sets up
different levels of density ceiling control in response to changes in the demand and
14 Our result stated in Proposition 2 is just the opposite of the argument of Williams (1991). However, Williams
has made a mistake in deriving the relationship between density ceiling regulation and the timing of property
development. Jou and Lee (2007) show that in Williams’s model, if the imposed density is decreased from its
binding level, then a landowner may either develop later (as suggested by Williams) or develop earlier.
15 See also Turnbull (2002), who provides a model to explain why a threat of the density ceiling regulation may

hasten development.
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technology parameters. We also investigate how the regulator’s response affects a
landowner’s choice of the date on which to develop. These results are stated in
Proposition 3.

Proposition 3. Suppose that the real estate market is not monopolized. The regulator should
then impose a more stringent density control policy such that a landowner will develop

property earlier if (i) the net return derived from land development becomes less volatile, i.e.,

r is decreased, (ii) the development costs are expected to grow more rapidly, i.e., a1 is

increased, and (iii) the rents of undeveloped land are lower, i.e., c is decreased.16
Proof. See Appendix C. h

We use Fig. 2 to explain the reason for Proposition 3 as follows. Suppose that the
initial equilibrium for the centralized economy may be represented by point A, the
intersection of lines DcDc and TcTc. Consequently, a regulator should impose the den-
sity ceiling at Q1

c . An individual landowner will then be forced to develop vacant land
at a date equal to y1

d such that the combination of ðy1
d;Q

1
cÞ, i.e., point A0, satisfies the

choice of the development timing for the decentralized economy characterized by the
line TdTd. First, suppose that the overall volatility is decreased such that land develop-
ment is less risky.17 A social planner would like to develop property sooner because it
is less likely to gain huge profits from delaying development. Second, if the social plan-
16 However, as the demand for developed property is expected to grow more slowly (a2 is smaller), the regulator
will set a more stringent density control, but a landowner may develop earlier, later, or according to the same
schedule. Furthermore, a change in the external effect (a) or the cost elasticity of scale (g) will exhibit an
ambiguous effect on both the optimal density regulation as well as the landowner’s choice of timing of
development. Finally, we find that an increase in N will not affect the development density chosen by the social
planner. We do not discuss this issue because an increase in N not only indicates a more atomistic land ownership
structure, but also changes the assumed technology for the industry as a whole. The proofs for all above results
are omitted to save space.
17 The overall volatility will be smaller if r12 is higher, i.e., if more (less) advantageous supply conditions are

associated with less (more) prospective demand conditions in the real estate market.
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ner expects the development costs to grow more rapidly (a1 is larger), he had better
develop property sooner to avoid the larger costs of development in the future. Finally,
if the rents of undeveloped property (c) are lower, the social planner will not regret
developing sooner because his opportunity costs from developing property become
lower. These parameter changes that accelerate development are indicated by Eqs.
(C1)–(C3), and are shown by the line TcTc, which shifts downward to line T 0cT

0
c. Sim-

ilarly, these parameter changes will also accelerate development for the decentralized
economy, which is shown by the line TdTd, which shifts downward to line T 0dT 0d. Given
that these parameter changes are unrelated to the condition for the choice of the devel-
opment density (see Eq. (C4)), the new equilibrium for the centralized economy thus
moves from point A to point B, at which the social planner develops vacant land at
a density equal to Q2

c . As a result, an individual landowner will be forced to develop
at a date equal to y2

d such that the combination of ðy2
d;Q

2
cÞ, i.e., point B0, satisfies the

choice of the development timing for the decentralized economy characterized by the
line T 0dT 0d. The statement in Proposition 3 will thus follow because these parameter
changes not only induce the regulator to set a more stringent level of development
density Q2

c ð< Q1
cÞ, but also induce an individual landowner to develop property at

an earlier date y2
d ð< y1

dÞ.

5. Conclusion

This article investigates how a policy-maker should choose a density ceiling and how
the optimal policy is affected by the underlying demand and technology parameters. Given
that landowners will ignore the negative externality resulting from their property develop-
ment decisions on urban residents, the regulator had better implement density ceiling con-
trols. We show that the regulator should control density more stringently when (1) land
development becomes less risky, (2) the development costs are expected to grow more rap-
idly, and (3) the rents of undeveloped land are lower.

Some caveats deserve mentioning here. This article constructs a simplified model,
and thus abstracts from several key elements that are important in designing density
ceiling regulation. One element is the spatial factor. This factor can be incorporated
into the rent function in Eq. (2). For example, we can follow Turnbull (1988) by
assuming that the longer the distance between a parcel of land and the central business
district, the lower the rent derived from the developed property will be. As a result, the
optimal level of density ceiling control will be a function of the spatial factor. How-
ever, the regulator may be unable to implement a policy that differentiates density ceil-
ing control across different locations. Instead, he may be forced to implement a
uniform density ceiling control policy. It will be interesting to investigate whether such
a policy still accelerates development.

Appendix A. Relationship between yd and Qd

Totally differentiating Eq. (23) with respect to Qd, and using Eqs. (26)–(28) yields

oyd

oQd

¼ D12

�D11

> 0; ðA1Þ

where
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D11 ¼
oT �dðyd;QdÞ

oyd

¼ � 1

yd

Qd

N

� �g

< 0; ðA2Þ

D12 ¼
oT �dðyd;QdÞ

oQd

¼ 1� 1

b1d

� �
ydðg� bþ aÞ
Nðq� a2ÞQd

Md �
gc

ðg� bþ aÞ

� �
> 0: ðA3Þ

Totally differentiating Eq. (25) with respect to yd, and using Eqs. (26)–(28) yields

oQd

oyd

¼ D21

�D22

> 0; ðA4Þ

where

D22 ¼
oD�dðyd;QdÞ

oQd

¼ �gðg� bþ aÞN 1�gQg�2
d < 0;18 ðA5Þ

D21 ¼
oD�dðyd;QdÞ

oyd

¼ ðN � 1þ b� aÞ
Nðq� a2Þ

Qb�a�1
d > 0: ðA6Þ

The Jacobian condition also requires that

D11D22 � D12D21 > 0: ðA7Þ
We depict the impact of Qd on yd in Eq. (A1), and that of yd on Qd in Eq. (A4) by line
TdTd and line DdDd in Fig. 1, respectively. Eq. (A7) requires that the slope of DdDd be
steeper than that of TdTd, and we find that this requirement is satisfied.

Appendix B. Relationship between yc and Qc

Totally differentiating Eq. (29) with respect to Qc and using Eqs. (31)–(33) yields

oyc

oQc

¼ D012

�D011

> 0; ðB1Þ

where

D011 ¼
oT �cðyc;QcÞ

oyc

¼ �N
yc

Qc

N

� �g

< 0; ðB2Þ

D012 ¼
oT �cðyc;QcÞ

oQc

¼ 1� 1

b1

� �
ycðg� bþ aÞ
ðq� a2Þðb� aÞQc

M c �
gc

ðg� bþ aÞ

� �
> 0: ðB3Þ

Totally differentiating Eq. (30) with respect to yc, and using Eqs. (31)–(33) yields

oQc

oyc

¼ D021

�D022

> 0; ðB4Þ

where

D022 ¼
oD�cðyc;QcÞ

oQc

¼ �gðg� bþ aÞN 1�gQg�2
c < 0; ðB5Þ

D021 ¼
oD�cðyc;QcÞ

oyc

¼ 1

ðq� a2Þ
Qb�a�1

c > 0: ðB6Þ
18 We assume that g � b + a > 0 to ensure that this second-order condition holds.
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The Jacobian condition also requires that

D011D
0
22 � D012D

0
21 > 0: ðB7Þ

We depict the impact of Qc on yc in Eq. (B1), and that of yc on Qc in Eq. (B4) by line TcTc

and line DcDc in Fig. 1, respectively. Eq. (B7) requires that the slope of line DcDc be stee-
per than that of line TcTc in Fig. 1, and we find that this condition is satisfied.

Appendix C. Proof of Proposition 3

Partially differentiating T �cð�Þ in Eq. (29) with respect to r, a1, and c yields

oT �cð�Þ
or

¼ �1

b2
1

ob1

or
yc

Nðq� a2Þ
½Qb�a

c � c� > 0; ðC1Þ

oT �cð�Þ
oa1

¼ �1

b2
1

ob1

oa1

yc

ðq� a2Þðb� aÞ ½Q
b�a
c � c� < 0; ðC2Þ

oT �cð�Þ
oc

¼ 1� 1

b1

� �
yc

ðq� a2Þðb� aÞ > 0; ðC3Þ

where ob1/or < 0, and ob1/oa1 > 0. Partially differentiating D�cð�Þ in Eq. (30) with respect to
r, a1, and c yields

oD�cð�Þ
oh

¼ 0; ðC4Þ

where h = r, a1, or c.
Furthermore, the impacts of r, a1, and c on T �dð�Þ and D�dð�Þ are qualitatively the same as

those on T �cð�Þ and D�cð�Þ, respectively. h
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