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Introduction

Given a line bundle L on a projective manifold X, the Nakai-Moishezon criterion
says that L is ample if and only if

Ls · Y > 0

for all irreducible subvarieties Y ⊂ X of dimension s ≤ dim Y . Examples show
that it is not sufficient to assume that L · C > 0 for all curves; line bundles with
this property are called strictly nef . If however KX is strictly nef, then standard
conjectures predict that KX is already ample; this is proved in dimension up to 3
(Kawamata, Miyaoka, see e.g. [Ko92]). If dim X = 3 and −KX is strictly nef, then
Serrano [Se95] showed that −KX is ample, i.e. X is a Fano threefold. This lead
him to set up the following

0.1. Conjecture. Let X be a projective manifold of dimension n and L a strictly {mainconj}
nef line bundle on X. Then KX + tL is ample for any real t > n + 1.

A different view to this conjecture is as follows. Consider a strictly nef, but
possibly non-ample line bundle. We want to reach ampleness by adding εKX with
ε a small positive number. This might sound strange at first sight, especially if KX

is negative. The point, however, is that the cone of curves is locally polyhedral
in the area where KX is negative, so that roughly speaking L is already ample in
that area. Of course, if KX has some positivity, then things tend to get easier.
A difficult case is however when KX = 0 and simply connected; in that situation
Conjecture 0.1 says that strict nefness and ampleness are the same.

Serrano established the conjecture in dimension 2. He also verified the conjecture
in dimension 3, with some important exceptions:

0.2. Theorem. ([Se95], Theorem 4.4) Let X be a smooth projective threefold and L {Semain}
strictly nef. Then KX +tL is ample for t > 4 with the following possible exceptions.

• X is Calabi-Yau and L · c2(X) = 0;
• X is uniruled with irregularity q(X) ≤ 1, this includes the case that X is

rationally connected;
• X is uniruled with irregularity q(X) = 2 and χ(OX) = 0.

Moreover he solved the case L = −KX in dimension 3.

0.3. Theorem.([Se95], Theorem 3.9) Let X be a smooth projective threefold with {Fano}
−KX strictly nef. Then X is Fano.

In this paper we settle the two last open cases in Theorem 0.2 and establish also
results in higher dimensions:

0.4. Theorem. Let X be a projective manifold of dimension n and L a strictly {mainthm}
nef line bundle on X. Then KX + tL is ample if t > n + 1 in the following cases.
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1.) dim X = 3 unless (possibly) X is Calabi-Yau with L · c2 = 0;
2.) κ(X) ≥ n− 2;

Concerning the structure of this paper: in section 1, we recall some known facts
mainly due to Serrano. Theorem 0.4.2 will be proved in §2. In section 3 we will deal
with Albanese maps. In sections 4 and 5, we study Fano fibration and birational
maps. Combining all results, we are finally able to prove Theorem 0.4.1. We have
a further result in higher dimensions in §6.

The remaining three-dimensional case when X is Calabi-Yau with L · c2 = 0
is a very hard problem in Calabi-Yau theory and definitely requires very different
methods.
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1. Basic definitions, known results and main problems

For technical reasons we have to consider not only strictly nef line bundles, but
also a slight generalization of this notion.

1.1. Definition. Let X be a normal projective variety.
1.) A line bundle L over X is strictly nef, if L ·C > 0 for all irreducible curves

C ⊂ X.
2.) L is almost strictly nef, if there is a normal projective variety X ′, a surjec-

tive birational holomorphic map f : X → X ′ and a strictly nef line bundle
L′ on X ′ such that L = f∗(L′).

As usual, NE(X) will denote be the Mori cone of (classes of) curves on an n-
dimensional variety X. Via intersection, the canonical line bundle defines a linear
functional on NE(X). Let

K<0
X := {[C]|C ·KX < 0};

analogously K≥0
X . Assume now that X is Q−Gorenstein with at most canonical

singularities. Then the Cone theorem asserts that NE(X) is generated by K≥0
X and

the extremal rays Ri with Ri ·KX < 0. If X is smooth, then the ray Ri contains an
extremal rational curve li with −(n + 1) ≤ KX · li; if X is singular, the bound for
a rational curve in Ri is more crude, but depends only on X (see e.g. [KMM87],
4-2-1). This implies

1.2. Proposition. Let X be a normal n-dimensional projective variety,{larget}
Q−Gorenstein with at most canonical singularities. If L is a strictly nef line bundle

2



on X, then KX + tL is strictly nef for t À 0. If X is smooth, then KX + tL is
strictly nef for t > n + 1.

Serrano’s conjecture 0.1 also makes sense in the singular case:

1.3. Conjecture. Let X be a normal projective variety, Q−Gorenstein with at
most canonical singularities. Let i(X) be the index, i.e., the smallest number such
that i(X)KX is Cartier. Let L be strictly nef on X. Then KX + tL is ample for
all t > i(X)(n + 1).

It is known since a long time that strictly nef divisors need not be ample; even
if they are big. See Ramanujam’s example in [Ha70], p.57-58. The first example of
a strictly nef non-ample line bundle is due to Mumford, see again [Ha70], p.50-56.
Here X is a ruled surface over a curve of genus at least 2, coming from a stable rank
2-bundle of degree 0. In this situation L = OP(E)(1) is strictly nef, but L2 = 0. Of
course there must be a class α ∈ NE(X) with L · α = 0, but α is not represented
by an effective curve.

The following Lemma is useful in the sequel

1.4. Lemma. Suppose L is semi-ample (i.e., some multiple of L is spanned) and {semiample}
strictly nef. Then L is ample.

Proof. Since L is semi-ample, mL is spanned for some m À 0. Let ϕ : X → Y be
the morphism defined by mL. If there is a curve C in a fiber, then C ·L = 0, which
is a contradiction. Thus ϕ is finite and thus L is ample. ¤

There are three important prominent special cases of the conjecture, namely
when KX = L,−L,≡ 0 respectively.
In the first case, the abundance conjecture predicts that mKX is spanned for a
suitable large m. So KX will be ample and thus Conjecture 0.1 holds. This is
known in dimension up to 3.

In the second case, Serrano’s conjecture predicts that X is Fano if −KX is strictly
nef. This is verified by Serrano up to dimension 3 (Theorem 0.3).

In the last case, the conjecture predicts that every strictly nef line bundle on
every Ricci-flat manifold is ample. This clearly holds if X is an abelian variety, (see
e.g. [Se95], Proposition 1.4). However, it is very subtle if X is Calabi-Yau, even in
dimension 3.

We now recall some known results which will be useful later. Lemma 1.5 is
particularly crucial since it gives severe numerical restrictions.

1.5. Lemma.([Se95], Lemma 1.3) Let X be an n-dimensional connected projective {inter}
manifold and L a strictly nef line bundle on X. If KX + tL is not ample for some
real number t > n + 1, then Kj

X · Ln−j = 0 for all j ≥ 0.

An easy consequence is

1.6. Corollary. (1) If (KX + tL)n 6= 0 for some real number t, then KX + tL is {maincor}
ample for any t > n + 1.
(2) If pKX + qL is ample for some p, q, then KX + tL is ample for any t > n + 1.

1.7. Theorem.([Se95], Theorem 2.3) Let X be a irreducible reduced projective {surface}
Gorenstein surface and L strictly nef on X. Then KX + tL is ample for any real
number t > 3.
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An immediate application of the above two results is the following

1.8. Proposition.([Se95], Proposition 3.1) If dim X = 3 and |pKX + qL| contains {effective}
an effective non-zero divisor for some integers p, q, then KX + tL is ample for any
t > 4.

Combining all these results, Serrano was able to prove Theorem 0.2 and Theorem
0.3

1.9. Remark. Perhaps the best justification for the Conjecture 0.1 is that it holds
for L if and only if

L⊥ ∩K⊥
X ∩NE(X) = {0},

in N1(X), see Proposition 1.10 below. So the conjecture should be viewed as a
statement on the cone NE(X), at the points where the intersection number with
K and L simultaneously vanish.

By ME(X) we will always denote the cone of movable curves. Its closure is the
cone dual to the cone of effective divisors; see [BDPP04] for details.

1.10. Proposition. Let X be a projective manifold of dimension n. Let L be{BDPP}
strictly nef and suppose there is some non-zero α ∈ NE(X) such that (KX+tL)·α =
0 for some t > n + 1. Then

1.) KX · α = L · α = 0.
2.) L⊥ ∩K⊥

X ∩ ∂ME(X) 6= {0}.
Proof. (1) Suppose L ·α 6= 0. Then L ·α > 0 and therefore KX ·α < 0. By the cone
theorem we can write

α =
N∑

i=1

aiCi + R

with Ci extremal rational curves and KX · R ≥ 0. Since −KX · Ci ≤ n + 1 by a
standard fact of Mori theory (see e.g. [Mo82]) - otherwise Ci deforms in a splitting
family - and tL.Ci ≥ t > n + 1, for all i, we have (KX + tL) ·Ci > 0, which gives a
contradiction.
(2) If there is no nonzero α ∈ ∂ME(X) with (KX + tL) ·α = 0, then by [BDPP04],
Theorem 0.2, KX + tL is big. But then KX + tL is ample, by Lemma 1.5. ¤

2. Results in case of non-negative Kodaira dimension

If X is of general type, then Conjecture 0.1 easily holds:

2.1. Proposition. Let X be a projective n-dimensional manifold with κ(X) = n.
Let L be strictly nef on X. Then KX + tL is ample for any t > n + 1.

Proof. Let t > n + 1 be a rational number. By Proposition 1.2, KX + tL is strictly
nef. Then 2(KX + tL)−KX = KX + 2tL is nef. Since this holds for any t > n + 1,
we can find a small positive rational number ε such that (1 − ε)KX + 2tL is still
nef. Since KX is big and since the sum of a nef and a big divisor is again big,
2(KX + tL) = KX + 2tL is big. By the base point free theorem, KX + tL is
therefore semi-ample. Since it is strictly nef, it is ample by Lemma 1.4. ¤

If X is not of general type, things are more complicated. Here we want to use
the Iitaka fibration. For technical reasons we slightly generalize Conjecture 0.1:
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2.2. Conjecture. (Cd) : Let F be a d-dimensional projective manifold. Let L be
almost strictly nef. Then, KF + tL is big for any t > d + 1.

Conjecture C1 being obvious, we are now going to prove C2 for surfaces with
κ = 0.

2.3. Proposition. Let X be a smooth projective surface with κ(X) = 0 and L {c2k0}
almost strictly nef. Then KX + tL is big for any t > 3.

Proof. Fix a rational number t > 3 and suppose that KX + tL is not big.
By blowing down the (−1)−curves Ei with L · Ei = 0, we may assume that KX +
tL is nef. In fact, if KX + tL is not nef, then there exists a curve C such that
(KX + tL) · C < 0. Then we also find by the cone theorem a (−1)−curve C with
(KX + tL) · C < 0. Since KX · C = −1, we must have L · C = 0. Thus by a finite
sequence of blow-downs we arrive at the situation where KX + tL is nef.
Thus we may now assume that KX + tL is nef; in fact, notice that if σ : X → X ′ is
a sequence of blow-downs of (−1)−curves and if KX′ + tL′ is big (with L = σ∗(L′),
then KX + tL is big as well.

So if KX + tL is not big, we must have (KX + tL)2 = 0.
Suppose first L2 > 0. Then from (KX + tL)2 = 0, from the nefness of KX + tL,
and from

0 = (KX + tL)2 = KX · (KX + tL) + tL · (KX + tL),
we obtain L · (KX + tL) = 0. Now the Hodge Index Theorem yields KX + tL ≡ 0
which is impossible since κ(X) = 0 and L is almost strictly nef.
So suppose L2 = 0. Hence

K2
X + 2t(KX · L) = 0.

This holds also for all rational numbers 3 < t0 < t, because otherwise KX + t0L
would be big and then also KX + tL is big. Thus

K2
X = 0 = KX · L.

The surface X must then be minimal. By taking a finite étale cover, we can assume
X to be either an abelian, or a K3-surface.

On an abelian surface however every almost strictly nef line bundle is strictly
nef, hence ample by Theorem 1.7. Furthermore, Riemann-Roch shows that a nef
line bundle on a K3-surface is either (non-zero) effective or trivial. An effective
almost strictly nef line bundle on a K3-surface is immediately seen to be big. ¤

2.4. Remark. Conjecture (C2) trivially holds also on surfaces of general type and
is easily checked in case κ = 1. It should also hold in case κ = −∞ but we don’t
need this.

We need the following technical Lemma. This is presumably well-known to
experts. However, we include it here for lack of appropriate reference.

2.5. Lemma. Let g : X → Y be a surjective holomorphic map of projective {big}
varieties. Let A,N be Q-divisors, with A big on Y , N pseudoeffective (e.g.nef) on
X. Suppose that N is g−big, i.e. big on the general fiber. Then N + g∗(A) is big.

Proof. By Kodaira’s lemma a big divisor decomposes as Q−divisor into an ample
and an effective part. Therefore we assume A to be ample on Y . We first claim
that we can pick k À 0 such that N + g∗(kA) is big.
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This is a standard fact, seen as follows, by a relative version of Kodaira’s Lemma:
let H be g−ample on X. Then choose m such that

g∗(mN −H)

has positive rank. This is obviously possible, by the coherence of direct image
sheaves, since N is g−big, (see e.g. [KMM87,0-3-4]). Now choose k large enough,
such that g∗(mN −H) + kA has a section. Thus

E := mN −H + g∗(kA)

is effective, and mN +g∗(kA) = H +E is the sum of an ample and an effective line
bundle, hence big. Thus also N + g∗(kA) is big for large k, proving our first claim.

We now write N + g∗(kA) as the sum of an ample and an effective Q−divisor:

N + g∗(kA) ≡ H ′ + E′.

Thus
k(N + g∗A) ≡ (H ′ + (k − 1)N) + E′

is again the sum of a big and an pseudo-effective divisor. Since a pseudo-effective
divisor is by definition in the closure of the effective cone, this sum is again big.
Hence N + g∗A is big. ¤
2.6. Theorem. Let X be an n-dimensional connected projective manifold with{Iitaka}
κ(X) = k ≥ 0. Let L be a strictly nef line bundle on X. Suppose that (Cd) holds
for d = n− k. Then KX + tL is ample for t > n + 1.

Proof. Let f : X ⇀ Y be the Iitaka fibration; we may assume dimY = k ≥ 1,
because otherwise there is nothing to prove. Let π : X̂ → X be a sequence of
blow-ups such that the induced map f̂ : X̂ → Y is holomorphic and such that we
can write

π∗(mKX) = f̂∗(A) + E (∗)
with a suitable large m, an ample divisor A on Y and an effective divisor E. We
also have an equality KX̂ = π∗(KX)+E′ for some effective E′. Let us furthermore
set L̂ = π∗(L).
By (Cd) applied to the general fiber F̂ of f̂ , the divisor KF̂ + tL̂ is big for t > d+1.

Thus KX̂ + tL̂ is f̂−big for t > d + 1. Now Lemma 2.5 therefore applies, with
N = π∗(KX) + tL̂ and with D = E′ and shows the bigness of KX̂ + tL̂ + f̂∗(A) for
t À 0. Hence can write

KX̂ + tL̂ + f̂∗(A) ≡ H + ∆,

for some ample H and some effective ∆. Thus by (*), we have

(m+1)(KX̂ +tL̂) = KX̂ +tL̂+π∗mKX +mE′+mtL̂ ≡ (H+mtL̂)+(∆+E+mE′),

which is big.
Therefore KX̂ + tL̂ is big. It follows that KX + tL = π∗(KX̂ + tL̂) is big for
t À 0. Moreover, KX + tL is strictly nef for t À 0 by Proposition 1.2. Hence
(KX + tL)n > 0 for t large. By Corollary 1.6, we conclude. ¤

Combining (2.3) and (2.6) we obtain:

2.7. Corollary. Let X be an n-dimensional connected projective manifold with{Iitaka2}
κ(X) ≥ n − 2. Let L be a strictly nef line bundle on X. Then KX + tL is ample
for any t > n + 1.
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3. The Albanese map

We now study Conjecture 0.1 on projective manifolds X with positive irregularity
q(X) > 0.

3.1. Theorem. Let X be a smooth projective threefold, L strictly nef. Suppose {irreg3}
there exists a non-constant map g : X → A to an abelian variety. Then KX + tL
is ample for any real number t > 4.

Proof. Notice that it suffices by Lemma 1.5 and Corollary 1.6 to prove the claim
just for one t > 4. For any integer s > 0, we let Ds := 2KX + 2sL. We claim that

Fs := g∗(2KX + 2sL)

satisfies a generic vanishing theorem for t sufficiently large. That is to say that Fs

satisfies the equivalent conditions of [Ha04] Theorem 1.2, and thus we have a chain
of inclusions

V 0(Fs) ⊃ V 1(Fs) . . . ⊃ V n(Fs),
where

V i(Fs) := {P ∈ Pic0(A)|hi(A,Fs ⊗ P ) 6= 0}.
Given this claim for granted for the time being, we proceed as follows. Since

Fs is a non-zero sheaf for s À 0, one concludes that V 0(Fs) 6= ∅ for large s. For
otherwise, V i(Fs) = ∅ for all i, which implies that the Fourier-Mukai transform of
Fs is zero. This is absurd e.g. by [Mu81], Theorem 2.2.

Therefore, fixing s sufficiently large, we have

h0(X, 2KX + 2sL + g∗P ) 6= 0

for some P ∈ Pic0(A). Of course P depends on s. Notice that if 2KX+2sL+g∗P has
a section without zeroes, then −KX is strictly nef, hence X is Fano and q(X) = 0
by Corollary 0.3, which contradicts our assumption.
Now let L′ be a Q-divisor such that

2sL′ = 2sL + g∗P.

Choose a positive integer m such that 2msL′ is Cartier. Then apply Proposition
1.8 to 2msL′ so that the bundle

KX + tL′ = KX +
t

2
L + g∗P ′

is ample for large divisible t and a suitable multiple P ′ of P . Hence KX + tL is
ample, and the claim of the theorem is proved for one t > 4 and therefore for all
t > 4.

It remains to prove the generic vanishing claim. First note that KX + t0L is g-big
for some t0 > 3 (Theorem 1.7). Fix an ample line bundle H on A. From Lemma
2.5 we deduce that a(KX + 2sL) + g∗H is nef and big for a > 0 and s ≥ t0. We
choose s to be an integer s > 4. Set

D0 := 2(KX + 2sL) + g∗H.

Then D0 − KX is again nef and big. By the Base Point Free Theorem, mD0 is
therefore spanned for some m À 0.
Take D a general smooth member in |mD0|. Then we have

2KX + 2sL + g∗H ≡ KX +
1
2
g∗H +

1
2m

D,
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where (X, 1
2mD) is Kawamata log-terminal (klt), see e.g. [KM98], 2.34 or [KMM87],

0.2.10 for definition. By the vanishing theorem of Kollár (cf. [Ko95], Theorem
10.19.2), we have

Hj(A, g∗(2KX + 2sL)⊗H)) = 0, for all j > 0

and moreover

Hj(A,Fs⊗H⊗P ) = Hj(A, g∗(2KX+2sL)⊗H⊗P )) = 0 for all j > 0, P ∈ Pic0(A).

In other words, per definitionem the sheaf Fs⊗H is IT 0 for all ample line bundles
H.

Next, let M be any ample line bundle on the dual abelian variety Â and φ : Â →
A is the isogeny defined by M . Let M̂ be the Fourier-Mukai transform of M on A
and let M̂∨ be its dual. By [Mu81] Proposition 3.11,

φ∗(M̂∨) ∼= ⊕h0(M)M.

Let ĝ : X̂ := X ×A Â → Â be the base change with the induced map ϕ :
X̂ → X being étale. Clearly, KX̂ = ϕ∗KX and ϕ∗L is strictly nef on X̂. Let
Gs := ĝ∗(ϕ∗(2KX + 2sL)). By applying the above argument to ϕ∗Ds, we see that
Gs ⊗M is IT 0 for all M . Thus

φ∗(Fs ⊗ M̂∨) = φ∗(g∗(Ds ⊗ M̂∨))
= φ∗g∗((Ds ⊗ g∗M̂∨))
= ĝ∗ϕ∗((Ds ⊗ g∗M̂∨))
= ĝ∗(ϕ∗Ds ⊗ ϕ∗g∗M̂∨)
= ĝ∗(ϕ∗Ds ⊗ ĝ∗φ∗M̂∨)
= ĝ∗(ϕ∗Ds ⊗ ĝ∗(⊕M))
= ⊕(ĝ∗ϕ∗Ds ⊗M)

which is IT 0.
Since OA is a direct summand of φ∗φ∗OA, it follows that Fs ⊗ M̂∨ is IT 0. Now

our claim follows from [Ha04], Theorem 1.2. ¤

We introduce the following notation:

q̃(X) := max{q(X̃)|X̃ → X is finite étale}.
3.2. Corollary. Let X be a smooth projective threefold, L strictly nef. Suppose{girreg3}
that q̃(X) > 0. Then KX + tL is ample for t > 4.

Proof. By the previous theorem we only have to treat the case that q(X) = 0. Then
we choose a finite étale cover h : X̃ → X such that q(X̃) > 0. Hence KX̃ + h∗(L)
is ample for t > n + 1 and so does KX + tL. ¤

3.3. Remark. There are two obstacles for extending Theorem 3.1 to all dimen-
sions. The first is the use of Proposition 1.8 which has to be extended to higher
dimensions, at least in our situation. Serrano’s proof requires that the Conjecture
0.1 holds for Gorenstein singular subvarieties of codimension 1. Thus we will con-
sider Gorenstein varieties in Proposition 3.4, constructing a section in 2KX̂+2tL̂+P̂

with P̂ numerically trivial, where π : X̂ → X is a desingularization and L̂ = π∗(L).
Thus we are forced to work with almost strictly nef line bundles.
The second obstacle is the g−bigness of KX + tL. This means that KF + tLF is big
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for the general fiber F of g. Thus it is natural to argue by induction on the dimen-
sion, but of course we are far from proving the conjecture for arbitrary manifolds
with vanishing irregularity.

3.4. Proposition. Let X be an irreducible reduced projective Gorenstein variety
with desingularization π : X̂ → X and let L̂ = π∗(L). Let g : X → A be a non-
constant map to an abelian variety and let L be a strictly nef line bundle on X.
Suppose that KX̂ + t0L̂ is (g ◦ π)-big for some t0. Then

1.) The sheaf F̂ = g∗π∗(2KX̂ + 2tL̂) satisfies the generic vanishing theorem

V 0(F̂) ⊃ V 1(F̂) . . . ⊃ V n(F̂)

for t À 0.
2.) If t À 0, then there exists P̂ ∈ Pic0(X̂) such that

H0(2KX̂ + 2tL̂ + P̂ ) 6= 0.

Proof. (1) This is just what the second part of the proof of Theorem 3.1 - applied
to g ◦ π - gives.
(2) By (1) and the first arguments in the proof of Theorem 3.1, we obtain

H0(2KX̂ + 2L̂ + P̂ ) 6= 0

for some P̂ ∈ Pic0(X̂). ¤

4. Fano fibrations

We shall now complete the proof of Theorem 0.4.1. Observe that due to Theorem
0.2 and and Theorem 3.1, the only cases left are uniruled threefolds with q = 0.
These cases are thus settled by 4.1/4.2 and 5.1/5.2 below.

In this section we settle the cases of del Pezzo fibrations over curves and conic
bundles with relative Picard number 1 over surfaces.

4.1. Proposition. Let X be a smooth projective threefold, L strictly nef on X.
Suppose that X carries an extremal contraction f : X → B to a curve B. Then
KX + tL is ample for large t.

Proof. If −KX and L are proportional, then X is Fano by Serrano’s theorem,
see 0.3. Thus we may assume that −KX and L are not proportional. Since f
is an extremal contraction, we have ρ(X) = ρ(B) + 1, hence ρ(X) = 2, so one
can arrange that NE(X) ⊂ (pKX + qL)>0 for some suitable p, q. By Kleiman’s
criterion, pKX + qL is ample and hence by Corollary 1.6, we are done. ¤

4.2. Proposition. Let X be a threefold which carries a conic bundle f : X → S
with ρ(X/S) = 1. If L is strictly nef on X, then KX + tL is ample for t > 4.

Proof. By Corollary 3.2 we may assume that q(S) = 0, even after a finite étale
cover of the smooth surface S.

Suppose that KX + tL fails to be ample. Then by Lemma 1.5, we have Kj
X ·

L3−j = 0 for all j ≥ 0.
Since ρ(X/S) = 1, we find a positive number t0 such that

KX + t0L = f∗(KS + M)
9



with a Q−divisor M on S. We cube the equation t0L = −KX + f∗(KS + M) to
obtain

0 = 3K2
X · f∗(KS + M)− 3KX · f∗(KS + M)2 = 3K2

X · f∗(KS + M) + 6(KS + M)2.

¿From KX · t0L2 = 0 we get K2
X · f∗(KS + M) = 0, hence in total

(KS + M)2 = 0.

By applying Proposition 1.10 to L, we find α ∈ ME(X) such that

KX · α = L · α = 0,

in particular D · α = 0. Introducing γ = φ∗(α) ∈ ME(S), we obtain

(KS + M) · γ = 0.

Notice that ME(S) is nothing than the nef cone, so γ is a nef class. Next notice
that we may choose γ rational. In fact, since the rational points are dense in the nef
cone of S and since neither KS +M nor −(KS +M) are strictly positive functionals
on the nef cone, we find rational points x and y in the nef cone such that

(KS + M) · x ≥ 0; (KS + M) · y ≤ 0.

We may assume strict inequality in both cases, otherwise we are already done,
setting x = γ, resp. y = γ. Then choose λ > 0 such that

(KS + M) · (x + λy) = 0.

Noticing that λ ∈ Q, we may substitute γ by x + λy, so that we may now assume
γ to be rational.
Now multiply γ suitably to obtain a nef line bundle G such that

(KS + M) ·G = 0.

If now G2 > 0, then the Hodge Index theorem gives KS + M = 0, so that
H0(m(KX + t0L)) 6= 0 for positive integers m such that mt0 ∈ N. By Proposi-
tion 1.8, KX + tL is ample for t > 4.

Thus we may assume that G2 = 0. Together with (KS+M)2 = (KS+M)·G = 0,
one has (KS + M + τG)2 = 0 for all τ .

Let C ⊂ S be an irreducible curve. Then

t20L
2 ·f∗(C) = (f∗(KS +M)−KX)2 ·f∗(C) = −2f∗(KS +M)·KX ·C+K2

X ·f∗(C) =

= 4(KS + M) · C − (4KS + ∆) · C = (M −∆) · C. (1)
The last equation is explained as follows. ∆ denoting the discriminant locus, it is
well-known ( see e.g. [My83]) that

f∗(K2
X) = −(4KS + ∆).

Now we restrict ourselves to curves C with C2 ≥ 0. Then clearly L2 · f∗(C) ≥ 0,
hence

(M −∆) · C ≥ 0, (2)
in particular

(M −∆) ·G ≥ 0. (3)
Moreover we have a strict inequality in (2) unless C0 = ∅ and L2 · f∗(C) = 0.
The inequality (3) says in particular that M is pseudo-effective. Thus the equation
(KS + M) ·G = 0 forces κ(S) ≤ 1.
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(I) We first assume κ(S) = −∞. Then S is a rational surface, since we may assume
q̃(S) = 0. The case that S = P2 is easy and left to the reader. So we may assume
that π : S → S0 is a succession of blow-ups, where S0 is a ruled surface with
minimal section C0 that C2

0 = −e.
Now we write

KS + M = π∗(α1C0 + β1F ) + E1

G = π∗(α2C0 + β2F ) + E2,

where E1, E2 are divisors supported on exceptional curves.

If α2 = 0, then it is clear that E2 = 0 and G = β2π
∗F . Then (KS + M) · G = 0

gives α1 = 0 and (KS + M)2 = 0 gives E1 = 0. So KS + M = β1π
∗F , and we are

done, since KS + M is effective and therefore KX + t0L is effective.

If α2 6= 0, take τ = −α1
α2

, then

KS + M + τG = (β1 + τβ2)π∗F + E1 + τE2.

(KS + M + τG)2 = 0 gives (E1 + τE2)2 = 0. It implies E1 + τE2 = 0 by the
negativity of intersection form of exceptional divisors.
Let δ := β1 + τβ2. If δ 6= 0, then KS + M = −τG + δπ∗F . Again, one has
α2 = G · π∗F = 0 which is absurd.
Therefore

KS + M = −τG.

By (3) we have M ·G ≥ 0, therefore KS ·G ≤ 0. By Riemann-Roch and the obvious
vanishing H0(KS −G) = 0, we have

h0(S,G) ≥ χ(OS) = 1.

Hence G is effective. G is non-zero for otherwise KX + t0L ≡ 0, hence −KX is
strictly nef and thus X is Fano. Therefore m(KX + t0L) is effective for some m ∈ Z
and we are done in Case (I) by Proposition 1.8 again.

(II) Now suppose that κ(S) ≥ 0. Let

σ : S → S0

be the minimal model. Since κ(S) ≥ 0, we conclude by (2) that

KS ·G = M ·G = 0.

Hence
0 = σ∗(KS0) ·G +

∑
aiAi ·G

with Ai the σ−exceptional curves and ai suitable positive rational numbers. Thus
G = σ∗(G0) with a nef line bundle G0 on S0; observe that KS0 · G0 = 0 and that
G2

0 = 0.

Suppose that κ(S) = 1. Then we consider the Iitaka fibration g : S0 → B to the
curve B. By Theorem 3.1, we may assume that B = P1. We conclude that G0 is a
sum of fibers of g. Thus G is a sum of fibers of g ◦ σ. Now consider the composed
map h : X → B. Then it follows that h∗(α) consists of finitely many points. This
means that we can find a fiber of h such that KX + tL|F is not ample for large t.
Thus KF + tLF is not ample. If (the reduction of) F is irreducible, this contradicts
Theorem 1.7. If Fi is a component of F with multiplicity ai, then aiKFi + tLFi is
a subsheaf of KF + tLF |LFi , and the contradiction is the same.
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Finally we have to treat the case κ(S) = 0. Here we may assume that S0 is K3 by
Corollary 3.2. If G2

0 = 0, then by Riemann-Roch κ(G0) = 1. Hence some multiple
of G0 is spanned, defining a morphism g : S → B. Since the divisor M0 must be
supported on fibers of g, so does ∆. Thus we conclude by (3) for b ∈ B that

L2 ·Xb = 0.

But for general b, the fiber S0,b is an elliptic curve and Xb is a P1−bundle over S0,b

since ∆ does not meet S0,b. Moreover L|Xb is strictly nef, hence ample, contradicting
L2 ·Xb = 0. ¤

4.3. Remark. Suppose in (4.2) that φ : X → S is a conic bundle, but not
necessarily with ρ(X/S) = 1. Then all arguments still remain valid if KX + t0L is
the φ−pull-back of a Q−bundle on S, for some rational t0.

5. Birational maps

In order to prove Conjecture 0.1 in the remaining uniruled cases, it is natural to
consider the Mori program. If X admits a contraction contracting a divisor to a
point, the situation is easily understood.

5.1. Theorem. Let X be a smooth projective threefold, L strictly nef on X. Sup-
pose that X admits a birational Mori contraction φ : X → Y contracting the
exceptional divisor E to a point. Then KX + tL is ample for t > n + 1.

Proof. Suppose that KX + tL is not ample. Write

KX = φ∗(KY ) + aE;

then a ∈ {2, 1, 1
2} ([Mo82]). Possibly after replacing L by 2L in case a = 1

2 , we can
moreover write

L = φ∗(L′)− bE

with a line bundle L′ on Y. Notice that b > 0 since L is strictly nef. Introduce

D = bKX + aL; D′ = bKY + aL′.

Since L′ is again strictly nef, KY + tL′ is strictly nef for t À 0. Using Lemma 1.5
on X it is a simple matter to verify

(KY + tL′)3 > 0

for large t, so that KY +tL′ is ample by Lemma 1.5. Hence we find positive integers
p, q such that pKY +qL′ is spanned. Choose S ∈ |pKY +qL′| smooth. Now a simple
calculation shows that

D′2 · (pKY + qL′) = D′ · (pKY + qL′)2 = 0.

Thus D′
S ·(pKY +tL′)S = 0. Moreover (D′

S)2 = 0. Hence D′
S ≡ 0 by the Hodge index

theorem. Consequently D′ ≡ 0 and therefore D ≡ 0 so that aL ≡ −bKX . Therefore
X is Fano by Corollary 0.3 and KX + tL is ample for t > 4, contradiction. ¤

In case that the contraction φ : X → Y contracts a divisor to a curve C, the
situation is more involved. The reason is that the induced line bundle L′ on Y is
not necessarily strictly nef, in fact we can have L′ · C ≤ 0. We have already shown
that if X admits a Mori fibration or a divisorial contraction to a point, then the
conjecture holds. Since X is smooth, it remains to consider the case that all the
extremal rays produce a divisorial contraction to a nonsingular curve.
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5.2. Proposition. Let X be a smooth uniruled threefold, L strictly nef on X.
Suppose that all extremal contractions on X contract a divisor to a curve. Then
KX + tL is ample for large t.

Proof. (a) Let us fix some notations first. Let φi, i ∈ I ⊂ N be the extremal
contractions on X, with exceptional divisor Ei. Let Ci := φi(Ei) so that Ei is a P1

bundle over Ci. Let [li] ∈ K<0
X denote the class of the contracted ruling lines in Ei,

so that −KX · li = 1. Let

µ := min{ L · li
−KX · li |i ∈ I} = min{L · li|i ∈ I} ∈ N.

Reorder I so that φ1, . . . , φn are exactly those contractions with

L · li = µ.

Then the divisor
D := L + µKX

is nef, as a consequence of the cone theorem and the definition of µ. Moreover, if
D ·B = 0 for some B ∈ NE(X), then KX ·B ≤ 0. In other words,

D⊥ ∩NE(X) ⊂ K≤0
X .

In particular, if B is an effective curve, then D ·B = 0 forces KX ·B < 0, because
otherwise KX ·B = 0, hence L ·B = 0, contradicting the strict nefness of L.

Our goal is to show that some multiple mD = mL + mµKX is effective, so that
we are done by Proposition 1.8.
Let φ = φ1 : X → X1 = X ′ be the contraction of E = E1. Let [l] = [l1] and set
L′ := (φ∗L)∗∗, the double dual of φ∗L. Furthermore let

D′ := L′ + µKX′ , D := φ∗(D′) = L + µKX .

Let C = φ(E) and C0 be the minimal section in E with C2
0 = −e, in the notation

of [Ha77,V.2].

(b) We introduce the following numbers

τ := L′ · C, σ := KX′ · C, γ = c1(N∗
C/X).

Furthermore, let g be the genus of C and χ = 2− 2g.

(b.1) First we treat the case L′ ·C > 0 so that L′ is strictly nef. Then by induction
on ρ, the bundle KX′ + tL′ is ample, for t > 4. Let t0 = 1

µ . Then KX′ + t0L
′ is nef,

since D′ is nef. Let ε > 0 be a small positive number. Then

KX′ +
t0

1− ε
L′

is big, otherwise we would have (KX′ + tL′)3 = 0 for all t which is absurd. Now
the base point free theorem implies that some multiple m(KX′ + t0L

′) is spanned,
hence m′D′ is spanned, so does L + µKX and we are done by Lemma 1.4.

Thus we are reduced to
L′ · C ≤ 0.

Hence KX′ · C ≥ 0, and C is rigid, since L′.C ′ > 0 for every irreducible effective
curve C ′ 6= C on X ′.
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(b.2) We claim that:
D′ · C > 0. (∗)

In fact, we need only to exclude the case: D′ · C = 0. Assuming D′ · C = 0, we
obtain

L′ · C + µKX′ · C = 0
and

LE ≡ −µKX |E.

Since L · C0 > 0, we have KX′ · C0 < 0, hence C0 moves. Since C is rigid, C0 can
move only inside E, hence e ≤ 0. Write N∗

E ≡ C0 + λl. Then it is easily checked
that λ = 1

2γ + 1
2e in the notations of [Ha 77]; so that

N∗
E = C0 + (

1
2
γ +

1
2
e)l.

Since LE is strictly nef, so is −KX |E − N∗
E = C0 + (e + 2 − 2g − λ)l, so that we

conclude:
e + 2− 2g − 1

2
γ − 1

2
e ≥ e

2
, (∗∗)

hence
2− 2g ≥ 1

2
γ,

with strict inequality for e = 0, since on those ruled surfaces all strictly nef line
bundles are ample.

By the adjunction formula we have γ = σ +(2−2g), hence σ ≤ 2−2g. Since σ ≥ 0,
we obtain g ≤ 1. But a strictly nef divisor on a ruled surface over a rational or
an elliptic curve is ample, hence the inequality (**) is strict. Thus g = e = 0 and
σ < 2, γ ≤ 3. So

N∗
C = O(k)⊕O(k)

with 0 < γ = 2k ≤ 3, hence k = 1 and σ = 0. So KX′ · C = 0 = L′ · C, and L′

is nef. If for large t, the nef bundle KX′ + tL′ is big, then we conclude as in the
case L′ ·C > 0. So we may assume that (KX′ + tL′)3 = 0 for all t. Then K3

X′ = 0.
However K3

X = 0 forces K3
X′ = −2, contradiction. Thus we must have

D′ · C > 0.

(c) Case: D′⊥ ∩NE(X) ⊂ K⊥
X′ .

We are going to rule out this case. Assume first that there is an irreducible curve
B′ ∈ NE(X ′) such that D′ ·B′ = 0. Necessarily B′ 6= C. By assumption, KX′ ·B′ =
0. Let B be the strict transform of B′ in X. Then D · B = 0. Since E · B ≥ 0, we
also get KX ·B ≥ 0. Since L ·B > 0 and D ·B = 0, this is impossible.
Hence D′ is strictly nef and by induction, KX′ + tL′ is ample for large t. On
the other hand, we may assume that D′ is not ample, otherwise we are done by
Corollary 1.6. Hence there exists a nonzero class B∗ ∈ NE(X ′) with D′ · B∗ = 0,
hence KX′ · B∗ = 0, by our assumption (c).This is absurd, since then L′ · B∗ = 0;
on the other hand KX′ + tL′ is ample.

(d) Case: D′⊥ ∩NE(X) 6⊂ K⊥
X′ .

Then we find B′ ∈ NE(X ′) such that D′ · B′ = 0 and KX′ · B′ < 0. Since D′ is
nef, we also find an extremal curve l′ with D′ · l′ = 0. Let φ′ : X ′ → X ′′ be the
associated contraction.
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(d.1) Suppose that dimX ′′ ≤ 2. Observe that D′ = φ′∗(D′′) with a nef bundle D′

on X ′′. So if dim X ′′ ≤ 1, the bundle D′ has a section and we are done. The same
argument works if dim X ′′ = 2 and D′′2 6= 0. In the remaining case that dim X ′′ = 2
and (D′′)2 = 0, we need more arguments. Let l′ be a smooth conic and assume that
l′ meets C. Let l be its strict transform in X. Then KX · l ≥ −1. Since D · l = 0 and
L · l > 0, necessarily KX · l = −1 and E · l = 1. Thus l meets C transversely in one
point. The same computations show that C cannot meet a singular conic. Thus C
is a section of X ′ → X ′′ and X → X ′′ is still a conic bundle. Then we conclude by
Lemma 4.2 and Remark 4.3.

(d.2) Suppose φ′ is birational with exceptional divisor E′.
If C ⊂ E′, then, C being rigid, E′ must be ruled and C is the exceptional section
in E′. Let l′ be a ruling line and l its strict transform in X. Then KX · l = 0. Since
D · l = 0, we obtain L · l = 0, which is absurd.
Things are more complicated when E′ ∩ C is a finite non-empty set. Suppose first
that E′ is not P2 with normal bundle O(−1). In this situation we find a rational
curve l′ ⊂ E′ meeting C with KX′ · l′ = −1. Let l̂ be the strict transform in X.
Then

φ∗(l′) = l̂ + al

with some positive integer a. Since D′ · l′ = D · l = 0, it follows D · l̂ = 0. Now

KX · l̂ = −1 + a ≥ 0.

Hence D · l̂ = (L + µKX) · l > 0, contradiction.
It remains to do the case E′ = P2 with normal bundle O(−1). Fixing a line l′ ⊂ E′

which meets C, the same computations as above show that

L · l̂ = 1, µ = 1,KX · l̂ = −1 and a = 1.

Notice that E′ can meet C only in one point (transversely). In fact, otherwise we
choose two points in E′ ∩C and a line l∗ through these two points. Then the strict
transform l̂∗ satisfies KX · l̂∗ ≥ 0, which is impossible, as already observed. Hence
Ê′ is ruled over P1 with fibers l̂. Since Ê′ · l̂ = −1, we can blow down X along the
projection Ê′ → P1 to obtain ψ : X → Y, the blow-up of Y along a smooth curve
C ′ ' P1. A priori it is not clear that Y is projective. Let LY = (ψ∗(L))∗∗. Then

L = ψ∗(LY )− Ê′.

Denoting by C0 the exceptional section of Ê′ and noticing that N∗
Ê′

= C0 + l̂, we
obtain

L|Ê′ = C0 + (LY · C ′) + 1)l̂.

Since L|Ê′ is ample, it follows that LY · C ′ > 0 so that LY is strictly nef on the
Moishezon manifold Y . Then Y has to be projective: otherwise by [Pe86] we find
an irreducible curve D and a positive closed current T on Y such that [D +T ] = 0.
But LY ·D > 0 and LY · T ≥ 0. Now, Y being projective, we conclude by the first
part of (b).
If finally E′ ∩ C = ∅, then the strict transform of E′ in X is some Ej , 2 ≤ j ≤ n,
hence defines an extremal contraction on X with the same properties as φ and we
can continue by induction. Since we assume X uniruled, after finitely many steps
we arrive at dim X [m] ≤ 2 and argue as above. ¤
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6. Higher dimensions

In higher dimensions it is certainly very difficult to deal with Fano fibrations; how-
ever it is instructive to look at Pk−bundles to get an idea on the higher dimensional
case. Here we can calculate explicitly.

6.1. Theorem. Let X be a Pk−bundle over a smooth surface S. Suppose that L
is strictly nef on X. Then KX + tL is ample for t > k + 3.

Proof. After possibly performing a finite étale cover, we may assume that X is the
projectivisation of a rank (r + 1)-bundle E on S. If we allow E to be a Q−bundle,
we may assume that

L = OP(E)(k)
with some positive number k. We also introduce ζ = OP(E)(1). Notice that det E is
strictly nef and suppose that KX + tL is not ample. Then

Kj
X · Lr+2−j = 0

for all j by (1.5). First recall the following

ζr+1 − π∗c1(E)ζr + π∗c2(E)ζr−1 = 0,

and
KX = −(r + 1)ζ + π∗(det E + KS).

The equation Lr+2 = 0 immediately leads to

ζr+2 = c1(E)2 − c2(E) = 0. (5)

Secondly, combining with ζr+2 = 0, the equation Lr+1 ·KX = 0 leads to

ζr+1 · π∗(c1(E) + KS) = c1(E) · (c1(E) + KS) = 0. (6)

Moreover, the equation Lr ·K2
X = 0 leads to

ζr · π∗(c1(E) + KS)2 = (c1(E) + KS)2 = 0. (7)

By (6), (7), we have KS · (c1(E) + KS) = 0 and hence K2
S = c1(E)2. Since det E

is strictly nef, equation (6) yields that K2
S = c1(E)2 ≥ 0 and c1(E) ·KS ≤ 0.

First suppose that κ(S) ≥ 0. Then KS · det E = 0 and K2
S = 0 for det E being

strictly nef. Hence KS ≡ 0. Then by (1.5) det E is ample, contradicting c1(E)2 =
K2

S .
It remains to consider κ(S) = −∞. Since K2

S ≥ 0, S is either rational or a minimal
ruled surface over an elliptic curve. In the latter case, K2

S = 0, hence c1(E)2 = 0.
On the other hand, any strictly nef divisor on a ruled surface over an elliptic curve
is ample (use [Ha77,V.2]), a contradiction.
In case of a rational surface S, choose a positive integer m such that mdet E is
Cartier. Then Riemann-Roch and (KS+det E)2 = 0 show that h0(m(KS+det E)) >
0. This contradicts via (KS + det E) · det E = 0 the strict nefness of det E . ¤
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