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Abstract. In this paper we provide a framework for constructing general complex geometrical
optics solutions for several systems of two variables that can be reduced to a system with the Laplacian
as the leading order term. We apply these special solutions to the problem of reconstructing inclusions
inside a domain filled with known conductivity from local boundary measurements. Computational
results demonstrate the versatility of these solutions to determine electrical inclusions.
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1. Introduction. Inverse boundary value problems are a class of inverse prob-
lems where one attempts to determine the internal parameters of body by making
measurements only at the surface of the body. A prototypical example that has re-
ceived a lot of attention is electrical impedance tomography (EIT). In this inverse
method one would like to determine the conductivity distribution inside a body by
making voltage and current measurements at the boundary.

There are many applications of EIT ranging from early breast cancer detection [32]
to geophysical sensing for underground objects; see [18], [24], [25], [27]. The article [28]
and the ones reviewed in [29] assume that the measurements are made on the whole
boundary. However, it is often possible to make the measurements only on part of the
boundary; this is the partial data problem. This is the case for the applications in
breast cancer detection and geophysical sensing mentioned above.

The boundary information is encoded into the Dirichlet-to-Neumann map associ-
ated with the conductivity equation. More precisely, let Ω be an open bounded domain
with smooth boundary in R

d with d = 2 or 3. Assume that γ(x) > 0 in Ω possesses
a suitable regularity. The conductivity equation is described by the following elliptic
equation:

(1.1) ∇ · (γ(x)∇u) = 0 in Ω.

For an appropriate function f defined on ∂Ω, there exists a unique solution u(x) to
the boundary value problem for (1.1) with Dirichlet condition u|∂Ω = f . Thus, one
can define a map Λγ sending the Dirichlet data to the Neumann data by

Λγ(f) = γ
∂u

∂ν

∣∣∣
∂Ω

.

∗Received by the editors November 30, 2006; accepted for publication (in revised form) October 16,
2007; published electronically February 29, 2008.

http://www.siam.org/journals/siap/68-4/67635.html
†Department of Mathematics, University of Washington, Box 354305, Seattle, WA 98195-4350

(gunther@math.washington.edu). This author’s research was partially supported by NSF and a
Walker Family Endowed Professorship.

‡Department of Mathematics, Taida Institute for Mathematical Sciences, and NCTS (Taipei),
National Taiwan University, Taipei 106, Taiwan (jnwang@math.ntu.edu.tw). This author’s research
was supported in part by the National Science Council of Taiwan (NSC 95-2115-M-002-003).

1026



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

RECONSTRUCTION OF DISCONTINUITIES 1027

The map Λγ is the Dirichlet-to-Neumann map associated with the conductivity equa-
tion (1.1). It is worth mentioning that even though (1.1) is linear, the map Λγ depends
nonlinearly on γ. The famous Calderón problem is to determine γ from the knowledge
of Λγ .

In [3], Calderón studied this inverse problem by linearizing the fully nonlinear
problem around a constant conductivity function. To attack this linearized prob-
lem, Calderón introduced harmonic functions of the form ex·ρ with ρ ∈ C

n and
ρ ·ρ = 0, which is the genesis of complex geometrical optics (CGO) solutions since the
phase function x ·ρ is complex-valued. Inspired by Calderón’s approach, Sylvester and
Uhlmann [28] solved the uniqueness question of Calderón’s problem for smooth con-
ductivities by constructing CGO solutions for (1.1). Since the conductivity equation
(1.1) is closely related to the Schrödinger equation (see (2.2)), it suffices to construct
CGO solutions for the Schrödinger which are of the form u(x) = ex·ρ(1 + r(x, ρ)),
where r is decaying in |ρ|. To motivate the name of the solution, we write

(1.2) u(x) = eih
−1x·(ω1+iω2)(1 + hr̃),

where h = |ρ|−1, i(ω1 + iω2) = |ρ|−1(Reρ + iImρ), and r̃ = h−1r = |ρ|r. The form
(1.2) is analogous to the geometrical optics solution for the wave propagation equa-
tion in which the phase function is real-valued. Here the phase function in (1.2) is
complex-valued. Nevertheless, it is linear. CGO solutions have been used in EIT and
have been instrumental in solving several inverse problems. We will not review these
developments in detail here; see [30] and [29] for references; other reviews in EIT are
[1], [2], and [4].

Recently, new CGO solutions that are useful for the partial data problem were
constructed in [20] for the conductivity equation and zeroth order perturbations of
the Laplacian. The real parts of the phase of these solutions are limiting Carleman
weights. They have been generalized to first order perturbation of the Laplacian for
scalar equations or systems in [5], [9], [26], and [31]. Constructions of CGO solutions
for the conductivity equation and zeroth order perturbations of the Laplacian using
hyperbolic geometry can be found in [16], [17]; these have been applied to determine
electrical inclusions in [10].

In two dimensions, when the underlying equation has the Laplacian as the lead-
ing part, due to the rich conformal structure, we have more freedom of choosing the
complex phases for the CGO solutions. In particular any harmonic function is a lim-
iting Carleman weight and can be the real part of a CGO solution. The aim of the
paper is to provide a framework for constructing these solutions for several systems
of two variables that can be reduced to a system with the Laplacian as the leading
term. We apply these special solutions to the problem of reconstructing inclusions
inside a domain filled with known conductivity from local boundary measurements.
We also provide numerical results to demonstrate the applicability and flexibility of
these special solutions.

From now on, we consider the case d = 2, i.e., the R
2 plane. Let n ∈ N and denote

U(x) = (u1(x1, x2), . . . , un(x1, x2))
�. We consider the following system of equations:

(1.3) PU := ΔxU + A1(x)∂x1
U + A2(x)∂x2

U + Q(x)U = 0 in Ω,

where Δx = ∂2
x1

+ ∂2
x2

and A1, A2, Q are n × n matrices whose regularities will be
specified later. The system (1.3) contains all scalar or two-dimensional physical sys-
tems that can be reduced to a system with the Laplacian as the leading part. Those
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1028 GUNTHER UHLMANN AND JENN-NAN WANG

systems include the conductivity equation, the magnetic Schrödinger equation, the
two-dimensional isotropic elasticity system, the two-dimensional Stokes system, etc.
In this paper we first study CGO solutions with special phase functions for (1.3).

In the papers [20], [5], [9], [10], [17], [26], and [31], the real parts of the phase
functions are radial functions. These can be used to probe the region with spherical
fronts, the so-called complex spherical waves. Even though these solutions are better
suited for the local data problem than the usual CGO solutions with linear phase
functions, they are still quite restrictive. Fortunately, in the two-dimensional case,
we have many more choices of phase functions. For example, let ϕ(x) be a harmonic
function with nonvanishing gradient in Ω; then ϕ + iψ can be the phase function of
the CGO solutions when ψ is a harmonic conjugate of ϕ. In other words, ρ(x) :=
ϕ(x) + iψ(x) is holomorphic in Ω. Our method in this paper is developed based on
this idea.

Using the CGO solutions, we can consider the problem of finding embedded in-
clusions in a known medium. This is the object identification problem. The method
developed here shares the same spirit as Ikehata’s enclosure method [11], [12]. For
the two-dimensional problem, we would like to mention a very interesting result by
Ikehata in [14], where he introduced the Mittag–Leffler function in the object identi-
fication problem. This has the property that its modulus grows exponentially in some
cone and decays to zero algebraically outside the same cone. Using the Mittag–Leffler
function and shrinking the opening angle of the cone, one can reconstruct precisely
the shapes of some embedded objects such as star-shaped objects. The numerical
implementation of the Mittag–Leffler functions was carried out by Ikehata and Sil-
tanen in [15]. The main restriction of the method using the Mittag–Leffler function
is that it can be applied only to scalar equations with a homogeneous background.
That is, they probe the region with harmonic functions. The novelty of our method
is its flexibility in treating scalar equations, or even two-dimensional systems, with
an inhomogeneous background. Furthermore, for the object identification problem in
such general systems, using our special CGO solutions, we are able to reconstruct
the precise information of some embedded objects including star-shaped regions by
boundary measurements. This identification result is similar to that in [14] and [15],
where only the Laplace equation is treated. So, in theory, our reconstruction method
with these CGO solutions is in greater generality. In this paper, we are developing
the foundational work to treat the case of an inhomogeneous background and also to
deal with the case of systems. Moreover, we give numerical evidence that the method
works in the homogeneous case.

Before going further, we also would like to compare our method with that in [10].
As we have pointed out above, the real parts of the phase functions of CGO solutions
in [10] are radially symmetric. So their probing fronts are circles or spheres. Moreover,
the construction of CGO solutions in [10] is based on the hyperbolic geometry. It has
not been developed for studying more general equations or systems. The advantage
of our method lies in the freedom of choosing the phase functions of CGO solutions.
One useful example is to take ρ(x) as a polynomial. By increasing the degree of the
polynomial, we can narrow our probing fronts. Consequently, we are able to determine
more information in the object identification problem in the two-dimensional case
than [10] does. On the other hand, since the real parts of the phase functions in
our CGO solutions are not necessarily radially symmetric, we can create different
probing fronts by simply rotating the phase functions. Like [10], we can also localize
the measurements in an arbitrarily small region on the boundary. Here the local data
means that the Dirichlet condition is nonzero only on a small part of the boundary.
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On the same region, we measure the Neumann condition. In theory, the nonzero part
of the Dirichlet data can be taken as small as we wish.

Our construction of CGO solutions with more general phases is rather elementary.
The main idea is to transform CGO solutions with linear phases by suitable conformal
mappings. The construction of CGO solutions with linear phases for (1.3) was first
given by Nakamura and Uhlmann in [21], [22], where they introduced the intertwining
technique in handling the first order terms (also see [7] for similar results). Here we
shall use Carleman’s technique to construct CGO solutions with linear phases for
(1.3).

This paper is organized a follows. In section 2, we give concrete examples of (1.3).
In section 3, we review of the construction of CGO solutions with linear phases for
(1.3). CGO solutions with more general phases will be discussed in section 4. For an
application of CGO solutions with general phases, we consider the problem of recon-
structing inclusions embedded into a domain with known conductivity by boundary
measurements. Numerical experiments of our method are presented in section 6.

2. Physical examples of (1.3).

2.1. Conductivity equation. Our first example is the well-known conductivity
equation already given in the previous section. Let γ(x) ∈ C2(Ω̄) and γ(x) > 0 for all
x ∈ Ω̄. We consider the equation

(2.1) ∇ · (γ∇u) = 0 in Ω.

Introducing the new variable v = γ1/2u, (2.1) is equivalent to

(2.2) (Δ + q)v = 0 in Ω

with q = −Δγ1/2/γ1/2 ∈ L∞(Ω). Equation (2.2) is a Schrödinger-type equation. We
can also consider a more general Schrödinger-type equation with a convection term:

(2.3) (Δ + a(x) · ∇ + q)v = 0 in Ω,

where a = (a1, a2).

2.2. Isotropic elasticity. The domain Ω is now modeled as an inhomogeneous,
isotropic, elastic medium characterized by the Lamé parameters λ(x) and μ(x). As-
sume that λ(x) ∈ C2(Ω), μ(x) ∈ C4(Ω), and the following inequalities hold:

(2.4) μ(x) > 0 and λ(x) + 2μ(x) > 0 ∀ x ∈ Ω (strong ellipticity).

We consider the static isotropic elasticity system without sources

(2.5) ∇ · (λ(∇ · u)I + 2μS(∇u)) = 0 in Ω.

Here and below, S(A) = (A + AT )/2 denotes the symmetric part of the matrix A ∈
C

2×2. Equivalently, if we denote σ(u) = λ(∇ · u)I + 2μS(∇u) the stress tensor, then
(2.5) becomes

∇ · σ = 0 in Ω.

On the other hand, since the Lamé parameters are differentiable, we can also write
(2.5) in the nondivergence form

(2.6) μΔu + (λ + μ)∇(∇ · u) + ∇λ∇ · u + 2S(∇u)∇μ = 0 in Ω.
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We will use the reduced system derived by Ikehata [13]. This reduction was also
mentioned in [29]. Let

(w
g

)
satisfy

(2.7) Δ

(
w
g

)
+ A(x)

(
∇g
∇ · w

)
+ Q(x)

(
w
g

)
= 0,

where

A(x) =

(
2μ−1/2(−∇2 + Δ)μ−1 −∇ logμ

0 λ+μ
λ+2μμ

1/2

)

and

Q(x) =

(
−μ−1/2(2∇2 + Δ)μ1/2 2μ−5/2(∇2 − Δ)μ ∇μ

− λ−μ
λ+2μ (∇μ1/2)T −μΔμ−1

)
.

Here ∇2f is the Hessian of the scalar function f . Then

u := μ−1/2w + μ−1∇g − g∇μ−1

satisfies (2.6). A similar form was also used in [7] for studying the inverse boundary
value problem for the isotropic elasticity system.

2.3. Stokes system. Let μ(x) ∈ C4(Ω̄) and μ(x) > 0 for all x ∈ Ω̄. Here μ
is called the viscosity function. Suppose that u = (u1, u2) and p satisfy the Stokes
system

(2.8)

{
∇ · (μS(∇u)) −∇p = 0 in Ω,

∇ · u = 0 in Ω.

Here u and p represent the velocity field and the pressure, respectively. Motivated by
the isotropic elasticity, we set u = μ−1/2w + μ−1∇g − (∇μ−1)g and

(2.9) p = ∇μ1/2 · w + μ1/2∇ · w + 2Δg = ∇ · (μ1/2w) + 2Δg;

then (u, p) is a solution of (2.8), provided
(w

g

)
satisfies

(2.10) Δ

(
w
g

)
+ A(x)

(
∇g
∇ · w

)
+ Q(x)

(
w
g

)
= 0

with

A(x) =

(
−2μ1/2∇2μ−1 −μ−1∇μ

0 μ1/2

)

and

Q =

(
−2μ−1/2∇2μ1/2 − μ−1/2Δμ1/2 −4∇2μ−1∇μ1/2 − 2μ1/2∇ · (∇μ−1)

μ(∇μ−1/2)T −μΔμ−1

)
.
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3. CGO solutions with linear phases. In this section we review the method of
constructing CGO solutions with linear phases using Carleman estimates. We consider
a slightly different system here. Let Ω̃ be an open bounded domain in R

2. Let V (y) =
V (y1, y2) satisfy

(3.1) ΔyV + Ã1∂y1V + Ã2∂y2V + Q̃V = 0 in Ω̃.

Assume that Ã1, Ã2 ∈ C2( ¯̃Ω) and Q̃ ∈ L∞(Ω̃). Given ω ∈ R
2 with |ω| = 1, we look

for V (y) of (3.1) having the form

(3.2) V (y) = ey·(ω+iω⊥)/h(L̃ + R̃),

where L̃ is independent of h and R̃ satisfies

(3.3) ‖∂αR̃‖L2(Ω̃) ≤ Ch1−α ∀ |α| ≤ 2.

To construct V having the form (3.2), (3.3), we follow the approach in [9] and [31],
which are based on [5] and [20]. Note that the real part of the phase function y · ω is
a limiting Carleman estimate. So if we define the semiclassical operator

Ph = h2Δ + hÃ1(h∂y1) + hÃ2(h∂y2) + h2Q̃,

then we can derive, by combining a Carleman estimate and the Hahn–Banach theorem,
the following.

Theorem 3.1 (see [9], [31]). For h sufficiently small, for any F ∈ L2(Ω̃), there
exists W ∈ H2

h(Ω̃) such that

e−y·ω/hPh(ey·ω/hW ) = F

and h‖W‖H2
h(Ω̃) ≤ C‖F‖L2(Ω̃), where ‖W‖2

H2
h(Ω̃)

=
∑

|α|≤2 ‖(h∂)αW‖2
L2(Ω̃)

is the

semiclassical H2 norm.
This theorem will be needed below. Finding V of the form (3.2) is equivalent to

solving

e−y·(ω+iω⊥)/hPh(ey·(ω+iω⊥)/h(L̃ + R̃)) = 0 in Ω̃.

We can compute that

e−y·(ω+iω⊥)/hPhe
y·(ω+iω⊥)/h = hTω + Ph,

where Tω = 2(ω+iω⊥)·∇+(ω+iω⊥)·(Ã1, Ã2). Hence we want to find L̃, independent
of h, so that

(3.4) TωL̃ = 0 in Ω̃.

Equation (3.4) is a system of Cauchy–Riemann type. In fact, introducing the new
variable z = (z1, z2) = (ω + iω⊥) · y and setting Ã(ω, z) = (ω + iω⊥) · (Ã1, Ã2), (3.4)
becomes

(3.5) (4∂z̄ + Ã)L̃ = 0,

where ∂z̄ = (∂z1 + i∂z2)/2. The existence of nontrivial L̃ can be found in, for example,
[6], [8], and [23]. Having found L̃, R̃ is required to satisfy

(3.6) e−y·ω/hPh(ey·(ω+iω⊥)/hR̃) = −eiy·ω
⊥/hPhL̃.
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Note that ‖eiy·ω⊥/hPhL̃‖L2(Ω̃) = O(h2). Thus Theorem 3.1 implies that

(3.7) ‖eiy·ω⊥/hR̃‖H2
h(Ω̃) ≤ Ch,

which leads to

(3.8) ‖∂αR̃‖L2(Ω̃) ≤ Ch1−|α| for |α| ≤ 2.

Remark 3.2. The leading term L̃ of the CGO solution (3.2) is obtained by solving
(3.5). It is possible to solve (3.5) by an iteration scheme, which is numerically feasible.
Theorem 3.1 is a general theorem to guarantee the existence of the remainder term R̃
in (3.2). It may be a nontrivial task to actually find R̃ for general systems. However,
since R̃ is O(h) for small h, it could be omitted in numerical computations.

4. CGO solutions with general phases. In this section we will construct
CGO solutions with more general phases for (1.3) from CGO solutions with linear
phases given in the previous section. Without loss of generality, we choose ω = (1, 0)
and ω⊥ = (0, 1), i.e., y · (ω + iω⊥) = y1 + iy2. Denote y = y1 + iy2 and x = x1 + ix2.
Let Ω0 be an open subdomain of Ω. Suppose that A1, A2 ∈ C2(Ω̄0) and Q ∈ L∞(Ω0).
Let y = ρ(x) = y1(x1, x2) + iy2(x1, x2) be a conformal map in Ω0, i.e., ρ′(x) �= 0 for
all x ∈ Ω0. Define U(x) = V (y(x)) and Ω̃ = ρ(Ω0). By straightforward computations,
we have (

∂x1

∂x2

)
U = J(x)

(
∂y1

∂y2

)
V
∣∣∣
y=ρ(x)

and ΔxU = ΔyV |ρ′(x)|2,

where

J(x) =

(
∂x1

y1 ∂x1y2

∂x2y1 ∂x2y2

)
.

Suppose that ρ−1 exists on Ω̃. Let Â1(y) = (A1∂x1y1+A2∂x2y1)◦ρ−1(y), Â2(y) =
(A1∂x1

y2 + A2∂x2
y2) ◦ ρ−1(y), and Q̂(y) = (Q ◦ ρ−1)(y) and g(y) = |(ρ′ ◦ ρ−1)(y)|2.

Now if we choose V (y) satisfying

(4.1) ΔyV + g(y)−1Â1(y)∂y1V + g(y)−1Â2(y)∂y2V + g(y)−1Q̂V = 0 in Ω̃,

then U(x) satisfies (1.3) in Ω0. According to the construction given previously, let
V (y) be a solution of (4.1) having the form

V (y) = e(y1+iy2)/h(L̃ + R̃),

where

‖∂αR̃‖L2(Ω̃) ≤ Ch1−α ∀ |α| ≤ 2.

Denote y1(x1, x2) = ϕ(x1, x2) and y2(x1, x2) = ψ(x1, x2). We then obtain CGO solu-
tions for (1.3) in Ω0:

U(x) = e(ϕ+iψ)/h(L + R)

with L = L̃ ◦ ρ, R = R̃ ◦ ρ, and

(4.2) ‖∂αR‖L2(Ω0) ≤ Ch1−α ∀ |α| ≤ 2.
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Due to the conformality of ρ, ϕ and ψ are harmonic functions in Ω0. Conversely,
given any ϕ harmonic in Ω0 with ∇ϕ �= 0 in Ω0, we can find a harmonic conjugate ψ
of ϕ in Ω0 so that ρ = ϕ + iψ is conformal in Ω0. The freedom of choosing ϕ plays a
key role in our reconstruction method for the object identification problem. Actually,
we will mainly focus on the level curves of ϕ. We give some concrete examples here.

Pick a point x0 /∈ Ω̄. It is no restriction to assume that x0 = 0. We now consider
ϕN = Re(cNxN ) for N ≥ 2, where cN ∈ C with |cN | = 1. In the polar coordinates,
ϕN (r, θ) = rN cosN(θ− θN ) for some θN determined by cN . We observe that ϕN > 0
in some open cone ΓN with an opening angle π/N . The freedom of choosing θN (or,
equivalently, cN ) allows us to “sweep” the domain Ω by ΓN without moving the point
x0. This is quite useful in practice. Now assume that ΓN∩Ω �= ∅. The complex function
ρN (x) = cNxN = ϕN + iψN is clearly conformal in Ω, where ψN = Im(cNxN ). In
order to apply to the inverse problem, we want to shrink the opening angle of ΓN by
taking N → ∞. However, there are two serious problems in doing so. On one hand,
ϕN is periodic in the angular variable, which means that it is positive in some other
cones with the same opening angle which also intersect Ω when N is large. Some level
curves of ϕN for different N ’s are shown in Figure 4.1. This property of ϕN prohibits
us from using corresponding CGO solutions with large N to the object identification
problem. On the other hand, the complex function ρN (x) fails to be injective in the
whole domain Ω when N is large. To overcome those difficulties and construct useful
CGO solutions in the whole domain Ω, we shall carry out the construction described
above in a suitable Ω0 and extend the constructed solutions to Ω by cut-off functions.

N=4 N=6 N=8

Fig. 4.1. Some level curves of φN .

We now set

Ω0 := ΓN ∩ Ω.

Then ρN is conformal in Ω0 and is bijective from Ω0 onto ρN (Ω0). Therefore, we can
find CGO solutions for (1.3) in Ω0,

UN,h(x) = e(ϕN+iψN )/h(L + R),

and the estimate (4.2) holds. So far we have constructed only special solutions for
(1.3) in some particular subdomain of Ω. To get solutions in the whole domain Ω, we
use a cut-off technique. For s > 0, let �s = {x ∈ ΓN : ϕN = s−1}. This is the level
curve of ϕN in ΓN . Let 0 < t < t0 such that(

∪
s∈(0,t)

�s

)
∩ Ω �= ∅
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and choose a small ε > 0. Define a cut-off function φN,t(x) ∈ C∞(R2) so that

φN,t(x) = 1 for x ∈ (∪s∈(0,t+ε/2)�s) ∩ Ω and is zero for x ∈ Ω̄ \ (∪s∈(0,t+ε)�s). We
now define

UN,t,h(x) = φN,te
−t−1/hUN = φN,te

(ϕN−t−1+iψN )/h(L + R)

for x ∈ (∪s∈(0,t+ε)�s) ∩ Ω. So UN,t,h can be regarded as a function in Ω which is zero
outside of Ω0. We now take fN,t,h = UN,t,h|∂Ω. We remark that fN,t,h can be used as
the boundary data in the inverse problem. An obvious reason for using fN,t,h is that
they are local.

Now we define a function W := WN,t,h satisfying

(4.3)

{
ΔW + A1(x)∂x1

W + A2(x)∂x2
W + Q(x)W = 0 in Ω,

W = fN,t,h on ∂Ω.

We would like to compare WN,t,h with UN,t,h. It turns out they differ only by an
exponentially small term under some minor condition. This property plays an essential
role in our method for the inverse problem.

Lemma 4.1. Assume that the boundary value problem

(4.4)

{
PU = 0 in Ω,

U = 0 on ∂Ω

has only a trivial solution. Then there exist C > 0 and ε′ > 0 such that

(4.5) ‖WN,t,h − UN,t,h‖H2(Ω) ≤ Ce−ε′/h

for h � 1.
Proof. By setting G := WN,t,h − UN,t,h, we get that

PG = P (WN,t,h − UN,t,h)

= −φN,te
−t−1/hPUN + [φN,t, P ]e−t−1/hUN

= [φN,t, P ]e−t−1/hUN

= [φN,t, P ]e(ϕN−t−1+iψN )/h(L + R)

since PUN = 0 in (∪s∈(0,t0)�s) ∩ Ω. Now we observe that [φN,t, P ], the commutator
of φN,t and P , is a first order differential operator with coefficients supported in

(
∪

s∈(t+ε/2,t+ε)
�s

)
∩ Ω.

So we have that

(4.6) ‖[φN,t, P ]e(ϕN−t−1+iψN )/h(L + R)‖L2(Ω) ≤ C ′e−ε′/h

for some C ′ > 0 and ε′ > 0. Note that G = 0 on ∂Ω. Combining the regularity
theorem, the triviality of (4.4), and (4.6) yields (4.5).

Even though the solutions WN,t,h of (1.3) are not exactly in the form of complex
geometrical optics, with the help of Lemma 4.1, they are exponentially close to UN,t,h.
Now we describe how to construct special solutions for some concrete systems given
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in section 2 from WN,t,h. For the conductivity equation (2.1), (1.3) is reduced to (2.2).
For (2.2), we denote the corresponding UN,t,h = uN,t,h and

uN,t,h = φN,te
(ϕN−t−1+iψN )/h(1 + r),

where r satisfies (4.2). With uN,t,h, we can solve for wN,t,h satisfying

(4.7)

{
(Δ + q)w = 0 in Ω,

w = uN,t,h on ∂Ω.

The problem (4.7) has a unique solution since the boundary value problem for the
corresponding conductivity equation has a unique solution. So Lemma 4.1 implies
that

(4.8) ‖wN,t,h − uN,t,h‖H1(Ω) ≤ Ce−ε′/h.

Returning to the conductivity equation, we see that γ−1/2wN,t,h are solutions of (2.1).
For the isotropic elasticity and the Stokes system, we have that n = 3 and (1.3)

become, respectively, (2.7) and (2.10). We discuss only the isotropic elasticity here.
The Stokes system can be treated similarly. Assume that the homogeneous boundary
value problem (4.4) associated with (2.7) has only the trivial solution. Thus Lemma 4.1
yields

‖WN,t,h − UN,t,h‖H2(Ω) ≤ Ce−ε′/h.

We now express UN,t,h =
( vN,t,h

bN,t,h

)
and WN,t,h =

(wN,t,h
gN,t,h

)
, where vN,t,h, wN,t,h are

two-dimensional vectors and bN,t,h, gN,t,h are scalars. Hence, we obtain that

uN,t,h = μ−1/2wN,t,h + μ−1∇gN,t,h − gN,t,h∇μ−1

are solutions of (2.6) or (2.5) and uN,t,h satisfies

‖uN,t,h − (μ−1/2vN,t,h + μ−1∇bN,t,h − bN,t,h∇μ−1)‖H1(Ω) ≤ Ce−ε′/h.

5. Inverse problems. In this section we demonstrate how to use CGO solutions
constructed previously in the object identification problem. To simplify our presenta-
tion, we will discuss only the case of identifying inclusions inside of the domain Ω filled
with known conductivity. This inverse problem has been extensively studied both the-
oretically and numerically. We refer the reader to [10] for related references. Using
our method, we can also treat the object identification problem for other systems. We
shall report the results elsewhere.

Let D be an open bounded domain with C1 boundary such that D̄ ⊂ Ω and Ω\D̄
is connected. Assume γ(x) ∈ C2(Ω̄) with γ(x) > 0 for all x ∈ Ω̄. The conductivity γ̃(x)
is a perturbation of γ described by γ̃(x) = γ + χDγ1, where χD is the characteristic
function of D and γ1 ∈ C(D̄). We suppose that

(5.1) γ1 ≥ 0 in D and γ1 > 0 on ∂D.

Then we have γ̃(x) ≥ c > 0 almost everywhere in Ω. Let v be the solution of

(5.2)

{
∇ · (γ̃∇v) = 0 in Ω,

v = f on ∂Ω.
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The meaning of the solution to (5.2) is understood in the following way. Define

[w]∂D = tr+w − tr−w,

the jump of the function across ∂D, where tr+ and tr− denote, respectively, the trace
of w on ∂D from inside and outside of D. For f ∈ H3/2(∂Ω), we define

Vf =

{
w ∈ H2(D) ⊕H2(Ω \ D̄) : w|∂Ω = f, [w]∂D = 0,

[
γ̃
∂w

∂ν

]
∂D

= 0

}
.

We say that v is the solution of (5.2) if v ∈ Vf and ∇ · (γ̃v) = 0 in D and Ω \ D̄. The
Dirichlet-to-Neumann map is given as

ΛD : f → γ̃
∂v

∂ν

∣∣∣
∂Ω

,

where ν is the unit outer normal of ∂Ω. The inverse problem is to determine the
inclusion D from ΛD. Here we are interested in the reconstruction question.

Since our method shares the same spirit as Ikehata’s enclosure method [11], [12],
we will briefly describe Ikehata’s ideas to motivate our method. Here we take γ ≡ 1,
i.e., γ̃ = 1 + χDγ1. Denote

fω(x, τ, t) = exp{τ(x · ω − t) + iτx · ω⊥}

and

Iω(τ, t) = 〈(ΛD − Λ0)fω(·, τ, t), fω(·, τ, t)〉,

where Λ0 is the Dirichlet-to-Neumann map associated with Δu = 0 in Ω. Let us define

hD(ω) = sup
x∈D

x · ω.

Then the following formulas hold:{
t ∈ R : lim

τ→0
Iω(τ, t) = 0

}
= (hD(ω),∞)

and

lim
τ→∞

log |τω(τ, t)|
2τ

= hD(ω) − t ∀ t ∈ R

(see [11], [12]).
To describe our method, we begin with the following integral inequalities given

in [19] (also see [10] for a proof).
Lemma 5.1. Assume that (5.6) holds. Let f ∈ H3/2(∂Ω) and u be the unique

solution of

(5.3)

{
∇ · (γ∇u) = 0 in Ω,

u = f on ∂Ω.

Define Λ0 : f → γ ∂u
∂ν |∂Ω. Then we have

(5.4)

∫
∂Ω

(ΛD − Λ0)f̄ · fds ≤
∫
D

γ1|∇u|2dx
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and

(5.5)

∫
∂Ω

(ΛD − Λ0)f̄ · fds ≥
∫
D

γ1γ

γ + γ1
|∇u|2dx.

It follows from (5.1) that for any p ∈ ∂D, there exists an ε > 0 such that

(5.6) γ1 ≥ ε ∀ x ∈ D ∩Bε(p).

Let x0 /∈ Ω̄ and define the open cone ΓN with ΓN ∩ Ω �= ∅ in terms of ϕN =
Re(cN (x− x0)

N ) (ρN = cN (x− x0)
N ) as in Figure 4.1. Likewise, we denote the level

curve �s = {x ∈ ΓN : ϕN = s−1} for s > 0. For ε > 0 and t > 0, we take

(5.7) f = fN,t,h = γ−1/2wN,t,h|∂Ω = γ−1/2uN,t,h|∂Ω,

where wN,t,h and uN,t,h are constructed previously. Note that γ−1/2wN,t,h is the
solution of (5.3). It should be noted that the Dirichlet condition f is localized in
ΓN ∩ ∂Ω and supp (f) becomes narrower as N gets bigger. This property is very
useful in actual applications.

To construct the inclusion D, we rely on the quantity

(5.8) E(N, t, h) :=

∫
∂Ω

(ΛD − Λ0)f̄N,t,h · fN,t,hds.

Clearly, this quantity is completely determined by the boundary data. From (5.1) and
(5.5) we see that

E(N, t, h) ≥
∫
D

γ1γ

γ + γ1
|∇(γ−1/2wN,t,h)|2dx ≥ 0

for all N, t, h. We now prove the following important behavior of E(N, t, h).
Theorem 5.2. Let t > 0 and Lt = {x ∈ ΓN : ϕN ≥ t−1}. Then we have the

following:
(i) if Lt ∩ D̄ = ∅, then there exist C1 > 0, ε1 > 0, and h1 > 0 such that

E(N, t, h) ≤ C1e
−ε1/h for all h ≤ h1;

(ii) if Lt ∩ D �= ∅, then there exist C2 > 0, ε2 > 0, and h2 > 0 such that
E(N, t, h) ≥ C2e

ε2/h for all h ≤ h2.
Proof. To prove (i), we use the inequality (5.4) to obtain

(5.9) E(N, t, h) ≤
∫
D

γ1|∇(γ−1/2wN,t,h)|2dx ≤ C‖wN,t,h‖2
H1(D).

With the help of (4.8), we can replace wN,t,h in (5.9) by uN,t,h with an error O(e−ε′/h).
Since Lt∩ D̄ = ∅, we have ϕN − t−1 < 0 for all x ∈ D̄∩ΓN . Also, note that uN,t,h ≡ 0
in Ω \ ΓN . Therefore, by the form of uN,t,h we immediately derive that

E(N, t, h) ≤ Ce−ε1/h

for h ≤ h1.
To establish (ii), in view of Lt ∩D �= ∅, there exist z ∈ ∂D and ε > 0 such that

the jump condition (5.6) holds and

(5.10) ϕN − t−1 ≥ ε ∀ Bε(z) ∩D.
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From (5.5) we get

E(N, t, h) ≥
∫
D

γ1γ

γ + γ1
|∇(γ−1/2wN,t,h)|2dx

≥ Cε

∫
D∩Bε(z)

(|∇wN,t,h|2 + |wN,t,h|2)dx

≥ C ′
∫
D∩Bε(z)

(|∇uN,t,h|2 + |uN,t,h|2)dx− C ′′e−ε′/h.(5.11)

Substituting the form of uN,t,h with the estimate (5.10) into (5.11) implies the state-
ment of (ii).

Theorem 5.3. With the same notation as in Theorem 5.2, if �t ∩ ∂D �= ∅ and
Lt ∩D = ∅, then

lim inf
h→0

E(N, t, h) > 0.

Recall that �t = {x ∈ ΓN : ϕN = t−1}.
Proof. In view of (5.6), we pick a sufficiently small ε > 0 such that (5.6) is satisfied

in Bε(p) ∩D and Bε(p) ∩D ⊂ (∪s∈(t,t+ε/2)�s) ∩D. So the cut-off function φN,t = 1
on Bε(p)∩D. We now introduce a new coordinate system Ψ(x) = (y1(x), y2(x)) near
p with y2(x) = ϕN − t−1 such that �t becomes y2 = 0 near p and D̃ε := Ψ(Bε(p)∩D)
lies in {y2 < 0}. We can choose a small cone Cp in D̃ε with vertex p and the length
of the axis being δ. Denote J(y) the Jacobian of Ψ−1(y). Therefore, using (5.11) we
can estimate

E(N, t, h)

≥ C ′
∫
D∩Bε(p)

(|∇uN,t,h|2 + |uN,t,h|2)dx− C ′′e−ε′/h

≥ C ′
∫
D∩Bε(p)

(|∇(e(ϕN−t−1+iψN )/h(1 + r))|2 + |e(ϕN−t−1+iψN )/h(1 + r)|2)dx

−C ′′e−ε′/h

≥ C̃

h2

∫
Cp

e2y2/h|J |dy1dy2 − C ′′e−ε′/h

≥ C̃ ′

h2

∫ 0

−δ

e2y2/hy2dy2 − C ′′e−ε′/h

> 0 as h → 0.

In view of Theorems 5.2 and 5.3, we are able to reconstruct some part of ∂D by
looking into the asymptotic behavior of E(N, t, h) for various t’s. More precisely, let

tD,N := sup

{
t ∈ (0,∞) : lim

h→0
E(N,h, t) = 0

}
;

then if tD,N = ∞, we have ΓN ∩D = ∅. On the other hand, if tD,N < ∞, then there
exists a pD,N ∈ �tD,N

∩ ∂D.
By taking N arbitrarily large (the opening angle of ΓN becomes arbitrarily small),

we can reconstruct even more information of ∂D. A point p on ∂D is said to be
detectable if there exists a half-line l starting from p such that l does not intersect ∂D
except at p. For example, if D is star-shaped, every point of ∂D is detectable.
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Corollary 5.4. Every detectable point of ∂D can be reconstructed from ΛD.

Proof. Let p be a detectable point and l be the corresponding half-line. We can
choose l which is not tangent to ∂D at p since if the chosen half-line, say l′, is tangent
to ∂D at p, we can always choose a desired l by perturbing l′ a little bit. Assume that
z0 ∈ l and z0 �= p. Let L be the straight line containing l. Pick a point x0 ∈ L with
x0−p
|x0−p| = − z0−p

|z0−p| and x0 /∈ Ω̄. Let ΓN be the cone with axis L and vertex x0 whose

opening angle is π/N . For any N ∈ N, we construct wN,t,h, uN,t,h, and fN,t,h as above.
So we can determine E(N, t, h) from the measurement ΛDfN,t,h. Applying Theorems
5.2 and 5.3, we can determine tD,N so that �tD,N

∩∂D �= ∅. Then there exists pN ∈ ΓN ,
and �tD,N

∩ ∂D = pN . By taking N → ∞, we can see that pN → p.

To end this section, we give an algorithm of our reconstruction method based on
Theorem 5.2.

Step 1. Pick a point x0 /∈ Ω̄ (but close to Ω̄). Given N ∈ N, choose the cone ΓN which
intersects Ω. [ΓN is defined in section 4]

Step 2. Start with t > 0 such that �t ∩ Ω �= ∅. Construct uN,t,h and determine the
Dirichlet data fN,t,h = γ−1/2uN,t,h|∂Ω. [(5.7)]

Step 3. Compute E(N, t, h) =
∫
supp (fN,t,h)

(ΛD − Λ0)f̄N,t,h · fN,t,hds. [(5.8)]

Step 4. If E(N, t, h) is arbitrarily small, then increase t and repeat Steps 2 and 3;
if E(N, t, h) is arbitrarily large, then decrease t and repeat Steps 2 and 3.
[Theorem 5.2]

Step 5. Repeat Step 4 to get a good approximation of ∂D in ΓN . [Theorem 5.2]
Step 6. Move the cone ΓN around x0 by taking a different cN in ϕN = Re(cNxN ).

Repeat Steps 2–5.
Step 7. Choose a larger N and a new cone ΓN . Repeat Steps 2–6.
Step 8. Pick a different x0 and repeat Steps 1–7.

6. Numerical results. We demonstrate some numerical results of our method
in this section. Assume that the domain Ω is given by

Ω = {(x1, x2) : −1 < x1 < 1,−1.01 < x2 < −0.1}.

We shall use the Dirichlet data localized on {(x1,−1.01) : −1 < x < 1}. To set up
ρN (x), we consider N = 4; i.e., the phase function of the CGO solution is ρ(x) :=
ρ4(x). In our numerical computations, we use two sweeping schemes. In the first
scheme, we fix the reference point x0 and rotate the “probing cone” (the cone with
the vertex at x0 and the opening angle π/4). For the second one, we do not rotate the
probing cone but move the reference points along the x-axis. More precisely, let the
reference point x0 = (x0,1, 0) for −1 < x0,1 < 1. In our first scheme, we fix x0 = (0, 0)
and rotate the probing cone determined by the shifted angle θ; in the second scheme,
we consider different x0’s and choose θ = 0. In other words, for both schemes, we have

ρ(x, x0, θ) := c(θ)(x1 − x0,1 + ix2)
4 = e−i4θ(x1 − x0,1 + ix2)

4.

Thus, the probing fronts are level curves of ϕ(x, x0, θ) := Re(ρ(x, x0, θ)). Figure 6.1
shows some probing fronts of ϕ(x, x0, θ) with three different θ’s and three x0’s, re-
spectively.

We take the background conductivity γ = 1, and the conductivity inside the
inclusion is 4, i.e, γ1 = 3. For numerical experiments, we ignore the cut-off function
and take
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Fig. 6.1. Probing fronts of our numerical method. In the first column, we consider the probing
cone in three different angles. In the second column, we move the probing cone by taking three
reference points. In our numerical method, we use 10 different probing cones.

gx0,h|∂Ω =

{
eρ(x,x0,θ)/h for (x1, x2) ∈ ∂Ωobs,

0, ∂Ω \ ∂Ωobs,

where ∂Ωobs is determined by x0 and θ. For example, for x0 = (0, 0) and θ = 0,

∂Ωobs =
{

(x1, x2) : −1.01 × tan
(π

8

)
< x1 < 1.01 × tan

(π
8

)
, x2 = −1.01

}
.

Then for t > 0 the required Dirichlet data is given by f = ft,h,x0
= e−t−1/hgx0,h. To

get the synthetic data Λ0f and ΛDf , we need to solve the boundary value problems
(5.2) and (5.3) with the Dirichlet condition f . To solve these forward problems, we
use the PDE Toolbox with the finite element method in MATLAB 7.0. Since we need
to collect data on the bottom boundary of Ω, we refine the mesh there; see Figure 6.2.

Fig. 6.2. Example of our finite element method meshes. The mesh has 2m +1 nodes on the top
boundary and 2n + 1 nodes on the lower boundary. This example is created with m = 4, n = 6. In
solving our forward problems, we choose m = 6, n = 12.

To show the effect of noise to our method, we add appropriate noise to the syn-
thetic data. We consider the form of noise given in [10]. To be precise, let η : [−1, 1] �→
C be a random function defined by

η(s) =
32∑

k=−32

(ak + ibk)e
iksπ/2,

where ak, bk ∼ N (0, 1) are normally distributed random numbers. The number 32 in
η is chosen to roughly model a collection of 32 electrodes on the bottom boundary of
Ω. Measurement noise is modeled by ΛDf by ΛDf + cη with

c =
A‖ΛDf‖∞

‖η‖∞
,

where A > 0.
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Our strategy of reconstructing the inclusion is described as follows. We first design
M probing cones which are forms by taking either M different vertex points or M
different rotating angles. Recall that each cone is congruent to the cone with its vertex
at the origin and opening angle π/4. We then take appropriate h1 and h2 with h1 > h2

and choose a suitable number of probing fronts determined by tj for j = 1, . . . , J with
tj < tj+1. In each probing cone Γm (m = 1, . . . ,M) given above, we construct the
Dirichlet data f supported in the intersection of Γm and the bottom boundary of ∂Ω
for every hk and tj , k = 1, 2, j = 1, . . . , J . We now evaluate Ej,k := E(N, tj , hk) and
determine tn such that

(6.1) En+1,2 > En+1,1.

Then the region Rm defined by

Rm = {x ∈ Γm : ϕ(x, x0, θ) ≤ t−1
n }

is the estimated largest region in Γm which does not contain the inclusion. So the
region R := ∪M

m=1Rm is the estimated largest region with the absence of the inclusion
with a given sweeping scheme. We would like to point out that condition (6.1) is our
rule of thumb in determining whether the level curve ϕ(x, x0, θ) = t−1 intersects the
inclusion in our numerical experiments. It is not equivalent to Theorem 5.2 but is based
on the reasoning that E(N, t, h) is exponentially decaying when ϕ(x, x0, θ) = t−1 stays
away from the inclusion and exponentially growing when ϕ(x, x0, θ) = t−1 intersects
the inclusion. A similar idea was also used in [10].

Our numerical results for each sweeping scheme are shown in Figures 6.3 and 6.4.
To save computational time, we show only numerical results obtained from probing

Fig. 6.3. Numerical results of the first sweeping scheme. All black regions have the conduc-
tivity 4, and all gray regions have conductivity 1. So the gray regions represent the inclusion-free
regions. The first column represents the actual location of inclusions. The second column is the the-
oretical reconstruction when we probe the region only from the bottom. The third column represents
the numerical reconstruction from noiseless synthetic data. The fourth column is the numerical re-
construction from data with 0.01% noise. To see the effectiveness of our method, we can compare
the images in the third column or in the fourth column with those in the second column.
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Fig. 6.4. Numerical results of the second sweeping scheme. All black regions have the conduc-
tivity 4, and all gray regions have conductivity 1. So the gray regions represent the inclusion-free
regions. The first column represents the actual location of inclusions. The second column is the the-
oretical reconstruction when we probe the region only from the bottom. The third column represents
the numerical reconstruction from noiseless synthetic data. The fourth column is the numerical re-
construction from data with 0.01% noise. To see the effectiveness of our method, we can compare
the images in the third column or in the fourth column with those in the second column.

the region from one side (the bottom part of the boundary). Therefore, the inclusion-
free region (with gray color) is near the bottom of the boundary. Since our domain is
a rectangle, we can expect to obtain similar results when we probe the region from
other sides. We believe that these numerical results are sufficient to demonstrate the
applicability of our method.

7. Conclusion. In this work we present a framework of constructing special
complex geometrical optics solutions for several systems of two variables that can be
reduced to a system with the Laplacian as the leading term. Here we choose complex
polynomials as phase functions. Using these special solutions, we design a novel al-
gorithm to identify embedded objects with boundary measurements. One distinctive
feature of our method is that we can probe the region using cones with as small an
opening angle as we wish. Theoretically, we are able to reconstruct the exact geom-
etry of the embedded object whose boundary points are all detectable. One typical
example is the star-shaped object.

In the numerical experiments, we consider the case of inclusion embedded into a
domain with homogeneous conductivity. The numerical results show that our method
detects the location of inclusion quite well and is stable under measurements with
(small) noise. For computational reasons, we consider only N = 4 and use two sweep-
ing schemes separately. It is quite natural to consider higher N ’s and also combine
two sweeping schemes into one. Of course, by doing so, we need to pay the price of
increasing computational time.

Our method can be applied to classes of equations or even systems in two dimen-
sions that can be reduced to the Laplacian on the top order part. Its flexibility and
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effectiveness gives us another technique that can potentially be used in real applica-
tions such as medical imaging or nondestructive evaluation.
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