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Abstract

The main interest of prediction intervals lies in the results of a future sample from a previously sampled population. In this article,
we develop procedures for the prediction intervals which contain all of a fixed number of future observations for general balanced
linear random models. Two methods based on the concept of a generalized pivotal quantity (GPQ) and one based on ANOVA
estimators are presented. A simulation study using the balanced one-way random model is conducted to evaluate the proposed
methods. It is shown that one of the two GPQ-based and the ANOVA-based methods are computationally more efficient and they
also successfully maintain the simulated coverage probabilities close to the nominal confidence level. Hence, they are recommended
for practical use. In addition, one example is given to illustrate the applicability of the recommended methods.
© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Prediction is one of the most important statistical inferences. A statistical interval which contains the values of a
specified number of future observations with a fixed level of confidence is known as a prediction interval. There are
meaningful applications for such intervals in various practical problems arising in quality control, industrial production
process, environmental monitoring, and many other areas. For example, a manufacturer may wish to establish an
interval that, with a high degree of confidence, will contain the performance values for some future units of a particular
type of product, based on the observed performance of similar past units (Hahn and Meeker, 1991). In the development
of environmental monitoring procedures, the simultaneous prediction interval approach is often interesting to many
investigators and governmental regulation agencies (Davis and McNichols, 1987, and references cited therein).

Despite their practical importance, prediction intervals have received only limited attention in standard textbooks,
primarily in the context of regression problems. The reader may refer to the book by Miller (1981). The most basic
problem of computing prediction intervals is for the simple univariate normal distribution and this has been extensively
studied in the literature. Typically, there are two types of prediction intervals discussed. One is to contain all the specified
number of future observations, say m, e.g., see Chew (1968) and Hahn (1969, 1970). The other is to contain at least k
out of m future observations, e.g., see Hall and Prairie (1973), Fertig and Mann (1977) and Odeh (1990). Additional
work on simultaneous prediction intervals can be found in Chou and Owen (1986) and Davis and McNichols (1987).
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An excellent review of construction and application of such prediction intervals with other univariate distributions like
lognormal, exponential and Weibull can be found in Hahn and Meeker (1991).

For more complex situations, to the best of our knowledge, very little work has been done on prediction intervals.
Only Wang (1992) considers the balanced one-way random model and provides good approximate prediction intervals.
In the same article, he specifically imposes a certain structure on the covariance matrix of the future observations to
avoid complex computations required by his method. In particular, he takes into account only two special cases, one
in which future observations are restricted to be from a single batch, and another involving multiple batches, but with
exactly one observation per batch.

In this article, we generalize the problem as follows. We seek prediction intervals which contain all the m future
observations for general balanced linear random models. Our procedures are developed mainly based on the concept
of a generalized pivotal quantity (GPQ), which has been frequently used to obtain confidence intervals in situations
where conventional methods are difficult to apply or fail to provide good solutions. The GPQ and its counterpart
generalized test variable are introduced by Weerahandi (1993) and Tsui and Weerahandi (1989), respectively. The
resulting generalized confidence interval (GCI) and generalized p-value are now available in the literature for many
applications. See, for instance, Weerahandi (1995), Khuri et al. (1998), Hamada and Weerahandi (2000), Liao and Iyer
(2004), Iyer et al. (2004), Liao et al. (2005), Mathew and Webb (2005), Lin and Liao (2006), Lin et al. (2007) and
Burch (2007). The current study focuses on prediction intervals rather than confidence intervals.

The rest of this article is organized as follows. Section 2 introduces the definitions of the prediction interval of interest
and GPQ. Section 3 proposes methods for constructing prediction intervals for general balanced linear random models
and contains an exploratory simulation study to compare the performance of the proposed methods. Based on the results
of this study one GPQ-based and one ANOVA-based methods are recommended for practical use. Section 4 gives an
example to illustrate the applicability of the recommended methods. A more detailed simulation study is conducted to
further evaluate their performance in Section 5. Discussion and final remarks are provided in the last section.

2. Preliminaries

In this section, we formally define the prediction interval of interest and review the concept of a GPQ.
A prediction interval can be defined and interpreted as follows. Let Y1, Y2, . . . , Yn be an observed (past) random

sample from a distribution F. Consider two statistics L(Y)=L(Y1, Y2, . . . , Yn) and U(Y)=U(Y1, Y2, . . . , Yn) satisfying
L(Y) < U(Y) with probability one. Moreover, let Y �

1 , Y �
2 , . . . , Y �

m be a future random sample from the same distribution
F. It is assumed that the future sample is drawn independently of the past sample. An interval [L(Y), U(Y)] is said to
be a two-sided 100�% prediction interval containing all the m future observations Y �

1 , Y �
2 , . . . , Y �

m if

Pr[L(Y) < Y �
i < U(Y); i = 1, 2, . . . , m] = �,

where � is called the prediction probability. One can assert that a 100�% prediction interval procedure, in the long run,
will be correct 100�% of times in claiming that all the m future observations will be contained within the prediction
interval. The corresponding one-sided prediction interval can be defined in a same manner.

Let y be the realized value of the observable random vector Y and � be the vector of model parameters. Furthermore, let
� be a function of � for which a confidence interval is sought. According to Weerahandi (1993), a function R=r(Y; y, �)

of Y, y and � is called a GPQ for � if it satisfies the following two conditions:

(i) R has a probability distribution that is free of unknown parameters.
(ii) The observed R, namely r = R(y; y, �), depends on � only through �. Namely, r is only a function of (y, �).

A two-sided equal tailed generalized (1 − �)-confidence interval for � is given by {� : R�/2 �r �R1−�/2}, where R�
is the (100�)th percentile of the distribution of R. The required percentiles of R can be estimated using Monte-Carlo
sampling. Specifically, if the observed quantity r = �, then the GPQ is called the fiducial GPQ and the GCI based on
such GPQs, under some mild conditions, are proven to have asymptotically correct frequentist coverage probability
(Hanning et al., 2006). Since the observed quantity r = �, a location estimate such as the mean or median of a Monte
Carlo sampling distribution of the fiducial GPQ should serve as a reasonable point estimate for �. Liao et al. (2005)
use the median for such an application of fiducial GPQs in construction of tolerance intervals. In the current study, the
proposed GPQ-based methods for the prediction intervals are also based on this concept.
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3. Proposed prediction interval methods

In this study, we restrict ourselves to general balanced linear random effects models and are interested in prediction
intervals which contain all the m future observations for a pre-specified value m. Following the textbook of Graybill
(1976), a general linear random model with balanced data can be described as follows:

Y = 1n� +
r∑

i=1

Xi�i + ε, (3.1)

where Y is an n × 1 observable random vector; � is the overall mean; and 1n is the vector of length n with all entries
equal to 1; �i is a random vector and Xi is a Kronecker product of identity matrices and the vectors with all entries equal
to 1. Moreover, it is assumed that the random error ε and the random effects �1, �2, . . . , �r are pairwise uncorrelated,
ε follows a normal distribution N(0n, �2

eIn) and �i also follows a normal distribution N(0qi
, �2

i Iqi
), for i = 1, 2, . . . , r .

Here 0n and In denote the zero vector of length n and the identity matrix of order n, respectively, and qi denotes the
number of levels of �i . For convenience, let �2

r+1 denote �2
e . Then, the observable total sum of squares for the model

can always be partitioned into quadratic forms Y′AiY such that

(1) Ui = S2
i /�2

i = Y′AiY/�2
i is distributed as �2

fi
, for i = 1, 2, . . . , r + 1, where �2

i are linear combinations of

�2
1, �

2
2, . . . , �

2
r+1; matrices A1, A2, . . . , Ar+1 are nonnegative definite; and �2

fi
denotes the chi-squared distribution

with degrees of freedom fi ;
(2) U0 = (Y − �)2/	2 is distributed as �2

1, where Y denotes the sample mean of the data and 	2 denotes the variance
of Y ; and

(3) U0, U1, . . . , Ur+1 are jointly independent.

Notice that Y , S2
1 , S2

2 , . . . , S2
r+1 are complete sufficient statistics for a general balanced linear random model. Also,

there is a one-to-one relationship between (�2
1, �

2
2, . . . , �

2
r+1) and (�2

1, �
2
2, . . . ,�

2
r+1), namely, there exist constants

cij such that �2
i = ∑r+1

j=1cij�
2
j , i = 1, 2, . . . , r + 1, for a balanced linear random model.

We seek a two-sided prediction interval with prediction probability � to contain all the m future observations
Y �

1 , Y �
2 , . . . , Y �

m, based on the n original observations Y. In particular, we seek a prediction interval of the form

Pr[Y − D < Y�
i < Y + D; i = 1, 2, . . . , m] = �, (3.2)

where Y is the sample mean of the original observations and D is the margin of error that needs to be determined.
Expression (3.2) can be rewritten as

Pr[−D < Y�
i − Y < D; i = 1, 2, . . . , m] = �. (3.3)

The original n observations Y1, Y2, . . . , Yn and the additional m future observations Y �
1 , Y �

2 , . . . , Y �
m are assumed to be

independent. Also, they are all sampled from the same random model. Let Y� = (Y �
1 , Y �

2 , . . . , Y �
m)′. From model (3.1),

we have Y� ∼ N(�1m, ��), where �� denotes the covariance matrix of Y� that is a function of the variance components.
Also let Y ∼ N(�, 	2). It follows that

�̂ = Y� − Y1m ∼ N(0, �), (3.4)

where � = �� + 	2Jm. Here Jm is a square matrix of order m with all entries equal to 1.
First, suppose � is known. From (3.3) and (3.4), the problem under consideration reduces to finding a margin error

D satisfying

� =
∫ D

−D

∫ D

−D

· · ·
∫ D

−D

f (�̂) d�̂ =
∫ D

−D

∫ D

−D

· · ·
∫ D

−D

(2
)−m/2|�|−1/2e−(1/2)t′�t dt1 dt2 . . . dtm,

where f (�̂) is the joint density function of �̂. Equivalently, D can be represented as �−1
1+�/2(0m, �), the (100 1+�

2 )th
“percentile” of the multivariate normal cdf with mean 0m and covariance matrix �, denoted by �(0m, �).
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Then the interval

Y ± �−1
1+�

2

(0m, �) (3.5)

is the required two-sided prediction interval. However, the two-sided equi-coordinate critical point D depends upon
the covariance matrix � which is a function of unknown variance components �2

1, �
2
2, . . . , �

2
r+1. A natural approach

is to replace � by a suitable estimate of it and then compute D treating � as known. Still, the numerical difficulty of
working with the multivariate normal probability integral to find D needs to be overcome. We shall use the numerical
method and the computer program provided by Genz (1999) to resolve this problem.

We now present three different methods for obtaining the critical value D.

3.1. Method I

It may be reasonable to estimate D by the median of the distribution of a GPQ for D, i.e., a GPQ of �−1
1+�

2

(0m, �). For

this, we first need to obtain GPQs for the variance components �2
1, �

2
2, . . . , �

2
r+1. This can be done as follows. GPQs

for �2
1, �

2
2, . . . ,�

2
r+1 are given by

R�2
i
= s2

i

Ui

= �2
i s

2
i

S2
i

, i = 1, 2, . . . , r + 1, (3.6)

where s2
1 , s2

2 , . . . , s2
r+1 denote the observed values of S2

1 , S2
2 , . . . , S2

r+1. Hence,

R�2
i
=

r+1∑
j=1

cijR�2
j
, i = 1, 2, . . . , r + 1. (3.7)

From the first expression of (3.6), R�2
i

has distribution that is free of model parameters. When s2
1 , s2

2 , . . . , s2
r+1 are

substituted for the observable random variables S2
1 , S2

2 , . . . , S2
r+1 in the second expression of (3.6), R�2

i
become �2

i .

Hence R�2
i

and R�2
i

fulfill the requirements for being GPQs for �2
i and �2

i , respectively. Similarly, we subsequently
substitute R� in �(0m, �) so as to obtain the GPQ R�(0m,�) given by

R�(0m,�) = �(0m, R�). (3.8)

Consequently, the required median of the distribution of the GPQ of �−1
1+�

2

(0m, �) may be estimated using the

following Monte Carlo algorithm.
Step 1: Choose a large simulation sample size, say K = 10, 000. For k equal to 1 through K, carry out the following
steps.
Step 2: Generate mutually independent chi-squared random deviates U1,k, U2,k, . . . , Ur+1,k with f1, f2, . . . , fr+1
degrees of freedom, respectively.
Step 3: Calculate R�2

i ,k
using (3.6) for i = 1, 2, . . . , r + 1.

Step 4: Calculate R�2
i ,k

using (3.7) for i = 1, 2, . . . , r + 1.
Step 5: Calculate R�,k from substituting R�2

i ,k
of Step 4 in �.

Step 6: Applying the numerical method of Genz (1999), calculate the percentile R�−1
1+�

2

(0m,�),k
using (3.8).

D is estimated by the median of the K = 10, 000 realizations of R�−1
1+�

2

(0m,�),k
generated from Step 6, because the

distribution of the realizations appears to be skewed.

Remark. The above procedure is computationally intensive. In particular, the need for calculating D, a large number
of times using the code of Genz (1999) in Step 6 imposes a severe computational burden. Hence there is a need to
develop some other practical alternatives. The following two plug-in methods use estimates of the variance components
in � so as to save much computing time.
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3.2. Method II

ANOVA estimates of �2
1, �

2
2, . . . , �

2
r+1 are natural candidates for use in estimating �. Then �−1

1+�
2

(0m, �) can be

estimated by the corresponding percentile of the resulting �(0m, �̂) using Genz (1999) method, treating �̂ as known.
However, the coverage probability is anticipated to be not sufficient based on the multivariate normal distribution for
the small sample sizes, because the uncertainty in the ANOVA estimator is not incorporated. Therefore, we consider
replacing the multivariate normal distribution with a multivariate t distribution here. The two-sided prediction interval
in (3.5) is thus adapted to be

Y ± T −1
1+�

2

(�̂, �), (3.9)

where T −1
1+�

2

(�̂, �) is the (100 1+�
2 )th “percentile” of the multivariate t cdf with covariance matrix �̂ and degrees of

freedom �, denoted by T (�̂, �). Note that � is determined by the Satterthwaite (1946) approximation and the required
percentile of the multivariate t cdf is obtained from the algorithm presented in Genz and Bretz (2002). It is interesting
to point out that the resulting interval for the specific case of univariate normal distribution using this method is reduced
to the exact prediction interval.

3.3. Method III

A GPQ-based method is also considered. We use the same Monte Carlo algorithm of Steps 1–5 of Method I to
generate K = 10, 000 realizations of R�,k . Then � is replaced with �̂ which is taken to be the average

∑K
k=1 R�,k/K ,

because the median is not well defined for a matrix of random variables. Then �−1
1+�

2

(0m, �) is computed using the

resulting �(0m, �̂) in Genz (1999) method, treating �̂ as known.
The following simulation study is conducted to explore the performance of the proposed methods. Consider the

balanced one-way random model given by

Yij = � + �i + eij (3.10)

for i = 1, 2, . . . , a, j = 1, 2, . . . , b, where � is the constant term, �i the batch effects and eij the measurement errors.
We suppose �i and eij are random effects that are normally distributed with means 0 and variances equal to �2

� and
�2

e , respectively. Also, let � = �2
�/(�

2
� + �2

e) denote the intraclass correlation coefficient. Using the notation described
earlier, let �2

1 = b�2
� + �2

e , �2
2 = �2

e , S2
1 = SSA (sum of square between batches) with S2

1/�2
1 ∼ �2

a−1 and S2
2 = SSE

(error sum of square) with S2
2/�2

2 ∼ �2
a(b−1).

First, we choose � = 0.95, �2
� = 1.0 and let � take values from 0.1 through 0.9 in increments of 0.2. For each fixed

past sample (fixed a, b and n = ab) and a given parameter combination, the observed data (ȳ, ssa, sse) are generated
according to Y ∼ N(0, (b�2

� + �2
e)/n), SSA ∼ (b�2

� + �2
e)�

2
a−1 and SSE ∼ �2

e�
2
n−a . The value of � is set to 0 without

any loss in generality. Then, we repeat the procedure 10,000 times for the setting. For prediction, we consider m=a�b�

future observations, where a� and b� separately denote the number of batches and the number of observations within
each single batch, respectively. Hence, the covariance matrix of Y� is given by �� =�2

�(Ia� ⊗Jb�)+�2
e(Ia� ⊗Ib�), where

⊗ denotes the Kronecker product of matrices. Note that �� = (Ia� ⊗ Jb�) + ((1 − �)/�)(Ia� ⊗ Ib�) in the setting. The
future observations are thus generated according to the specified N(0m, ��). For each of the three proposed methods,
the percentage of the 10,000 simulation runs where the computed prediction interval contains all m future samples and
the average length of the interval are recorded. Table 1 displays the simulation results.

From Table 1, Method I appears to be liberal in all the cases of a�9. When a = 3, Method II is slightly liberal
especially when the value of � gets large. On the other hand, Method III appears to be conservative for these cases.
For a�5, both Methods II and III are quite successful in maintaining the simulated confidence levels close to the
nominal value � = 0.95 and provide reasonable expected lengths. For the large sample size of a = 25, all the three
methods perform equally well. In general, Methods II and III have better performance than Method I. Also Method I
is computationally inefficient. Hence we recommend Methods II and III for practical use.
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Table 1
Simulated confidence coefficients (×104) and expected lengths (in the parentheses) for 95% two-sided prediction intervals

a b a� b� Method �

0.1 0.3 0.5 0.7 0.9

3 2 1 2 I 9223 (18.14) 9178 (10.48) 9106 (8.06) 9019 (6.64) 8795 (5.60)
II 9470 (22.15) 9456 (13.57) 9415 (11.21) 9421 (10.24) 9335 (9.85)
III 9915 (41.71) 9893 (25.09) 9898 (20.40) 9886 (17.54) 9825 (15.87)

3 2 2 1 I 9343 (18.76) 9176 (10.78) 9146 (8.37) 8899 (6.93) 8512 (5.94)
II 9567 (23.28) 9448 (14.31) 9432 (12.11) 9322 (11.27) 9231 (11.31)
III 9932 (44.07) 9900 (26.29) 9892 (21.80) 9847 (19.02) 9772 (17.54)

5 2 1 2 I 9377 (16.30) 9334 (9.42) 9302 (7.25) 9220 (5.98) 9088 (5.04)
II 9510 (17.47) 9491 (10.30) 9493 (8.19) 9458 (7.07) 9485 (6.38)
III 9693 (19.46) 9673 (11.35) 9658 (8.84) 9600 (7.41) 9542 (6.39)

5 2 2 1 I 9421 (16.58) 9359 (9.62) 9241 (7.40) 9132 (6.17) 8922 (5.38)
II 9544 (17.78) 9493 (10.59) 9443 (8.46) 9422 (7.47) 9394 (7.10)
III 9704 (19.72) 9689 (11.58) 9624 (9.04) 9564 (7.69) 9440 (6.86)

7 2 1 2 I 9422 (15.71) 9375 (9.02) 9353 (6.88) 9298 (5.74) 9296 (4.86)
II 9508 (16.34) 9479 (9.50) 9495 (7.40) 9489 (6.36) 9568 (5.62)
III 9625 (17.31) 9593 (9.99) 9589 (7.67) 9565 (6.47) 9572 (5.55)

7 2 2 1 I 9421 (15.82) 9333 (9.12) 9354 (7.07) 9236 (5.92) 9100 (5.13)
II 9510 (16.45) 9452 (9.64) 9503 (7.67) 9483 (6.66) 9464 (6.10)
III 9631 (17.38) 9578 (10.08) 9582 (7.88) 9538 (6.68) 9437 (5.88)

9 2 1 2 I 9428 (15.31) 9415 (8.81) 9377 (6.75) 9354 (5.60) 9238 (4.75)
II 9474 (15.72) 9489 (9.14) 9482 (7.12) 9488 (6.04) 9467 (5.28)
III 9582 (16.35) 9580 (9.45) 9540 (7.28) 9529 (6.08) 9464 (5.21)

9 2 2 1 I 9417 (15.44) 9418 (8.94) 9374 (6.88) 9310 (5.78) 9160 (5.05)
II 9473 (15.84) 9500 (9.28) 9500 (7.29) 9484 (6.29) 9474 (5.74)
III 9574 (16.45) 9593 (9.57) 9556 (7.41) 9505 (6.28) 9431 (5.56)

25 2 1 2 I 9466 (14.52) 9484 (8.39) 9442 (6.43) 9428 (5.35) 9429 (4.56)
II 9489 (14.62) 9507 (8.47) 9478 (6.53) 9495 (5.48) 9500 (4.72)
III 9524 (14.79) 9533 (8.55) 9501 (6.57) 9495 (5.48) 9488 (4.69)

25 2 2 1 I 9506 (14.58) 9465 (8.43) 9407 (6.52) 9449 (5.50) 9438 (4.84)
II 9518 (14.66) 9492 (8.51) 9453 (6.63) 9505 (5.65) 9556 (5.04)
III 9547 (14.82) 9515 (8.59) 9465 (6.66) 9505 (5.63) 9525 (4.98)

4. An illustrative example

In this section, we present an example to illustrate the applicability of the recommended methods (Methods
II and III).

4.1. Example 1. A gauge repeatability and reproducibility experiment

A common industrial application is to use a designed experiment to study the components of variability in a mea-
surement system. These studies are often called gauge repeatability and reproducibility (R & R) studies because these
are the components of variability that are of interest. An example of a gauge R & R study is taken from the paper by
Houf and Berman (1988). The data are measurements on thermal impedance (in ◦C per Watt ×100) on a power module
for an induction motor starter. There are ten parts, three operators, and three measurements per part. The data can be
fitted by the following random model:

Yijk = � + Pi + Oj + (PO)ij + 
ijk
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for i = 1, . . . , a; j = 1, . . . , b and k = 1, . . . , c, where Pi , Oj , (PO)ij and 
ijk are all independent random variables
separately representing the effect of part, the effect of operator, the interaction effect between part and operator and
the random error. Typically, it is assumed that Pi , Oj , (PO)ij , and 
ijk are normally distributed with means 0 and
variances �2

P, �2
O, �2

PO and �2
e , respectively.

Here we would compute the prediction interval rather than the variation of the variance components. Using the
setting described in the previous section, let �2

1 = bc�2
P + c�2

PO + �2
e , �2

2 = ac�2
O + c�2

PO + �2
e , �2

3 = c�2
PO + �2

e and
�2

4 =�2
e . Moreover, S2

1 = SSP (sum of squares between parts) with S2
1/�2

1 ∼ �2
a−1, S2

2 = SSO (sum of squares between

operators) with S2
2/�2

2 ∼ �2
b−1, S2

3 = SSPO (sum of squares between parts and operators) with S2
3/�2

3 ∼ �2
(a−1)(b−1)

and S2
4 = SSE (error sum of squares) with S2

4/�2
4 ∼ �2

ab(c−1). From the original data, the ten parts, three operators

and three measurements per part (a = 10, b = 3, c = 3, n = 90) yield ȳ = 35.8, s2
1 = 3935.96, s2

2 = 39.27, s2
3 = 48.51

and s2
4 = 30.67. Now suppose we wish to compute a 95% prediction interval that will contain m = 8 future units

from two parts (a� = 2), two operators (b� = 2), and two measurements per part (c� = 2). For this situation, we have
�� =�2

P(Ia� ⊗Jb� ⊗Jc�)+�2
O(Ja� ⊗ Ib� ⊗Jc�)+�2

PO(Ia� ⊗ Ib� ⊗Jc�)+�2
e(Ia� ⊗ Ib� ⊗ Ic�) and �=�� + 	2Jm, where

the variance of Y , 	2 = (bc�2
P + ac�2

O + c�2
PO + �2

e)/n.Also we have approximately 9.6 degrees of freedom. Hence
the proposed Method II gives a two-sided 95% simultaneous prediction interval as [15.025, 56.575] and the obtained
interval of Method III is [13.963, 57.636]. We note that the results based on both methods are in good agreement.

5. A simulation study

To further evaluate the performance of the recommended methods (Methods II and III), we conduct a more detailed
simulation study based on the balanced one-way random model. The simulation procedures are the same as described
in Section 3 and the results are displayed in Tables 2–4.

From Tables 2–4, the recommended methods appear to be quite successful in maintaining the confidence level close
to the nominal value � = 0.95 in almost all the simulation scenarios for a = 5, 7 and 9. But they become liberal as
both the number of future observations under prediction and the value of � get large. Fortunately, a small number of
future observations is usually of interest in practice (Hahn and Meeker, 1991). On the other hand, when a is small
(a = 3), the resulting prediction intervals can be conservative, particularly when � is small, but the performance may
still be acceptable. In general, a more accurate prediction interval can be expected by increasing the number of batches
(a) rather than increasing the number of samples within each batch (b). This interesting result is also pointed out in
Wang (1992).

Table 2
Simulated confidence coefficients (×104) for 95% two-sided prediction intervals when a = 5 of Methods II and III

a b a� b� �

0.1 0.3 0.5 0.7 0.9

5 2 1 2 9490a 9503 9441 9442 9480
9708b 9687 9633 9586 9535

6 9499 9533 9544 9552 9597
9643 9633 9621 9610 9580

10 9539 9581 9544 9612 9652
9628 9646 9605 9639 9622

2 1 9527 9493 9482 9411 9418
9726 9673 9690 9583 9465

2 9532 9444 9483 9420 9506
9692 9628 9621 9502 9500

10 9592 9586 9579 9607 9594
9582 9548 9541 9540 9442

3 1 9526 9496 9430 9420 9428
9697 9651 9608 9542 9415

2 9518 9473 9464 9470 9497
9669 9604 9568 9526 9424
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Table 2 (Continued)

a b a� b� �

0.1 0.3 0.5 0.7 0.9

6 1 2 9503 9484 9442 9439 9459
9665 9657 9638 9606 9545

6 9507 9501 9467 9474 9537
9617 9664 9628 9609 9550

10 9554 9493 9488 9515 9555
9667 9626 9624 9600 9545

2 1 9503 9480 9400 9353 9364
9656 9673 9633 9573 9458

2 9501 9485 9410 9404 9447
9653 9661 9600 9561 9485

6 9488 9463 9419 9365 9513
9596 9596 9560 9484 9469

10 9542 9462 9441 9434 9496
9631 9582 9563 9491 9425

3 1 9510 9465 9380 9325 9332
9669 9643 9586 9549 9408

2 9500 9473 9366 9342 9405
9623 9655 9557 9504 9394

6 9489 9446 9355 9343 9507
9623 9614 9517 9452 9397

10 1 2 9507 9437 9451 9460 9418
9633 9625 9646 9638 9529

6 9502 9435 9445 9490 9513
9643 9631 9636 9624 9539

10 9501 9463 9447 9495 9583
9618 9641 9616 9615 9572

2 1 9535 9433 9385 9375 9307
9658 9632 9616 9566 9432

2 9501 9504 9382 9321 9379
9619 9674 9605 9516 9435

6 9490 9487 9377 9375 9472
9594 9656 9555 9517 9447

10 9505 9458 9397 9431 9525
9615 9605 9560 9504 9449

3 1 9501 9435 9363 9317 9284
9641 9626 9606 9532 9378

2 9498 9416 9355 9304 9395
9653 9622 9556 9495 9383

6 9516 9407 9369 9286 9487
9641 9623 9566 9428 9415

aMethod II.
bMethod III.

6. Discussion and final remarks

The concept of GPQs is originally used for interval estimation. In this study, we apply it to point estimation. The
Monte Carlo sampling of the distribution of GPQs is similar to the concept of resampling technique used in the
parametric Bootstrap (Efron and Tibshirani, 1993). However, they are somewhat different, because the distributions in
the parametric Bootstrap are exactly known, but those of GPQs are usually unknown even they are functions of random
variables with known distributions. Hence, the point estimation using GPQs may be considered as a generalization
of the parametric Bootstrap. Consequently, this can be one reason why the concept of GPQs have been successfully
applied in many situations including our current study.
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Table 3
Simulated confidence coefficients (×104) for 95% two-sided prediction intervals when a = 7 of Methods II and III

a b a� b� �

0.1 0.3 0.5 0.7 0.9

7 2 1 2 9539a 9446 9530 9481 9533
9650b 9557 9620 9540 9534

6 9511 9494 9512 9585 9554
9586 9536 9529 9587 9516

10 9546 9536 9553 9588 9612
9558 9549 9543 9552 9553

2 1 9520 9497 9480 9481 9452
9630 9613 9579 9539 9423

2 9526 9505 9475 9521 9486
9620 9577 9522 9531 9412

6 9536 9507 9544 9561 9574
9534 9489 9514 9496 9444

3 1 9489 9502 9464 9483 9490
9587 9590 9526 9496 9422

2 9481 9517 9475 9501 9502
9540 9564 9505 9461 9373

6 1 2 9529 9448 9485 9476 9456
9610 9550 9598 9562 9466

6 9504 9516 9501 9546 9604
9582 9592 9562 9569 9552

10 9488 9525 9545 9580 9626
9542 9599 9592 9587 9565

2 1 9505 9507 9441 9430 9460
9595 9621 9543 9503 9449

2 9440 9521 9440 9451 9487
9524 9615 9546 9501 9433

6 9514 9514 9466 9490 9568
9567 9574 9528 9494 9449

10 9563 9520 9414 9532 9626
9583 9567 9449 9473 9457

3 1 9508 9502 9419 9383 9391
9579 9602 9536 9464 9345

2 9542 9496 9452 9403 9475
9611 9583 9531 9443 9371

6 9497 9445 9370 9450 9508
9553 9519 9434 9421 9344

10 1 2 9463 9519 9462 9475 9493
9541 9624 9568 9556 9497

6 9486 9515 9492 9531 9593
9562 9587 9578 9567 9538

10 9499 9525 9527 9532 9632
9564 9614 9590 9537 9564

2 1 9512 9555 9470 9448 9423
9599 9629 9578 9548 9422

2 9537 9484 9477 9429 9452
9614 9584 9567 9494 9411

6 9515 9482 9466 9514 9570
9576 9587 9548 9540 9452

10 9484 9453 9463 9487 9592
9530 9527 9521 9450 9439

3 1 9473 9495 9475 9406 9420
9562 9611 9614 9487 9377

2 9506 9489 9448 9398 9470
9582 9584 9544 9468 9377
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Table 3 (Continued)

a b a� b� �

0.1 0.3 0.5 0.7 0.9

6 9534 9433 9409 9420 9547
9610 9534 9493 9430 9391

aMethod II.
bMethod III.

Table 4
Simulated confidence coefficients (×104) for 95% two-sided prediction intervals when a = 9 of Methods II and III

a b a� b� �

0.1 0.3 0.5 0.7 0.9

9 2 1 2 9525a 9492 9503 9472 9520
9610b 9588 9569 9502 9494

6 9478 9527 9552 9560 9590
9513 9549 9553 9542 9543

10 9492 9520 9572 9617 9605
9494 9501 9535 9584 9547

2 1 9493 9489 9466 9437 9516
9587 9570 9532 9471 9471

2 9541 9520 9485 9486 9523
9592 9575 9523 9478 9442

6 9526 9540 9529 9561 9562
9506 9514 9463 9477 9450

3 1 9515 9528 9502 9442 9438
9588 9564 9541 9438 9343

2 9542 9487 9469 9505 9515
9576 9508 9464 9441 9369

6 9500 9533 9471 9533 9580
9453 9475 9407 9428 9415

6 1 2 9465 9514 9473 9460 9477
9541 9594 9532 9511 9460

6 9453 9497 9532 9568 9603
9520 9557 9573 9578 9539

10 9509 9513 9555 9569 9657
9540 9559 9568 9541 9580

2 1 9523 9499 9471 9417 9475
9576 9576 9548 9474 9439

2 9495 9494 9463 9451 9488
9556 9567 9532 9467 9417

6 9534 9510 9471 9520 9599
9559 9534 9497 9500 9491

10 9518 9506 9501 9519 9618
9522 9520 9490 9434 9468

3 1 9471 9486 9487 9412 9433
9531 9557 9543 9442 9378

2 9523 9482 9481 9465 9481
9559 9553 9530 9465 9386

6 9549 9485 9475 9491 9555
9566 9520 9491 9444 9380

10 1 2 9498 9491 9446 9478 9480
9549 9566 9533 9523 9464

6 9500 9511 9524 9550 9597
9546 9573 9564 9542 9538
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Table 4 (Continued)

a b a� b� �

0.1 0.3 0.5 0.7 0.9

10 9455 9540 9543 9608 9642
9505 9584 9576 9583 9586

2 1 9482 9515 9469 9442 9425
9556 9567 9550 9491 9406

2 9497 9447 9470 9447 9522
9547 9521 9529 9479 9457

6 9511 9503 9472 9515 9571
9549 9545 9514 9499 9455

10 9511 9503 9488 9546 9604
9546 9542 9491 9484 9458

3 1 9457 9474 9471 9442 9463
9508 9558 9527 9485 9395

2 9527 9492 9465 9460 9501
9562 9557 9520 9454 9401

6 9519 9463 9452 9504 9534
9583 9561 9493 9431 9356

aMethod II.
bMethod III.

According to the simulation results of this study, Method II (ANOVA-based method) and Method III (GPQ-based
method) are applicable to the balanced one-way random models. Theoretically, these methods can be extended to other
more complex balanced linear random models. However, the Satterthwaite approximation can get less accurate when
it involves more variance components. On the other hand, the GPQ-based method usually remains fairly satisfactory
performance for complex models in interval estimation, e.g., see Liao and Iyer (2004). Moreover, even though we
only consider the covariance matrix �� of future observations derived from the balanced data structure, �� can also be
determined in an obvious manner for unbalanced data structures. So the similar recommended method may be applied
to this situation, too. Finally, the proposed GPQ-based methods may also be extended to the unbalanced one-way
random model using the GPQs for the variance components in the model presented in Liao et al. (2005), or to the
unbalanced one-way random model with heterogeneous variances discussed in Iyer et al. (2004). Nonetheless, it is still
needed to evaluate the performance of these possible extensions before they are recommended for practical use.
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