
1266 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 10, OCTOBER 2001

Generic ILP-Based Approaches for Time-Multiplexed
FPGA Partitioning

Guang-Ming Wu, Jai-Ming Lin, and Yao-Wen Chang

Abstract—Due to the precedence constraints among vertices, the
partitioning problem for time-multiplexed field-programmable gate
arrays (TMFPGAs) is different from the traditional one. In this paper,
we first derive logic formulations for the precedence-constrained parti-
tioning problems and then transform the formulations into integer linear
programs (ILPs). The ILPs can handle the precedence constraints and
minimize cut sizes simultaneously. To enhance performance, we also
propose a clustering method to reduce the problem size. Experimental
results based on the Xilinx TMFPGA architecture show that our approach
outperforms the list-scheduling (List), the network-flow-based (FBB-m)
(Liu and Wong, 1998), and the probability-based (PAT) (Chao, 1999)
methods by respective average improvements of 46.6%, 32.3%, and
21.5% in cut sizes. Our approach is practical and scales well to larger
problems; the empirical runtime grows close to linearly in the circuit size.
More importantly, our approach is very flexible and can readily extend
to the partitioning problems with various objectives and constraints,
which makes the ILP formulations superior alternatives to the TMFPGA
partitioning problems.

Index Terms—Layout, partitioning, physical design.

I. INTRODUCTION

Time-multiplexed field-programmable gate arrays (TMFPGAs)
improve logic efficiency by dynamically re-using hardware. Cur-
rently there is fast growing interest in TMFPGAs for reconfigurable
computing. In TMFPGAs, a large design can be partitioned into
multiple stages to share the same smaller physical device in different
time frames. Several different architectures have been proposed, e.g.,
the Xilinx architecture [17], the virtual element gate array [13], the
dynamically programmable gate array [3], [7], dharma [1], etc. All
these models allow dynamic reuse of logic blocks and wire segments
by reprogramming on-chip static random access memory (SRAM)
bits.

Fig. 1 shows the Xilinx TMFPGA configuration model [17]. The
TMFPGA emulates a single large design through multiple configura-
tions. Circuit configuration can be partitioned into multiple stages and
stored in the configuration memory planes (CMPs). The TMFPGA can
hold only one active configuration in any time frame. Each configu-
ration is called amicrocycleand one pass through all microcycles is
called auser cycle. All combinational logic is evaluated and flip-flop
values are updated in one user cycle. The target architecture consists
of an array of augmented XC4000-style control logic blocks (CLBs)
[17], [18]. Each CLB includes microregisters (MRs) to store the inter-
mediate values of combinational logic for use in later microcycles and
also hold the flip-flop values for use in the next user cycle. A micro-
cycle starts with saving all CLB results of the previous microcycle in

Manuscript received June 1, 2000; revised February 26, 2001. This work was
supported in part by the National Science Council of Taiwan, R.O.C., under
Grant NSC-89-2215-E-009-054. This paper was recommended by Associate
Editor C.-K. Cheng.

G.-M. Wu is with the Department of Information Management, Nan-Hua Uni-
versity, Dalin Chiayi 622, Taiwan (e-mail: gmwu@mail.nhu.edu.tw).

J.-M. Lin is with the Department of Computer and Information Sci-
ence, National Chiao Tung University, Hsinchu 30010, Taiwan (e-mail:
gis87808@cis.nctu.edu.tw).

Y.-W. Chang is with the Department of Electrical Engineering, National
Taiwan University, Taipei 106, Taiwan (e-mail: ywchang@cc.ee.ntu.edu.tw).

Publisher Item Identifier S 0278-0070(01)08887-X.

Fig. 1. Xilinx TMFPGA configuration model.

MRs and then a new configuration is loaded into the active configura-
tion memory.

Because the logic and interconnect needed for a circuit is time-mul-
tiplexed on a TMFPGA, its partitioning problem is different from
traditional ones. (This partitioning is similar to the scheduling problem
in high-level synthesis [12].) The major difference is that the execution
order of circuit elements must follow the precedence constraints in the
TMFPGAs. The TMFPGA partitioning problem has been studied in
the recent literature [4]–[6], [15], [17]. Chang and Marek-Sadowska in
[4] and [5] presented the list-scheduling methods (List) for buffer-reg-
ister and cut-size minimization for various TMFPGA architectures.
Liu and Wong in [15] proposed a network-flow-based algorithm
(FBP-m) for multistage precedence-constrained partitioning for the
Xilinx-like TMFPGAs. Recently, Chaoet al. in [6] proposed a prob-
ability-based approach (PAT) for the partitioning for the Xilinx-like
TMFPGAs. The probability-based approach combines second-order
information and a stochastic-gain function [9], the Fiduccia and
Mattheyses partitioning-based iterative-improvement method [10],
and the maximum fan-out-free cone-based clustering [8]. It gives the
best results among the previous works for the TMFPGA partitioning
problem.

In this paper, we present generic integer linear programming (ILP)
formulations for the multistage precedence-constrained partitioning
problems. We begin with a mathematical description of the partitioning
objectives and constraints, which can easily be translated into integer
linear programs. Unlike most existing methods that can consider the
precedence constraints and cut sizes only in some local stages at a time,
the ILP-based method can consider those for all stages simultaneously
and, thus, has a more global perspective to optimize given objectives.
To enhance performance, we also propose a clustering method to
reduce the problem size; the clustering provides a tradeoff between
runtime and solution quality (in terms of CLB and interconnection
costs). Experimental results based on the Xilinx TMFPGA architecture
show that our approach outperforms the list-scheduling (List), the
network-flow-based (FBP-m) [15], and the probability-based (PAT)
[6] by respective average improvements of 46.6%, 32.3%, and 21.5%
in cut sizes. More importantly, our algorithm is very practical and
scales well to larger problems; the empirical runtime grows close to
linearly in the circuit size. Its runtimes range from 38 min for the
smallest circuit (s820) to about 6 h for the largest circuit (s35932).
Moreover, our approach is very flexible and can readily extend to
the partitioning problems with various objectives and constraints,
e.g., buffer-register minimization [4]. The flexibility makes the ILP
formulations superior alternatives to the TMFPGA partitioning.

The remainder of this paper is organized as follows. Section II
formulates the TMFPGA partitioning problem. Section III presents
the ILP formulations for the problem. Section IV proposes a clustering
method to enhance runtime. Section V extends our approach to
the TMFPGA partitioning problems with various objectives and

0278–0070/01$10.00 © 2001 IEEE

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 10, OCTOBER 2001 1267

Fig. 2. Four stages in the precedence-constrained partitioning of a circuit.

constraints. Section VI reports the experimental results. Finally,
conclusions are given in Section VII.

II. PROBLEM FORMULATION

A circuit can be represented by a graphG = (V; E). Each vertex
v 2 V (edgee 2 E) corresponds to a gate (net) in the circuit. The
vertices inV consist ofcombinational verticesandflip-flop vertices. A
combinational (flip-flop) vertex represents a combinational gate (flip-
flop) in a circuit. Each vertexv 2 V has a weightw(v). The weight of
a subsetV 0 of V , denoted byw(V 0), is given by

v2V
w(v).

For a netewith n verticesv1; v2; . . . ; vn, letv1 be thefan-outvertex
whose output signal is the input signal tovj (2 � j � n) andvj is the
outputvertex ofv1. The netsE can be divided in two categories:Ec

andEf according to the type of fan-out vertices. A nete 2 Ec (Ef)
if the fan-out vertexv1 is a combinational (flip-flop) vertex. A net is
called atwo-terminalnet if it connects only two vertices; if it connects
more than two vertices, then it is amultiterminalnet. We denote a net
e by e = (v1 ! hv2; v3; . . . ; vni), wherev1 is the fan-out vertex and
v2; v3; . . . ; vn are its output vertices.

For a TMFPGA, a circuit is partitioned into several stages such that
the logic in different stages temporally share the same physical FPGA
CLBs. Each stage forms amicrocycleand one pass of all stages forms
auser cycle. MRs store the intermediate values of combinational logic
for use in later microcyles in the same user cycle and store flip-flop
values for use in the next user cycle. Therefore, the interconnections
among stages determine the number of MRs that the TMFPGA needs.
We label interconnections between stagesi andi+1 asIi and denotes
the size ofIi asjIij. We callIi asith cut representing the cuts (inter-
connections) between stagesi and i + 1, 1 � i � p � 1, wherep
is the number of memory planes (MPs) in a TMFPGA. Moreover,Ip
represents the cuts between stagep in this user cycle and stage 1 in
the next user cycle. According to the Xilinx-like architecture [17], the
following precedence constraints must be satisfied: 1) each combina-
tional vertex must be scheduled in a stage no later than all its output
vertices and 2) each flip-flop vertex must be scheduled in a stage no
earlier than all its input and output vertices. These constraints define
a partial temporal ordering on the vertices in the circuit. LetPre(v)
be the precedence of a vertexv. For two verticesv1 andv2, we define
Pre(v1) � Pre(v2) if v1 must be scheduled no later thanv2. In other
words, in order to produce the correct result in one user cycle for a par-
titioned time-multiplexed circuit, the virtual CLBs must be evaluated
in the proper order (see Fig. 2) and the MRs used in a microcyle cannot
exceed the number of actual CLBs in a TMFPGA. We call this type of
partitioning asprecedence-constrained partitioning.

By the above constraints, we formulate the MP-constrained parti-
tioning (MPCP) problem for TMFPGAs as follows.

MP-Constrained Partitioning Problem:
Input: Given a circuitG = (V;E) and the number of MPsp in

a TMFPGA.

Problem: Determine thep-stage precedence-constrained parti-
tioning with the following objectives.

1) Balance objective:Minimize maxfw(Vi)j1 � i � pg, where
Vi denotes the vertices in the stagei.

2) Min-cut objective:MinimizemaxfjIij j1 � i � pg.
The logic in different stages share the same physical CLBs in a

time-multiplexed manner. Hence, the CLBs used in a microcyle cannot
exceed the number of actual CLBs in a TMFPGA, i.e., the number of
vertices should be smaller than the number of actual CLBs. The bal-
ance objective, minimizemaxfw(Vi)j1 � i � pg, is to balance the
sizes of stages so that the design can fit into a smaller physical device.
The min-cut objective minimizes the maximum cuts between succes-
sive stages.

Fig. 3 shows a part of a design that has been partitioned into four
MPs in a TMFPGA. Assume that a vertex requires a CLB and an in-
terconnection requires an MR. For example, the partitioning shown in
Fig. 3(a) needs five CLBs and five MRs while that shown in Fig. 3(b)
uses only three CLBs and three MRs. Therefore, the partitioning shown
in Fig. 3(b) is desirable.

III. ILP FORMULATIONS FOR THEMPCP PROBLEM

In this section, we first describe the ILP formulations for the MPCP
problem. To reduce the total execution time of a user cycle, we add the
ILP formulations for timing associated with the temporal precedence
graph (TPG).

A. Two-Terminal Nets

The notations used in our formulations are defined as follows. Sup-
pose that a hypergraphG(V;E) with n vertices andm nets is parti-
tioned intop stages.

In the MPCP problem, given a circuitG(V;E) and a TMFPGA
with p MPs, the circuit is partitioned intop stages without violating
the precedence constraints, balance objective and the cost of the parti-
tioning is minimized, where the cost consists of the maximum numbers
of interconnections and CLBs needed in a stage. The above cost can be
minimized by the ILP formulations presented in the following.

The variables used in the formulations are as follows.
Mc Integer variable that denotes the number of CLBs needed

in the TMFPGA.
Mr Integer variable that denotes the number of MRs (or inter-

connections) needed in the TMFPGA.
xi;j 0–1 integer variable associated withvi. xi;j = 1 if vi is

assigned to the stagej; otherwise,xi;j = 0.
yi;k 0–1 integer variable associated with a netei = (vi !

hvi i), whereei 2 E. yi;k = 1 if net ei = (vi ! hvi i)
introduces an interconnection between the stagesk and
k + 1 (kth cut); otherwise,yi;k = 0.

Liu and Wong in [15] used an�-bounded unidirectional min-cut
to ensure thatMc is bounded in the range [(1 � �)�; (1 + �)�],
e.g., � = 5% in their implementation. In this section, we follow
the �-bounded approach to limit the maximum number of CLBs
needed in each stage. Thus, we only consider the maximum number
of interconnections needed in each stage as the cost function. For the
p-stage precedence-constrained partitioning,� = jV j=p.

For a netei 2 Ec, yi;k = 1 if vi is assigned to stage1; . . . ; or k
andvi is assigned to stagek+1; . . . ; or p; otherwise,yi;k = 0. Thus,
yi;k is given as follows:

yi;k = (OR(xi ;1; . . . ; xi ;k))AND

(OR(xi ;k+1; . . . ; xi ;p)); 1 � k � p� 1: (1)

1268 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 10, OCTOBER 2001

(a)

(b)

Fig. 3. Precedence-constrained partitioning. (a)maxfw(V)j1 � i � pg = 5 andmaxfjI j j1 � i � pg = 5. (b) Better partitioning withmaxfw(V)j1 �
i � pg = 3 andmaxfjI j j1 � i � pg = 3.

Fig. 4. Two flip-flop nets(v ! hv i) and (v ! hv i). Each of them
contributes an interconnection to thekth cut.

By the precedence constraint,vi must be assigned to a stage no later
thanvi . Therefore, the twoOR terms in the above equation cannot be
zero at the same time. Equation (1) is mathematically equivalent to (2)

yi;k =

k

s=1

xi ;s +

p

s=k+1

xi ;s � 1; 1 � k � p� 1: (2)

For a netei 2 Ec, yi;p is always equal to zero, since the data of a
combinational node is only used in the current user cycle.

For a netei = (vi ! hvi i) 2 Ef , yi;k = 1 if vi andvi are
both assigned to stages1; . . . ; k or vi andvi are both assigned to
stagesk + 1; . . . ; p; otherwise,yi;k = 0. (See Fig. 4 for a graphical
representation.)

We formulateyi;k as follows:

yi;k =((OR(xi ;1; . . . ; xi ;k))AND (OR(xi ;1; . . . ; xi ;k)))

OR ((OR(xi ;k+1; . . . ; xi ;p))

AND (OR(xi ;k+1; . . . ; xi ;p)));1 � k � p� 1: (3)

Similarly, (3) is mathematically equivalent to (4)

yi;k = 2�

k

s=1

xi ;s +

p

s=k+1

xi ;s 1 � k � p� 1: (4)

For anei 2 Ef , yi;p is always equal to one, since the value from a
flip-flop vertex must to be stored in an MR for later use in the next user
cycle.

Therefore, the MPCP problem can be formulated as follows:

minimize Mr

subject to (1� �)� �Mc � (1 + �)� (5)
n

i=1

xi;j �Mc � 0; 1 � j � p (6)

p

j=1

xi;j = 1; 1 � i � n (7)

p

k=1

kxi ;k �

p

k=1

kxi ;k � 0

for eachei = (vi ! hvi i); ei 2 Ec (8)
p

k=1

kxi ;k �

p

k=1

kxi ;k � 0

for eachei = (vi ! hvi i); ei 2 Ef (9)

e 2E

yi;k �Mr � 0; 1 � k � p: (10)

The objective function is used to minimize the number of MRs. Con-
straint (5) ensures thatMc deviate within the range [(1 � �)�; (1 +
�)�]. Constraint (6) states that each stage cannot contain more than
Mc CLBs. It is clear thatvi 2 V can be assigned in exactly one stage,
which is formulated in constraint (7). Constraints (8) and (9) ensure
that the precedence relations of the graph will be preserved. For any
net ei = (vi ! hvi i), if ei 2 Ec (Ef), then constraint (8) [(9)]
ensures thatvi will be scheduled in a stage no later (earlier) thanvi .
Constraint (10) states that any cut size between two adjacent stages
cannot exceedMr—an interconnection in a cut needs an MR to save
its signal.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 10, OCTOBER 2001 1269

B. Multiterminal Nets

In this section, we present the ILP formulation for multiterminal nets.
We redefine the 0–1 integer variableyi;k associated with a multiter-
minal netei = (vi ! hvj ; vj ; . . . ; vj i). yi;k = 1 if the net in-
troduces an interconnection between stagesk andk + 1; otherwise,
yi;k = 0.

First, we consider multiterminal combinational nets in a circuit. For
a netei = (vi ! hvj ; vj ; . . . ; vj i) in Ec, vi is a combinational
vertex andPre(vi) � Pre(vj) for 1 � t � q. vi must be in a stage
no later than its output verticesvj 0s (1 � t � q). Therefore, we shall
rewrite constraint (8) for netei as follows:

p

k=1

kxi;k �

p

k=1

kxj ;k � 0; 1 � t � q:

For a netei 2 Ec, yi;k = 1 if vi is assigned to stage 1,2; . . . ; or k
and any ofvj ; . . . ; vj is assigned to stagek+1; . . . ; or p; otherwise,
yi;k = 0. Thus,yi;k is given as follows:

yi;k =(OR(xi;1; . . . ; xi;k))AND

(OR(xj ;k+1; . . . ; xj ;p))

OR (OR(xi;1; . . . ; xi;k))AND

(OR(xj ;k+1; . . . ; xj ;p))

OR � � �OR(OR(xi;1; . . . ; xi;k))AND

(OR(xj ;k+1; . . . ; xj ;p)): (11)

Let

zi ;k = (OR(xi;1; . . . ; xi;k))AND (OR(xj ;k+1; . . . ; xj ;p));

1 � t � q: (12)

Rewriting (11), we have

yi;k = zi ;k OR zi ;k OR . . . OR zi ;k:

Similar to (2), we have

zi ;k =

k

s=1

xi;s +

p

s=k+1

xj ;s � 1; 1 � t � q: (13)

In addition, we need the following constraint to satisfy the definition
of yi;k:

q

t=1

zi ;k � qyi;k � 0; 1 � k � p� 1: (14)

The reason for constraint (14) is given as follows. The vari-
ableszi ;k(1 � t � q) and yi;k are 0–1 integers. When any of
zi ;k

0s(1 � t � q) is set to one, it also makesyi;k equal one. When
all zi ;k

0s are set to zero,yi;k can be set to zero or one. By constraint

(10), we have
e 2E

yi;k � Mr . Since the objective function will
minimizeMr , yi;k will be set to zero when allzi ;k

0s are set to zero.
Therefore, (13) is mathematically equivalent to (14).

We now consider multiterminal flip-flop nets. For a netei = (vi !
hvj ; vj ; . . . ; vj i) in Ef , vi is a flip-flop vertex andPre(vj) �
Pre(vi) for 1 � t � q. vi must be in a stage no earlier than its output
verticesvj 0s (1 � t � q). Therefore, we can rewrite constraint (9)
for the netei as follows:

p

k=1

kxj ;k �

p

k=1

kxi;k � 0; 1 � t � q:

For a netei 2 Ef , yi;k = 1 if vi and any ofvj 0s (where1 � t � q)
are both assigned to stages1; . . . ; k or stagesk+ 1; . . . ; p; otherwise,
yi;k = 0. We formulateyi;k as the equation shown at the bottom of the
page.

Let

z0i ;k =(((OR(xi;1; . . . ; xi;k))AND

(OR(xj ;1; . . . ; xj ;k)))OR

((OR(xi;k+1; . . . ; xi;p))AND

(OR(xj ;k+1; . . . ; xj ;p))));

1 � t � q:

Rewriting the equation at the bottom of the page, we have

yi;k = z0i ;k OR z0i ;k OR � � � OR z0i ;k; 1 � k � p� 1:

By (4), we have

z0i ;k = 2�

k

s=1

xj ;s +

p

s=k+1

xi;s ; 1 � t � q: (15)

Similar to constraint (14), we need the following constraint to satisfy
the definition ofyi;k:

q

r=1

z0i ;k � qyi;k � 0; 1 � k � p� 1: (16)

Now we consider thepth cut. For any flip-flop netei = (vi !
hvj ; vj ; . . . ; vj i), yi;p always equals one because the output ofvi
must be saved for use in the next user cycle. Thus, we have

yi;p = 1; for each flip-flop nets:

C. Performance-Driven MPCP (PDMPCP) Problem

The critical path in each plane determines the execution time of
a TMFPGA. For a circuit partitioned intop stages, we set an upper
boundD for the length of the critical path,depth, of each stage. In
our method,D = ddepth=pe, wheredepth is the critical path of the

yi;k =(((OR(xi;1; . . . ; xi;k))AND (OR(xj ;1; . . . ; xj ;k)))OR

((OR(xi;k+1; . . . ; xi;p))AND (OR(xj ;k+1; . . . ; xj ;p))))

OR(((OR(xi;1; . . . ; xi;k))AND (OR(xj ;1; . . . ; xj ;k)))OR

((OR(xi;k+1; . . . ; xi;p))AND (OR(xj ;k+1; . . . ; xj ;p))))

OR � � �OR(((OR(xi;1; . . . ; xi;k))AND (OR(xj ;1; . . . ; xj ;k)))

OR((OR(xi;k+1; . . . ; xi;p))AND (OR(xj ;k+1; . . . ; xj ;p))));

1 � k � p� 1:

1270 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 10, OCTOBER 2001

(a) (b)

Fig. 5. (a) Piece of combinational part of given circuit. (b) Corresponding TPG withD = 2.

circuit. We call the partitioning with a bound of the critical path as
bounded-delay precedence-constrained partitioning.

The as soon as possible (ASAP) and as late as possible (ALAP) [11]
scheduling algorithms are often used to identify the movable range of a
vertex. ASAP (ALAP) determines the earliest (latest) possible stage of
a vertex. For each vertexv, letAS(v) andAL(v) be the stage assigned
to v in the ASAP and ALAP scheduling, respectively. IfAS(v) =
AL(v), then vertexv must be fixed in the stageAS(v). Otherwise,
a vertexv can be assigned to the stages in [AS(v); AL(v)].

Considering the movable range estimated by the ASAP and ALAP
scheduling, we reformulate constraints (7)–(9) as follows:

A (v)

j=A (v)

xi;j = 1; 1 � i � n (17)

A (v)

k=A (v)

kxi ;k �

A (v)

k=A (v)

kxi ;k � 0

for eachei = (vi ! hvi i); ei 2 Ec; (18)
A (v)

k=A (v)

kxi ;k �

A (v)

k=A (v)

kxi ;k � 0

for eachei = (vi ! hvi i); ei 2 Ef : (19)

However,AS(v) andAL(v) only give the lower and upper bounds
of the movable range for partitioning vertexv. With the delay-bound
constraint, the movable range for the vertexv may be tighter than
[AS(v); AL(v)]. Thus, we have the following lemma.

Lemma 1: The movable range of a vertexv [AS(v); AL(v)] derived
from the ASAP and ALAP scheduling is a necessary, but not sufficient
condition forv to be feasible in the bounded-delay precedence-con-
strained partitioning.

In the following, we present the TPG and translate the constraints
associated with TPG (TPG constraints) into ILP formulations, which
is a precise limitation for the relative positions of nodes.

A pair of vertices (vi; vj) is critical if the length of the longest path
betweenvi andvj is equal toD+1. (We do not need to consider those
pairs of vertices with their longest paths greater thanD + 1.). Thus,
vi andvj cannot be assigned to the same stage if the pair (vi; vj) is
critical. Given a circuitG = (V; E), its corresponding TPGGt =
(Vt; Et) is constructed byVt = fVcjVc 2 V g andEt = f(vi !
hvji)j pair (vi; vj) is criticalg. Fig. 5 shows a TPG example that con-
tains eight verticesv1; v2; . . . ; v8. Assume that delay bound in a stage
is equal to two (i.e.,D = 2). Then, two vertices cannot be assigned
to the same stage if there exists a path between them and they are not
consecutive. As an example in Fig. 5(a), the length of the longest path
associated with (v1; v7) is equal to three; therefore, they cannot be as-
signed to the same stage and we connect (v1; v7) with a directed edge

Fig. 6. Algorithm for generating TPG.

[see Fig. 5(b)]. Similarly, there are directed edges (v2; v7), (v2; v6), and
(v5; v8) in the TPG shown in Fig. 5.

For a sequential circuit,depth is the length of the longest path of
the combinational part. Therefore, for a sequential circuitG(V;E),
we can remove all nets inEf and all flip-flop vertices and obtain a
directed acyclic graphGa(Va; Ea). The TPGGt(Vt; Et) can then be
constructed fromGa by the similar method as discussed earlier. If there
is no path between two vertices inGa, there is no precedence relation
between them. Thus, it suffices to consider every pair of connected
vertices inGa. For each vertexvi, we add the edge(vi ! hvji) to
Et if the length of longest path betweenvi andvj (a successor ofvi)
equalsD + 1. Given a circuitG(V;E), algorithm TPG_Generation
shown in Fig. 6 generates a TPG associated withG(V; E).

Two vertices in a critical pair cannot be assigned to the same stage.
Therefore, we can incorporate the critical pairs into the MPCP formu-
lation to ensure that the execution time of every stage do not exceedD.
The constraint can be formulated as follows:

A (v)

k=A (v)

kxi ;k �

A (v)

k=A (v)

kxi ;k � �1

for eachei = (vi ! hvi i); ei 2 Et: (20)

Our ILP formulation is summarized in Fig. 7 and Theorem 1 states
the correctness of the formulation.

Theorem 1: The problem MPCP has a solution if and only if all
verticesV in G can be partitioned intop stages in the TMFPGA under
the precedence and delay-bound constraints.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 10, OCTOBER 2001 1271

Fig. 7. ILP formulation for PDMPCP.

D. Complexity of the PDMPCP Problem

The complexity of the PDMPCP problem can be analyzed in terms of
the numbers of variables and constraints. In the PDMPCP problem, the
number of stages is given and the values of the 0–1 variablesyi ;i

0s

can be obtained byxj ;j
0s. Thus, the only unknowns are 0–1 variables

xi;j
0s,Mc, andMr . The number ofxi;j 0s is given by�n

i=1(AL(vi)�
AS(vi) + 1), which is bounded bypn, wherep is the number of
stages andn is the number of vertices in the circuit. Note that by con-
straint (23) in Fig. 7, onlyn variables can be set to one. Thus, once
xi;j is set to one, the remaining variables associated with the range
[AL(vi); AS(vi)] are implicitly set to zero. Therefore,pn is, in fact, a
very loose upper bound for the number of variables forxi;j

0s.
We analyze the number of equations needed for a circuit in the fol-

lowing. In Fig. 7, it is obvious that the number of equations required
for constraints (21)–(23) and (28) is one,p, n, andp, respectively. For
each two-terminal (multiterminal) net, we need an equation for con-
straint (24) or (25) [(26) or (27)] depending on the type of the net, a
combinational net, or a flip-flop net. Therefore, the total number of
equations required ism0(m), wherem0 (m) is the number of two-ter-
minal (multiterminal) nets in a circuit. We can add one edge at most
for each pair of vertices in a TPG; therefore, the number of equations
required for constraint (29) isn2. According to these analyses, the total
number of equations required isO(n2 +m0).

IV. SOLUTION SPACE REDUCTION

An effective clustering algorithm can greatly improve the quality of
the precedence-constrained partitioning and speed up the partitioning
algorithm by reducing the problem size. Sanker and Rose [16] proposed
a new clustering metric that is effective in clustering traditional circuits,

(a) (b)

Fig. 8. Clustering that generates a cycle. (a) Example circuit and its clustering.
(b) Clustering result.

but may not generate feasible clusters due to the precedence constraints
in the TMFPGA partitioning.

Based on Sanker and Rose’s algorithm [16], we propose in the
following a clustering method that can consider the precedence
constraints during clustering. Our clustering algorithm begins by
randomly choosing some vertices as seeds. Each unclustered vertex
connected to those seeds is assigned scores used to decide to which
cluster the vertex belongs. The scorewv;c for each candidate vertexv
associated with a clusterc has two components:

1) the number of connections between the candidate vertexv and
the clusterc being considered, with each connection weighted
by the fan-out of the net on which it lies;

2) the number of nets that would be completely absorbed if this
candidate vertexv were added to the clusterc.

A net is said to beabsorbedby a cluster if all the vertices on that net
are contained within that single cluster. LetNv;c denote the set of nets
shared between the candidate vertexv and the clusterc, Pv the set of
pins on nete 2 Nv;c, andAv;c the set of nets absorbed by adding the
candidate vertexv to the clusterc, then the score can be expressed as

wv;c =
e2N

1

jPvj � 1
+ jAv;cj:

With this function, vertices on low fan-out nets and on nets that are
about to be absorbed are preferred when building the clusters. For a
candidate vertex, we pick the highest score associated with a cluster
and add the vertex to the cluster. This process is repeated until all ver-
tices are clustered. The result is a netlist of clusters with absorbed nets
removed.

However, the above procedure might not satisfy the the precedence
constraints. It may generate cycles in the graph. For example, in
Fig. 8(a), verticesv1, v2, and v3 are clustered in clustersC1, C2,
andC3, respectively. Considering the vertexv4, if the scorewv ;c

is the highest among the scores associated withv4, thenv4 will be
clustered inC1, which violates the precedence constraints because
this clustering causes a cyclehC1; C2; C3; C1i as shown in Fig. 8(b).
To ensure that no cycle be generated, we cluster according to the
topological order of vertices in circuits. Moreover, we check whether
there is any cycle created when clustering. The algorithm is named
precedence-constrained clustering and is summarized in Fig. 9.
Theorem 2 gives the time complexity of the algorithm.

Theorem 2: algorithm precedence-constrained clustering runs in
O(n2 +m) time, wheren(m) is the number of vertices (nets) in the
circuit.

1272 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 10, OCTOBER 2001

Fig. 9. Clustering algorithm.

(a) (b)

Fig. 10. Buffer registers are needed to store signals among nonadjacent stages.
(a) Three buffer registers are needed sincemaxfjB k1 � i � 4g = 3 (jB j =
3). (b) Only two buffer registers are needed sincemaxfjB k1 � i � 4g =
2 (jB j = 2).

V. EXTENSIONS

Our approach is very flexible; it can also handle the precedence-con-
strained partitioning of different forms with only minor modifications.
In this section, we extend the ILP formulations to the buffer-register
minimization partitioning (BRMP) problem that was first investigated
in [4] and CLB-constrained stage minimization.

A. Buffer-Register Minimization Partitioning

In this section, we extend our approach to the BRMP problem ad-
dressed in [4]. The original problem is addressed on the dharma [1]
architecture. As mentioned in [4], buffer registers are needed because
the time-multiplexed nature of TMFPGAs means that only a portion
of the circuit implemented on the chip is present at any given time in-
stance. Thus, there is a need to buffer signal until they are no longer
needed. Fig. 10 shows the partitioning with different buffer-register re-
quirements. Buffer registers are used to store signals among nonadja-
cent stages. Three buffer registers are needed in the partitioning shown
in Fig. 10(a), while only two buffer registers are required in that shown
in Fig. 10(b). We denote the set of buffer registers needed in the stage
i asBi and the total number of buffer registers inBi asjBij. Based on

the model in [4],jBij = jfej the fan-out vertexv of nete is assigned
earlier than the stagei and one ofv0s outputs is assigned later than the
stageigj. We formulate the BRMP problem as follows.

Buffer-Register Minimization Partitioning Problem:
Input: Given a circuitG = (V;E) and the number of MPsp in

a TMFPGA.
Problem: Determine thep-stage precedence-constrained parti-

tioning with the following objective.

1) MinimizeMc + �Mb, where� is a user specified parameter.
We give the formulation for two-terminal nets as follows. Extensions

to multiterminal nets are similar to the techniques presented in Sec-
tion III-B. Let Mb be a new integer variable that denotes the number
of buffer registers needed in the TMFPGA,z00i;k a 0–1 integer variable
associated withei = (vi ! hvji).z00i;k = 1 if we need a buffer register
in stagek to store a signal betweenvi andvj ; otherwise,z00i;k = 0. We
formulatez00i;k as follows:

z
00

i;k = (OR(xi;1; xi;2; . . . ; xi;k�1))

AND (OR(xj;k+1; xj;k+2; . . . ; xj;p)); for eachei 2 Ec:

Applying similar techniques foryi;k as described in Section III-A,
we obtain the formulation for the BRMP problem as follows:

minimizeMc + �Mb

subject to

(1� �)� � Mc � (1 + �)� (30)
n

i=1

xi;j �Mc � 0; 1 � j � p (31)

A (v)

j=A (v)

xi;j = 1; 1 � i � n (32)

A (v)

k=A (v)

kxi ;k �

A (v)

k=A (v)

kxi ;k � 0

for eachei = (vi ! hvi i);

ei 2 Ec (33)
A (v)

k=A (v)

kxi ;k �

A (v)

k=A (v)

kxi ;k � 0

for eachei = (vi ! hvi i);

ei 2 Ef (34)
q

t=1

zi ;k � qyi;k � 0; 1 � k � p� 1

for eachei 2 Ec: (35)
q

r=1

z
0

i ;k � qyi;k � 0; 1 � k � p� 1

for eachei 2 Ef : (36)
A (v)

k=A (v)

kxi ;k �

A (v)

k=A (v)

kxi ;k � �1

for eachei = (vi ! hvi i);

ei 2 Et (37)

e 2E

z
00

i;k �Mb; 2 � k � p� 1 (38)

where� is user specified parameter and� � 0. The new constraint (38)
states that each stage cannot contain more thanMb buffer registers.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 10, OCTOBER 2001 1273

B. CLB-Constrained Stage-Minimization Partitioning

In the Xilinx TMFPGA, each stage must be stored in a CMP. Each
MP is a very large word of memory. Therefore, minimizing the number
of stages (i.e., the variablep or the number of MPs needed) allows
the design to fit into a TMFPGA with a smaller number of MPs. The
significance of minimizing the number of stages required is twofold:
1) it is possible to implement a circuit in a TMFPGA with fewer MPs
and 2) a TMFPGA with the fixed number of MPs can accommodate a
larger circuit design.

The CLB-constrained stage-minimization partitioning (CCSMP)
problem can be described as follows.

CLB-Constrained Stage-Minimization Partitioning Problem:
Input: Given a circuitG = (V;E) and the number of CLBs in a

TMFPGA.
Problem: Determine the precedence-constrained partitioning

with the following objective.

1) Minimize p + �Mr .
The CCSMP problem considers the numbers of stages and intercon-

nections simultaneously. The variables used in the formulations are as
follows.
ppp Integervariablethat denotes the number of MPs

needed in the TMFPGA. Note thatp is a vari-
able here while it is aconstantin the previous
discussions.

yi;k, Mr , xi;j 0–1 integers (the same as the definitions in Sec-
tion III).

In the CCSMP problem, the maximum number of CLBs is given
(fixed). Under this constraint, we can apply the list scheduling to decide
the upper bound of the number of stages,p0. Therefore, the CCSMP
problem can be formulated as follows:

minimizep+ �Mr

subject to
n

i=1

xi;j �Mc; 1 � j � p
0 (39)

A (v)

j=A (v)

xi;j = 1; 1 � i � n (40)

A (v)

k=A (v)

kxi ;k �

A (v)

k=A (v)

kxi ;k � 0

for eachei = (vi ! hvi i);

ei 2 Ec (41)
A (v)

k=A (v)

kxi ;k �

A (v)

k=A (v)

kxi ;k � 0

for eachei = (vi ! hvi i);

ei 2 Ef (42)
A (v)

k=A (v)

kxi ;k �

A (v)

k=A (v)

kxi ;k � �1

for eachei = (vi ! hvi i);

ei 2 Et (43)

e 2E

yi;k �Mr � 0; 1 � k � p
0 (44)

p

j=1

jxi;j � p � 0

for eachvi without any successor: (45)

TABLE I
MCNC PARTITIONING93 BENCHMARK

CIRCUITS

The objective function is used to minimize the numbers of MPs and
MRs simultaneously, where� is a user specified parameter. Constraint
(39) states that each plane cannot contain more thanMc CLBs. Note
thatMc in constraint (39) is aconstantand no vertex should be assigned
to a stage later thanp, as described in constraint (45).

VI. EXPERIMENTAL RESULTS

The programs for our system (the ASAP and ALAP scheduling, i.e.,
bounded-delay precedence-constrained partitioning presented in Sec-
tion III-C, clustering, and ILPs) were written in the C++ language and
the ILPs were solved using the LINDO package [14] on a PC with a
Pentium II 300 microprocessor and 512-MB RAM. LINDO starts with
a feasible linear programming solution and searches for optimal integer
solutions using the branch-and-bound method. To speed up the runtime,
we search at most five feasible solutions in using LINDO. We tested on
the MCNC Partitioning93 benchmark circuits [2] used in [4]–[6] and
[15]. Columns 2–4 in Table I list the number of vertices, nets, and pri-
mary input–outputs in the circuits, respectively. In column 5,depth
refers to the number of vertices on the longest critical path.

We compared our method with the list scheduling list [4], [5], the
network-flow-based approach FBP-m [15], and the probability-based
approach PAT [6] on the Xilinx TMFPGA model in which a circuit was
partitioned into eight stages. The size of a stage is bound by the balance
factor 5%. This is the same as in [5], [6], and [15]. The results are shown
in Table II. Columns 2–4 in Table II list the maximum numbers of MRs
(cuts) used by List, FBP-m, and PAT, respectively. Column 5 lists the
maximum numbers of MRs used by our algorithm and the runtimes are
shown in brackets. Columns 6–8 list the percentages of improvements
of ours over List, FBP-m, and PAT, respectively. The improvement for
the List (FBP-m, PAT) is calculated by

List (FPB�m; PAT)�Ours

List (FPB�m; PAT)
� 100%:

The results show that our method on the average reduces the maximum
numbers of MRs required by 46.6%, 32.3%, and 21.5%, compared with
List, FBP-m, and PAT, respectively. The results show the effectiveness
of our ILP approach. Our approach is practical and scales well to larger
problems. As shown in Fig. 11 in which the runtime is plotted as a func-
tion of the circuit size, the empirical runtime grows close to linearly in
the circuit size. The runtimes depend on the numbers of 0–1 variables
and range from 38 min for the smallest circuit s820 to about 6 h for the
largest circuit s35932. (In the ILP formulation, the numbers of variables
and constraints needed by the largest circuit s35932 are 11 328 and

1274 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 20, NO. 10, OCTOBER 2001

TABLE II
RESULTS FOR THE8-STAGE TMFPGA PARTITIONING

Fig. 11. Runtime requirement versus circuit size.

5046.) Note that the runtimes include those for all the C++ programs
(the ASAP and ALAP scheduling, clustering, and the ILP equation gen-
eration) and the LINDO program. [For the circuit s35932, PAT (on an
Intel Pentium II 300 PC) requires about 5.5 h and List (on an Ultra
Sparc 1 workstation) consumes about 1.5 h on a different TMFPGA
architecture.]

VII. CONCLUSION

We have presented generic ILP formulations for asetof multistage
precedence-constrained partitioning problems and a clustering method
for reducing problem sizes. Experimental results have shown the ef-
fectiveness of the ILP-based approaches. The ILP-based formulations
are so flexible that they can readily apply to the partitioning problems
with various objectives and constraints. The flexibility makes the ILP
formulations superior alternatives to the TMFPGA partitioning.

ACKNOWLEDGMENT

The authors would like to thank Dr. H. Liu for providing the bench-
mark circuits and the anonymous reviewers for their constructive com-
ments.

REFERENCES

[1] N. B. Bhatet al., “Performance-Oriented Fully Routable Dynamic Ar-
chitecture for a Field Programmable Logic Device,” Univ. California,
Berkeley, CA, Memo. UCB/RELM93/42, 1993.

[2] F. Brglez, “ACM/SIGDA design automation benchmarks: Catalyst or
anathema?,”IEEE Des. Test, vol. 10, pp. 87–91, Sept. 1993.

[3] J. Brownet al., “DELTA: Prototype for a First-Generation Dynamically
Programmable Gate Array,” MIT, Cambridge, MA, Transit Note 112,
1995.

[4] D. Chang and M. Marek-Sadowska, “Buffer minimization and time-
multiplexed I/O on dynamically reconfigurable FPGAs,” inProc. Int.
Symp. Field Programmable Gate Arrays, Feb. 1997, pp. 142–148.

[5] D. Changet al., “Partitioning sequential circuits on dynamically recon-
figurable FPGAs,” inProc. Int. Symp. Field Programmable Gate Arrays,
Feb. 1998, pp. 161–167.

[6] M. Chaoet al., “A clustering- and probability-based approach for time-
multiplexed FPGA partitioning,” inProc. IEEE/ACM Int. Conf. Com-
puter-Aided Design, Nov. 1999, pp. 364–368.

[7] A. DeHon, “DPGA-coupled microprocessors: Commodity ICs for the
early 21st century,” inProc. IEEE Workshop FPGAs for Custom Com-
puting Machines, Apr. 1994, pp. 31–39.

[8] J. Cong, Z. Li, and R. Bagrodia, “Acyclic multiway partitioning of
boolean networks,” inProc. Design Automatation Conf., June 1994,
pp. 670–675.

[9] S. Dutt and W. Deng, “Partitioning using second-order information and
stochastic-gain functions,” inProc. Int. Symp. Physical Design, Apr.
1998, pp. 112–117.

[10] C. M. Fidduciaet al., “A linear-time heuristic for improving network
partitions,” inProc. Design Automation Conf., June 1982, pp. 175–181.

[11] C. Y. Hitchcock IIIet al., “A method of automatic data path synthesis,”
in Proc. Design Automation Conf., June 1983, pp. 484–488.

[12] C. T. Hwang, J. H. Lee, and Y. C. Hsu, “A formal approach to the sched-
uling problem in high level synthesis,” inProc. IEEE/ACM Int. Conf.
Computer-Aided Design, Feb. 1998, pp. 497–504.

[13] D. Jones and D. M. Lewis, “A time-multiplexed FPGA architecture for
logic emulation,” inProc. IEEE Custom Integrated Circuits Conf., May
1995, pp. 495–498.

[14] “LINDO: Linear Interactive and Discrete Optimizer for Linear, In-
teger and Quadratic Programming Problems,” LINDO Systems, Inc.,
Chicago, IL, 1999.

[15] H. Liu and D. F. Wong, “Network flow based circuit partitioning for
time-multiplexed FPGAs,” inProc. IEEE/ACM Int. Conf. Computer-
Aided Design, Feb. 1998, pp. 497–504.

[16] Y. Sankar and J. Rose, “Trading quality for compile time: Ultra-fast
placement for FPGAs,” inProc. ACM/SIGDA Int. Symp. Field-Pro-
grammable Gate Arrays, Feb. 1999, pp. 157–166.

[17] S. Trimberger, “A time-multiplexed FPGA,” inProc. IEEE Workshop
FPGAs for Custom Computing Machines, Apr. 1997, pp. 22–28.

[18] Xilinx, Inc., The Programmable Logic Data Book. San Jose, CA:
Xilinx, 1996.

