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This paper presents an automatic acquisition process to acquire the semantic meaning for the words.

This process obtains the representation vectors for stemmed words by iteratively improving the vectors,

using a trained Elman network. Experiments performed on a corpus composed of Shakespeare’s

writings show its linguistic analysis and categorization abilities.
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1. Introduction

The semantic meaning of a word or a word sequence is often
nonquantifiable. A central problem in the analysis of such a
sequence is determining how to effectively encode and extract its
contents. Existing analyses are primarily based on certain
statistical linguistic features [2,7,23–25]. The semantic search
[26] constructs a mathematical model that analyzes semantic
features and creates a semantic operation space. It sorts data
according to the semantic meaning of the devolved requests.
Nevertheless, there are difficulties in implementing the model.
The task of constructing a prime semantic space is extremely
expensive and complex, because experienced linguists are needed
to analyze huge numbers of words. This paper presents an
automatic encoding process to accomplish this task.

Both the frequencies and the temporal sequence of words carry
semantic meaning. When one listens to a talk or reads an article,
one should get information from both isolated words and their
sequences. Complying with temporal information [18,16], our
approach employs the Elman network [4,3,13], which works well
with temporal sequences, as an encoding mechanism [15,17,12].
This network can extract and accommodate the rich syntax
grammars associated with each word in sentence sequences [9].

The automatic encoding method will be presented in Section 2.1.
The semantic search [26] and its notations will be reviewed in
Section 2.2. A method for dealing with polysemous words will be
ll rights reserved.

).
discussed in the third section. Applications to literary works will
be presented in these two sections.
2. Encoding method

Semantic meaning comes from a sequence of words. It is
sequential and temporal. We employ the Elman network to
extract the meaning from sentence sequences.

2.1. The Elman network

The network is a single recursive network that has a context
layer as an inside self-referenced layer, see Fig. 1. During
operation, both current input from the input layer and previous
state of the hidden layer saved in the context layer activate the
hidden layer. Note that there exists an energy function associated
with the hidden layer, context layer, and input layer [16,12]. With
successive training, the connection weights can load the temporal
relations in the training word sequences.

The context layer carries the memory. The hidden layer
activates the output layer and refreshes the context layer with
the current state of the hidden layer. The back-propagation
learning algorithm [21] is commonly employed to train the
weights in order to reduce the difference between the output of
the output layer and its desired output. Note that in this paper, the
threshold value of every neuron in the network is set to zero. Let
Lo, Lh, Lc, and Li be the number of neurons in the output layer, the
hidden layer, the context layer, and the input layer, respectively. In
the Elman network, Lh is equal to Lc, that is, Lh ¼ Lc: In this paper,
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Fig. 1. The Elman network.
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the number of neurons in the input layer is equal to that in the
output layer and is also equal to the number of total features, that
is, R ¼ Lo ¼ Li.

Let fwn;n ¼ 12Ng be the code set of different words in a
corpus. The corpus, D, contains a collection of all given sentences.
During training, a sentence is randomly selected from the corpus
and fed to the network sequentially, word by word, starting from
the first word of the sentence. Let jDj be the total length of all the
sentences in the corpus, D. jDj is the total number of words in D.
Usually, jDj is several times the number of different words in the
corpus, so jDj4N. Initially, t ¼ 0, and all weights are set to small
random numbers. Let wðtÞ be the current word in a selected
sentence at time t, i.e.,

wðtÞ 2 D; wðtÞ 2 fwn;n ¼ 12Ng; t ¼ 12T, (1)

where wðTÞ is the last word of a training epoch. In this paper, we
set T ¼ 4jDj in one epoch. This means that in each epoch, we use
all the sentences in the corpus to train the Elman network four
times. Let the three weight matrices between layers be Uoh;Uhc,
and Uhi, where Uoh is an Lh by Lo matrix, Uhc is an Lc by Lh matrix,
and Uhi is an Li by Lh matrix, as shown in Fig. 1. The output vector
of the hidden layer is denoted as HðwðtÞÞ when wðtÞ is fed to the
input layer. HðwðtÞÞ is an Lh by 1 column vector with Lh elements.
Let Eðwðt þ 1ÞÞ be the output vector of the output layer when wðtÞ

is fed to the input layer. Eðwðt þ 1ÞÞ is an Lo by 1 column vector.
The function of the network is

HðwðtÞÞ ¼ jðUhiwðtÞ þ UhcHðwðt � 1ÞÞ, (2)

where j is a sigmoid activation function that operates on each
element of a vector [21]. We use the sigmoid function jðxÞ ¼
1:7159 � tanhðx � 2=3Þ for all neurons in the network. This
function gives a value roughly between þ1:7159 and �1:7159.
In Elman’s experiment, the first step is to update the weights, Uhi,
Uhc and Uoh, through training. The second step is to encode words
with a tree structure. All the attempts are aimed at minimizing
the error between the network outputs and the desired outputs to
satisfy the prediction

wðt þ 1Þ � Eðwðt þ 1ÞÞ ¼ jðUohHðwðtÞÞÞ. (3)

From a trained network, Elman uses a measure to locate
the relationships among words. Before training, he prepares a
list of words without inflections or rules. We will follow his
preparation on words. All words are coded with given lexical
codes. The available semantic combination is a fixed syntax
ðNounþ Verbþ NounÞ. Elman generates sentences and temporal
word sequences with this syntax grammar and collects all the
sentences in a training corpus, D, for training a network [3]. The
network has equal numbers of neuron units in its four layers. This
network is trained sequentially by using the generated sentences.
Elman defines the desired outputs as the sufficient words. For
example, when the first word ‘man’ in a generated sentence ‘men
sleep’ is used as the input, the sufficient word ‘sleep’ is its desired
output. The network is trained to predict the following word. This
training process continues until the variation of weights cannot be
reduced. After training, Elman inputs the generated sentences
again and collects all the output vectors of the hidden layer
corresponding to each individual word in a separate set,
sE

n ¼ fHðwðtÞÞjwðtÞ ¼ wng. Then he obtains new code, wE
n, for the

nth word by averaging all vectors in set sE
n:

wE
n ¼

1

jsE
nj

X
wðtÞ¼wn

wðtÞ2D

HðwðtÞÞ; n ¼ 12N, (4)

where jsE
nj is the total number of vectors inside set sE

n. Then, he
constructs a tree for the words based on their new codes, wE

n, to
explore the relationships among the words.

Note that there exist extra temporal relations in the generated
sentences with the simple fixed syntax Nounþ Verbþ Noun. For
example, when wðtÞ is a noun, wðt þ 2Þ is most likely a noun, and
when wðtÞ is a verb, wðt þ 3Þ is most likely a verb. These extra
relations are additive to resolve the dichotomous classification
between the verb and noun. A compound sentence may not possess
such extra relations, and may not have additive resolutions.

2.2. The semantic search

The semantic search constructs a semantic model and a
semantic measure. A manually designed semantic code set is
used in the model. It assumes that the encoding task will be
assigned to linguistics experts. It is hypothesized in advance that
one can build a raw semantic matrix, W, as

WR�N � ½w1 w2 . . . wN�R�N , (5)

where wn, n ¼ 12N, denotes the code of the nth stemmed word
and N denotes the total number of different words. A code of a
word is a column vector with R features as its elements:

wn � ½w1n;w2n; . . . ;wRn�
T. (6)

To manage abstract features, one may use the orthogonal space
configured by the characteristic decomposition of the matrix,
WWT:

WR�NWT
R�N ¼ FT

R�R

l1 0 � 0

0 l2 0 �

� 0 � 0

0 � 0 lR

2
66664

3
77775

R�R

FR�R, (7)

where

FR�R � ½f 1; f 2; . . . ; f R�R�R; kf rk ¼ 1,

and

lrXlrþ1; r ¼ 12R. (8)

Since WWT is a symmetric matrix, all its eigenvalues are real and
nonnegative numbers. Each eigenvalue li equals the variance of
the N projections of the codes on the ith eigenvector, f i, that is,
li ¼

PN
n¼1ðhwn � f iiÞ

2.

2.2.1. Multi-dimensional scaling (MDS) space

We select a set of Rs eigenvectors, ff r ; r ¼ 12Rs
g, from the R

eigenvectors to build a reduced feature space:

Fs
R�Rs � ½f 1; f 2; . . . ; f Rs �R�Rs . (9)

This selection is based on the distribution of the projections of the
codes on each eigenvector. An ideal distribution is an even
distribution with large variance. We select those eigenvectors,
ff r ; r ¼ 12Rs

g, that have large eigenvalues. The MDS space is

MDS � spanðFs
Þ. (10)
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These selected features are independent and significant. The new
code of each word in this space is

ws
n ¼ FsT

wn (11)

or

Ws
R�N ¼ FsT

WR�N . (12)

2.2.2. Representative vector of a whole document

A document, denoted as D, usually contains more than one
word. A representative vector should contain the semantic
meaning of the whole document. Two such measures are defined.
They are the peak-preferred measure,

na
D ¼ ½w

a
1;w

a
2; . . . ;w

a
R�

T,

where

wa
r ¼max

ws
n2D
kws

rnk; r ¼ 12R,

and the average-preferred measure,

nb
D ¼

X
ws

n2D

ws
n ¼ ½w

b
1;w

b
2; . . . ;w

b
R�

T,

where

wb
r ¼

X
ws

n2D

ws
rn; r ¼ 12R. (13)

The magnitude is normalized as follows:

vD ¼ kv
b
Dk
�1vb

D. (14)

The normalized measure, vD, is used here to represent the whole
document. A representative vector, vQ , for a whole query can be
obtained similarly by using Eqs. (13), (14).

2.2.3. Relation comparison

The relation score is defined as follows:

RSQ ðDÞ ¼
hvD; vQ i

kvDk � kvQk
¼ hvD; vQ i. (15)

2.3. Iterative re-encoding

Since Elman’s encoding method for the sentences generated
with simple fixed syntax, Nounþ Verbþ Noun, cannot be applied
appropriately to more complex sentences, we modified his
method. In our approach, each word initially has a random lexical
code, wj¼0

n ¼ ½w1n;w2n; . . . ;wRn�
T. After the jth training epoch, a

new raw code is calculated as follows:

wraw
n ¼

1

jsnj

X
wðtÞ¼wn

wðtÞ2D

jðUohHðwðt � 1ÞÞÞ; n ¼ 12N, (16)

where jsnj is the total number of words in a set, sn. This set
contains all the predictions for the word, wn, based on
all its precedent words, sn ¼ fjðUohHðwðt � 1ÞÞÞjwðtÞ ¼ wn, and
wðtÞ 2 Dg. This equation has a form slightly different from
that in (4). Namely, we directly average all the prediction vectors
for a specific word. The hidden layer may have a flexible number
of neurons in our modified method. Note that there exist other
promising methods to obtain a set of hidden representation codes
from the set sn, such as the self-organizing map [10], the multi-
layer perceptron [21] and the SIR method [17]. After each epoch,
all the codes are normalized with the following two equations:

Wave
R�N ¼Wraw

R�N �
1

N
Wraw

R�N

1 . . . 1

..

.
1 ..

.

1 . . . 1

2
64

3
75

N�N

,

wj
n ¼ wnom

n ¼ kwave
n k

�1wave
n , (17)

where

kwnk ¼ ðw
T
nwnÞ

0:5; n ¼ 12N. (18)

This normalization can prevent a diminished solution,
fkwnk	0;n ¼ 12Ng, derived by the back-propagation algorithm.

In summary, the process starts with a set of random lexical
codes for all of the stemmed words in a specific corpus. In each
epoch, we use all the sentences in the corpus to train
[16–18,12–14,21] an Elman network four times. We then compute
the new code, wj

n, for each word using Eqs. (16)–(18). The training
phase is stopped (finished) at the Jth epoch when there is no
significant code difference between two successive epochs. We
expect that such iterative encoding can extract certain salient
features, in addition to word frequencies, in the sentence
sequence which contains the writing style of the author or work.
This writing behavior is unlikely to be consciously manipulated by
the author and may serve as a robust stylistic signature. The
trained code after the Jth epoch, wn ¼ wJ

n ¼ ½w1n;w2n; . . . ;wRn�
T,

which is a vector with R features, is used in the semantic matrix
WR�N in (5) and the average-preferred measure (13). The
normalization step (14) and the relation score (15) are then
calculated based on this measure.

2.3.1. Example of literature categorization

In this experiment, we test the method’s ability to classify 36
plays written by William Shakespeare (WS).

The words were prepared according to Elman’s approach. We
removed the functional words, such as articles, conjunctions, be-
verbs, and even some words like ‘take,’ ‘get,’ ‘you,’ ‘I,’ etc. because
they cause noises across different semantic categories. We then
stemmed [6,20] each word as deep as possible to expose clean
relations among words. Note that the degree of stemming is a
much discussed lexical issue [3]. For example, it is not clear
whether to stem the structure: ‘-ness,’ ‘-able,’ ‘-tion’. A trained
code set was generated using a training corpus that contained the
36 works. We considered each play as the query input and
computed the relation score between this query and one other
play. Fig. 2 shows the relation tree of the 36 plays.

This tree was constructed by applying the methods in [5,8,22]
to 630 scores of pairs of two plays. We also include the genre of
each play in the right column of the figure, where ‘h’ denotes
‘history,’ ‘t’ denotes ‘tragedy,’ ‘c’ denotes ‘comedy,’ and ‘r’ denotes
‘romance.’ The categorization result is very consistent with the
genre [25]. In this example, we set Di ¼ 1; . . . ;36, Qi ¼ 1; . . . ;36,
N ¼ 10;000 (words with high frequencies of occurrence),
Lh ¼ Lc ¼ 200, and Lo ¼ Li ¼ RS

¼ R ¼ 64 (features). The numbers
in the figure indicate the publication years of the plays.

We provide a semantic search tool using the corpus of
Shakespeare’s comedies and tragedies at http://red.csie.ntu.edu.
tw/literature/SAS.htm. Two search results are listed in Table 1.
In this search, we set Di ¼ 1; . . . ;7777 (the 7777 longest
conversations in the 23 tragedies and comedies), N ¼ 10;000,
Lo ¼ Li ¼ R ¼ 100, Lh ¼ Lc ¼ 200, and RS

¼ 64. Each query indexed
one conversation.
3. Coding for polysemous words

Following the studies ascribed in the previous section, we
further developed a code structure for polysemous words that
resolves various degrees of multiple meanings of a single word.
Based on the structure, we define a new measure.

To illustrate, the meaning of ‘bank’ in the sentence
‘I keep money in a bank’ differs from that in ‘I fish on a river

http://red.csie.ntu.edu.tw/literature/SAS.htm
http://red.csie.ntu.edu.tw/literature/SAS.htm
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Fig. 2. Categorization of Shakespeare’s plays.

Table 1
Search results by semantic associative search

Query Search result

She loves kiss BENVOLIO: Tut, you saw her fair, none else being by herself

poised with herself in either eye; but in that crystal scales let

there be weigh’d. Your lady’s love against some other maid that I

will show you shining at this feast, and she shall scant show well

that now shows best. – Romeo and Juliet

Armies die in

blood

MARCUS AND RONICUS: Which of your hands hath not defended

Rome, and rear’d aloft the bloody battle-axe, writing destruction

on the enemy’s castle? O, none of both but are of high desert my

hand hath been but idle; let it serve. To ransom my two nephews

from their death; then have I kept it to a worthy end. – Titus

Andronicus
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bank.’ Furthermore, a single code of the word ‘the’ will
cause difficult in resolving its following word, for example
the two sentences, ‘the dog is happy’ and ‘the tears well up.’
It is more complicated about the meanings of ‘will’ in ‘I will
myself to say no’ and ‘I will say no’, it is both polysemous and
functional.
In Section 2, we treat the code of a word as a vector. This
design is reasonable and expressive if most of the meanings
of a word are close to the vector’s position. This means a
single position represents an isolated meaning. However, if a
position is a compromise between two remote distributions of
two separated meanings, then this position will carry no meaning.
There is no semantic meaning of this word around this position.
For example, the word ‘lead’ has two main meanings. If we encode
the word by averaging all its meanings, the new code will be
meaningless.

It may be practicable to code the word ‘lead’ into two vectors,
one for each distribution of its semantics. The problem is
that how far of two distributions should we code a word
as two vectors. The meanings of ‘lead’ in ‘lead is a metal’ and in
‘he leads us’ can be separated clearly. But, the meanings of
‘respect’ in ‘I respect my teacher’ and in ‘they differ in some
respects’ are very difficult to separate. Moreover, the meanings of
‘eye’ in ‘she winks her blue eyes’ and in ‘the typhoon eye is
advancing’ are also very difficult to separate. No matter where the
threshold is set, there is always a loss of information, because the
degrees of the multi-semantics of a word constitute a continuous
spectrum. Hence, we must solve the problem in another way, by
designing a code structure that incorporates more than one
semantic meaning and has the sense as those manually designed
features in [26].
3.1. The idea

In Section 2, we collected a word’s information by averaging all
the predictions with (16) from all its precedent words after each
epoch. When we study the variance structure of these predictions,
we find detailed multi-semantic information. Let the matrix V

contains all the prediction vectors of a word. Each row of V records
a prediction vector and V is an R by jsnj matrix. The eigenvalues of
VTV are the variances of the predictions projected on the
eigenvectors. By displaying the eigenvalues in descendant values,
see Fig. 3, we observe the semantic contents of a word. Fig. 3
shows the spectrum of the largest 15 eigenvalues for 5000 words.
In this figure, all the eigenvalues of a word are divided by the
maximal one. This figure was obtained by using the first 5000 ¼ N

high occurrence words in the corpus D ¼ 36 plays by Shakespeare.
We set Lo ¼ Li ¼ R ¼ RS ¼ 64 and Lh ¼ Lc ¼ 200. We used re-
encoding (16)–(18) to obtain this figure. We collected the
predictions for each word after the Jth ¼ 4th epoch. These
collected predictions were then used in VTV to obtain the
eigenvalues. Words that have sharp shapes, such as ‘miss,’ ‘rag,’
‘lead,’ ‘bank,’ and ‘scream,’ carry concentrated semantic meanings.
A word with a concave or convex shape carries wide meanings. A
word with a straight slope shape, such as ‘we’ in this figure, has an
even semantic distribution. Functional words or meaningless
verbs like ‘take,’ ‘get,’ ‘go’, etc., may have such even distributions.
When there are two or more concentrated semantic distributions,
a single eigenvector cannot represent the semantic meanings of
the word. The summation of all the eigenvalues for a word carries
the same meaning as that obtained with (4). Fig. 3 also shows that
the meaning of each word can be approximately expanded in a 13-
D (or less) dimensional manifold embedded in a 64-D space. This
result is comparable to that of the Chinese character (word) where
each Chinese character has roughly nine meanings on average.
This result has also been confirmed by inspecting the number of
hidden features by factorizing the object matrix, V, using the NMF
method into two matrices [11]. The number of hidden features is
consistent with the result in this figure. Note that we will skip the
discussion on designing multiple codes for the multiple meanings
of a single word where each code corresponds to a single meaning.
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Fig. 3. Distributions of eigenvalues for each word. Six distributions are marked

with their words. They are ‘we,’ ‘miss,’ ‘rag,’ ‘lead,’ ‘bank,’ and ‘scream.’

Table 2
The largest ‘RSM’ adjectives

Adjective RSM

Matchless 1.00441

Tyrannous 1.004039

Ungentle 1.003496

Pent 1.003416

Arrant 1.003406

Regent 1.002543

Specular 1.002293

Breezy 1.002263

Insolent 1.002082

Thersitical 1.001912

Perplexed 1.001762

Piteous 1.001732

Queer 1.001712

Tough 1.001671

Traversable 1.001621

Moderate 1.001321
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3.2. Multi-meaning re-encoding

To save the rich semantic contents of a word that have a
continuous spectrum, we have developed a code structure with
the following constraints:

YR

r¼1

wrn ¼ 1; wrnX0,

n ¼ 12N; r ¼ 12R. (19)

These constraints are used in each training epoch in place of
normalization (17), (18). Instead of a vector position, this new
code has a form with a unit volume and all positive features. In
order to satisfy this constraint, we remove those prediction
vectors with negative features and save those predictions with
nonnegative features to estimate the updated code in each epoch.
Note that all positive features can also be obtained by using a
sigmoid function with non-negative outputs in the output layer.
We normalize every saved output, jðUohHðwðt � 1ÞÞÞ, to satisfy the
constraints in (19). Normalization,

QR
r¼1wrn ¼ 1, can be accom-

plished by applying a logarithm function to the vector elements.
Note that a new code obtained by combining two other codes

will keep this constraint. The operation is

wnew
rn ¼ wold1

rn �wold2
rn ; r ¼ 12R. (20)

This operation (20) strengthens the consistent features of two old
codes and neutralizes the discordant features. It benefits compu-
tation. For functional words, because discordance neutralization
happens in every feature, their codes will have a form similar to
that of a unit hypercube with each feature equal to 1.

We normalize each saved vector, jðUohHðwðt � 1ÞÞÞ, after the
training in each epoch in order to satisfy the constraint in (19). Let
jnom

rn ðwðt � 1ÞÞ be the rth element of the normalized vector.
Instead of using Eqs. (16)–(18), we calculate the updated code
vector after each epoch as follows:

wj
rn ¼

Y
wðtÞ¼wn

wðtÞ2D

jnom
rn ðwðt � 1ÞÞ,

r ¼ 12R; n ¼ 12N. (21)

The constraint for the updated code,
QR

r¼1wj
rn ¼ 1, is naturally

satisfied.
Different from the measure in (13), we write a new measure

‘RSM’ (richness in semantic meaning) as the product of all features
larger than 1:

RSM �
YR

r¼1

maxðwrn;1Þ. (22)

Table 2 shows the adjectives which have the largest RSM values in
the corpus of Shakespeare’s 36 plays. We set N ¼ 10;000,
Lo ¼ Li ¼ R ¼ RS ¼ 64, and Lh ¼ Lc ¼ 200 to obtain the results
shown in this table.

An RSM value may also reveal the richness of semantic
meaning of a whole play. Table 3 shows the values for
Shakespeare’s plays [1,19,25]. We used the same trained codes
as those shown in Table 2. A single vector was obtained by
combing all of the word vectors (all jDj words in a play D) using
(20), that is, wD

r ¼
QjDj

wi2Dwri, r ¼ 12R. We divided the RSM value by
the total number of words in each play and applied a natural
logarithm function to it: RSMD

� lnðð1=jDjÞ
QR

r¼1maxðwD
r ;1ÞÞ. This

value, RSMD, shows the average meaning of a word in a whole
play. From this table, the play ‘Winter’s Tale’ has the largest RSMD

value. The plays published after the year 1604 have relatively large
RSMD values. Note that when we do not divide the RSMD value by
the total number of words, jDj, this value will roughly proportion
to jDj. So, Hamlet would have the highest value because it
contains the largest number of words.

3.3. Example of literature similarity

Since trained codes can be used to reveal the writing style of an
author, they may serve as personalized codes. We present an
example based on a comparison of the writing styles of different
authors. Four literary corpuses of works by four writers were
prepared individually. These four writers are WS, Mark Twain
(MT), Stephen Leacock (SL), and John Fletcher (JF). There are 36
plays in the WS corpus, 16 works in the MT corpus, four works in
the JF corpus, and four works in the SL corpus. All of the works are
listed along with their years of publication under the ‘Year’ in a
separate row in Tables 4–8. We obtained a set of codes for each



ARTICLE IN PRESS

Table 3

‘RSMD ’ values of the dramas by Shakespeare

Title Genre RSMD

Winter’s Tale r 2.2987

Cymbeline r 2.2986

The Tempest r 2.2986

Pericles r 2.2971

Timon of Athens t 2.2962

Coriolanus t 2.2958

Henry VI, part 1 h 2.295

Antony and Cleopatra t 2.2944

All’s Well That Ends Well c 2.294

King Lear t 2.2934

Othello t 2.2932

Measure for Measure c 2.292

Macbeth t 2.2919

Henry VI, part 3 h 2.2916

Henry VI, part 2 h 2.2913

Twelfth Night c 2.2901

As You Like It c 2.2893

Merry Wives of Windsor c 2.2892

Julius Caeser t 2.2892

Henry IV, part 1 h 2.2891

Much Ado About Nothing c 2.2888

Henry V h 2.2883

Midsummer Night’s Dream c 2.288

Hamlet t 2.2872

Troiles and Cressida c 2.2869

Henry IV, part 2 h 2.2857

King John h 2.2839

Richard II h 2.2837

Taming of the Shrew c 2.2836

Merchant of Venice c 2.2835

Richard III h 2.2832

Romeo and Juliet t 2.2825

Love’s Labour’s Lost c 2.2825

Titus Andronicus t 2.2818

Comedy of Errors c 2.2806

Two Gentlemen of Verona c 2.2805

Table 4

‘RSMD ’ values of William Shakespeare’s plays

Title Year Code WS Code JF Code MT Code SL Grade

Henry VI, part 1 1589 2.2950 1.3379 1.1235 1.1424 74.24

Henry VI, part 2 1590 2.2913 1.4015 1.2489 1.2625 78.44

Henry VI, part 3 1591 2.2916 1.4393 1.3238 1.2750 80.17

Richard III 1592 2.2832 1.4639 1.3378 1.3084 81.06

Two Gentlemen of Verona 1592 2.2805 1.5195 1.0887 1.3018 78.21

Comedy of Errors 1593 2.2806 1.6138 0.8666 1.2728 75.98

Titus Andronicus 1593 2.2818 1.4603 1.0045 1.1484 74.16

Taming of the Shrew 1594 2.2836 1.4448 0.7780 1.2535 72.23

King John 1594 2.2839 1.4601 1.3679 1.3551 82.07

Love’s Labour’s Lost 1595 2.2825 1.4962 1.1593 1.2910 78.76

Richard II 1595 2.2837 1.4791 1.3059 1.3137 80.90

Romeo and Juliet 1595 2.2825 1.5085 1.3037 1.2458 80.33

Midsummer Night’s Dream 1595 2.2880 1.3977 0.9564 1.1792 73.13

Merchant of Venice 1596 2.2835 1.4813 1.2138 1.3739 80.45

Henry IV, part 1 1596 2.2891 1.4723 1.2357 1.2910 79.57

Merry Wives of Windsor 1597 2.2892 1.4904 1.2515 1.2705 79.76

Henry IV, part 2 1597 2.2857 1.4954 1.2951 1.3690 81.74

Much Ado About Nothing 1598 2.2888 1.5120 1.2034 1.3851 80.93

Average RSMD 2.2858 1.4708 1.1702 1.2799

Percentage 99.44 79.48 65.46 69.43 78.5

Table 5

‘RSMD ’ values of William Shakespeare’s works

Title Year Code WS Code JF Code MT Code SL Grade

Henry V 1599 2.2883 1.4409 1.1987 1.3040 78.80

Julius Caeser 1599 2.2892 1.4500 0.9923 1.2715 75.61

As You Like It 1599 2.2893 1.5115 1.2497 1.4021 81.81

Hamlet 1600 2.2872 1.4710 1.3317 1.3843 82.14

Twelfth Night 1601 2.2901 1.4949 1.2007 1.3469 80.16

Troiles and Cressida 1601 2.2869 1.4068 0.7687 1.1462 70.17

All’s Well That Ends Well 1602 2.2940 1.5647 1.4159 1.4103 85.01

Measure for Measure 1604 2.2920 1.5114 1.2466 1.3190 80.66

Othello 1604 2.2932 1.4826 1.1933 1.2732 78.92

King Lear 1605 2.2934 1.5260 1.3456 1.3121 82.17

Macbeth 1605 2.2919 1.4771 1.1931 1.2977 79.16

Antony and Cleopatra 1606 2.2944 1.4473 1.1919 1.3102 78.94

Coriolanus 1607 2.2958 1.5119 1.2147 1.3306 80.43

Timon of Athens 1607 2.2962 1.5284 1.0982 1.3295 79.01

Pericles 1607 2.2971 1.5141 1.3184 1.4117 83.02

Cymbeline 1609 2.2986 1.5178 1.2779 1.3663 81.90

Winter’s Tale 1610 2.2987 1.5310 1.2886 1.3973 82.65

The Tempest 1611 2.2981 1.4847 1.2412 1.2822 79.80

Average RSMD 2.2930 1.4929 1.2093 1.3275

Percentage 99.75 80.68 67.64 72.00 80.0

Table 6

‘RSMD ’ values of John Fletcher’s works

Title Year Code WS Code JF Code MT Code SL Grade

Philaster 1609 2.1800 1.8504 1.4028 1.4884 88.51

The Maid’s Tragedy 1610 2.2068 1.8450 1.4337 1.4465 88.59

A King and No King 1611 2.0340 1.8409 1.0689 1.3870 80.75

The Scornful Lady 1615 2.0709 1.8288 1.1829 1.4653 83.64

Average RSMD 2.1229 1.8413 1.2721 1.4468

Percentage 92.35 99.51 71.15 78.48 85.4
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writer by training an individual Elman network using his corpus.
This set of codes was then used in a specific work to test its
stylistic similarity. The RSMD value was calculated for that specific
work. The results are listed in Tables 4–8.

The four sets of trained codes are listed in columns 326 under
‘Code WS,’ ‘Code JF,’ ‘Code MT,’ and ‘Code SL.’ These trained codes
were then used in a specific work to compute its RSMD value. In
the five tables, the first column lists the titles of the specific
works, and the second column lists their publication years. The
third to sixth columns list the calculated RSMD values.

The high and increasing values after 1604 in the WS column of
Tables 4 and 5 show why people name the years around 1604 ‘the
peak’ of Shakespeare. To our knowledge, this value is the only one
that can reveal the peak. The RSMD value of Mark Twain’s fiction is
small when we use the codes trained by Shakespeare’s corpus,
which implies that the connections of words and senses of
sentences between the two masters are different. The largest
RSMD of a writer can usually be reached by using his or her codes.

The last column lists the average percentages of the four RSMD

values in each row. For example, the ‘Grade’ of the play ‘Othello’
in Table 5 is 0.7892, which is equal to ð2:2932=2:2987Þ þ
ð1:4826=1:8504Þþ ð1:1933=1:7878Þ þ ð1:2732=1:8436Þ ¼ 0:7892
¼ 78:92ð100%Þ. The denominator 2.2987 (1.8504, 1.7878, 1.8436)
is the largest RSMD value among all the RSMD values obtained
using the WS code (JF code, MT code, SL code). This means that
‘Winter’s Tale’ (‘Philaster,’ ‘A Horse’s Tale,’ ‘Arcadian Adventures
with the Idle Rich’) has the largest RSMD among all of the WS
works (JF works, MT works, SL works). A work that possesses
shared semantics can be revealed by a large ‘Grade’ value, such as
‘The Maid’s Tragedy’ in Table 6.
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Table 7

‘RSMD ’ values of Mark Twain’s works

Title Year Code WS Code JF Code MT Code SL Grade

Innocents Abroad 1869 1.6052 1.1636 1.6691 1.3857 75.31

Roughing It 1872 1.5382 1.1897 1.6976 1.4357 76.01

The Gilded Age 1873 1.4102 1.1639 1.7026 1.4506 74.54

The Adventures of Tom Sawyer 1876 1.5299 1.3450 1.7301 1.4472 78.63

A Tramp Abroad 1880 1.5355 1.1839 1.7162 1.4467 76.31

The Prince and the Pauper 1881 1.8501 1.3453 1.7155 1.4027 81.31

Life on the Mississippi 1883 1.5555 1.1945 1.7319 1.4949 77.55

The Adventures of Huckleberry Finn 1885 1.4423 1.2508 1.7573 1.4659 77.04

A Connecticut Yankee in King Arthur’s Court 1889 1.7397 1.3036 1.7504 1.4848 81.14

The American Claimant 1892 1.4552 1.2501 1.7620 1.4867 77.52

The Tragedy of Pudd’n’head Wilson 1894 1.3068 1.1822 1.7635 1.3002 72.48

The Mysterious Stranger 1900 1.7558 1.3743 1.7748 1.5067 82.91

A Double Barrelled Detective Story 1902 1.3951 1.2433 1.7714 1.4561 76.49

A Dog’s Tale 1904 1.7127 1.3912 1.7783 1.6225 84.29

What Is Man? 1906 1.5695 1.2644 1.7763 1.5450 79.94

A Horse’s Tale 1907 1.6603 1.3180 1.7878 1.4704 80.80

Average RSMD 1.5664 1.2602 1.7428 1.4626

Percentage 68.14 68.11 97.48 79.33 78.3

Table 8

‘RSMD ’ values of Stephen Leacock’s works

Title Year Code WS Code JF Code MT Code SL Grade

Sunshine Sketches of a Little Town 1912 1.1234 1.1873 0.9568 1.8309 66.47

Arcadian Adventures With the Idle Rich 1914 1.0495 1.0316 0.7132 1.8436 60.32

Frenzied Fiction 1918 1.4986 1.2661 1.5312 1.8429 79.81

Nonsense Novels 1920 1.4270 1.2003 1.2693 1.8295 74.30

Average RSMD 1.2746 1.1713 1.1176 1.8367

Percentage 55.45 63.3 62.51 99.63 70.2
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The second row above the bottom in each of the five tables lists
the average of all of the RSMD values above it in the same table.
The bottom row lists the percentage of the averaged RSMD value.
For example, the bottom value in the third column in Table 6 is
0:9235 ¼ 2:1229

2:2987. This value was obtained for the John Fletcher’s
four works by using the Shakespeare code set. This value is the
highest one across any two authors. The corresponding value,
obtained by switching the roles of these two authors, is 0.8068, as
shown in Table 5. The value 0.8068 is the second highest one. This
evidence of shared styles between the two masters agrees with
the view expressed in [1].

4. Summary

In summary, we modified Elman’s encoding method to
construct compositional representations, wJ

n, for words. This
construction is both partial and tempered by qualifications of
the whole corpus. It extracts temporal contents from the whole
corpus epoch after epoch and may support for productive
behavior or support inferencing. The representations can serve
as a major role in ‘quasi-regular’ domains and serve to the abstract
structure which underlies the surface strings of sentences or
sequences of words. They have, roughly, a functional composi-
tionality without being syntactically compositional (see ‘Sentence
Generating Function using Neural Network’ in Website
http://red.csie.ntu.edu.tw/english/Usage/index.php). The experi-
mental results on categorizing literary works are consistent with
the genre [25].
We further developed a richness measure, RSM, for the
multi-semantic contents of a word that have a continuous
spectrum and applied it to resolve ‘the peak’ of Shakespeare
1604. The results, largest value 0.9235 in Table 6 and largest value
0.8068 in Table 5, show the shared styles between John Fletcher
and Shakespeare. These results agree with the view expressed in
[1]. The RSM can be used to reveal and discriminate the writing
styles of authors and works. Both the representations, wJ

n, and
measure, RSM, can facilitate other research, such as studies on
personalized codes, linguistic analysis, authorship identity, cate-
gorization, etc.
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