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knowledge about �MMMp. In this figure, we also display the MSE of the
MMSE estimator derived in [4]. The total number of snapshots isN =
20 and � = 20. As can be observed, for a given number of snapshots,
the BB is smaller when Lk = 1 than whenK = 1, which confirms the
previous observations made on the CRB. Also, as could be expected,
the BB decreases as � increases, i.e., as the prior is more and more
informative. Finally, we note that the MMSE estimator has a MSE close
to the BB only for large values of �.

V. CONCLUDING REMARKS

This correspondence derived lower bounds on the estimation of a co-
variance matrixMMMp using heterogeneous samples ZZZk; k = 1; . . . ; K ,
which have covariance matrices MMMk different from MMMp. When MMMp

is deterministic, we showed that consistent estimation of MMMp is not
feasible, when all samples share the same covariance matrix, i.e.,
when K = 1. Indeed, the CRB does not converge to zero as the
number of training samples increases. In contrast, if all snapshots have
different covariance matrices, randomly distributed around MMMp (i.e.,
Lk = 1, for k = 1; . . . ; K), the CRB goes to zero when the number
of training samples increases. The correspondence also derived the
Bayesian bound associated to a random covariance matrix MMMp. The
bounds derived herein enable one to quantify the degradation induced
by heterogeneity, and can serve as references for any estimator of the
covariance matrix MMMp.
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Cross Entropy Approximation of Structured Gaussian
Covariance Matrices

Cheng-Yuan Liou and Bruce R. Musicus

Abstract—We apply two variations of the principle of minimum cross
entropy (the Kullback information measure) to fit parameterized proba-
bility density models to observed data densities. For an array beamforming
problem with incident narrowband point sources, sensors, and
colored noise, both approaches yield eigenvector fitting methods similar to
that of the MUSIC algorithm and of the oblique transformation in factor
analysis. Furthermore, the corresponding cross entropies (CE) are related
to the MDL model order selection criterion .

Index Terms—Array beamforming, eigenvector methods, factor analysis,
generalized principle component analysis, Kullback information measure,
minimum cross entropy (CE), oblique transformation, stochastic estima-
tion, structured covariance.

I. INTRODUCTION

Many existing high resolution methods for spectral analysis and for
optimal beamforming utilize covariance matrices estimated from ob-
served data. Often, an underlying structure for the covariance matrix
is known in advance, and our goal is to estimate the covariance matrix
with this structure which best fits the observed data. Previous litera-
ture has suggested a variety of methods of optimally estimating struc-
tured covariance matrices from data [1]–[5]. In this correspondence,
we will apply the minimum cross entropy (CE) and minimum reverse
cross-entropy (RCE) [6] principles to estimate the covariance matrix.
These principles have proved to be quite powerful in a wide variety of
signal processing applications, such as complex independent compo-
nent analysis [7], [8], encoding mechanism [9]. They have been justi-
fied as being “optimal” under suitable assumptions. In Section II, we
apply the CE and RCE procedures to the problem of estimating struc-
tured covariance matrices, and in Section III we demonstrate the utility
of the idea for a beamforming application.

II. PROBLEM STATEMENT

Let x be an N -dimensional real or complex random vector. Assume
that a Gaussian probability density for x is either known a priori or has
been estimated by some procedure from observed data

p(x) = N(m;R) (1)

where m is the expected value of x, and R is the covariance matrix,
R = E[(x�m)(x�m)H ], and where xH is the Hermitian (complex
conjugate transpose) of x. Suppose we wish to approximate this p(x)
with a parameterized probability density function (pdf)

q�(x) = N(m�; R�) (2)

where � denotes the unknown parameters in the model q�(x) which are
to be estimated. Conceptually, we wish to choose � to make q�(x) op-

Manuscript received March 25, 2007; revised January 8, 2008. The associate
editor coordinating the review of this manuscript and approving it for publica-
tion was Dr. Sven Nordebo.

C.-Y. Liou is with the Department of Computer Science and Information
Engineering, National Taiwan University, Taipei, Taiwan, R.O.C. (e-mail:
cyliou@csie.ntu.edu.tw).

B. R. Musicus resides in Boston, MA 02421 USA (e-mail: bmusicus@rcn.
com).

Digital Object Identifier 10.1109/TSP.2008.917878

1053-587X/$25.00 © 2008 IEEE

Authorized licensed use limited to: National Taiwan University. Downloaded on March 18, 2009 at 05:38 from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 56, NO. 7, JULY 2008 3363

timally match p(x). An appropriate objective function is the Kullback
information measure [6], otherwise known as the minimum CE prin-
ciple [10]. Because this measure is asymmetric, we can apply it in two
different ways to this problem. Note that there exist symmetric mea-
sures, such as the J -divergence [11]. Following [7], [8], [10], we call
these the “Cross-Entropy” and “Reverse Cross-Entropy” methods

CE : q̂�  min
�

H(q�; p) (3)

RCE : q̂�  min
�

H(p; q�) (4)

where

H(p1; p2) = p1(x) log
p1(x)

p2(x)
dx: (5)

Kullback [6] has argued that H(p1; p2) measures the mean amount of
information for discriminating in favor of the hypothesis that p1 is the
correct density of x rather than p2. The measure H(p1; p2) has several
pleasing mathematical properties: it is convex in p1, and convex in p2,
and attains its minimum value of zero when p1(x) = p2(x) almost
everywhere. Another useful property is that estimating � from either
(3) or (4) is straightforward. Substitute (1) and (2) into the CE and RCE
formulas to obtain

CE : H(q�; p) =�ftr(R
�1R�)�N � log jR�1R�j

+ (m
�
�m)HR�1(m

�
�m)g

RCE : H(p; q�) =�ftr(R
�1

�
R)�N � log jR�1

�
Rj

+ (m
�
�m)HR�1

�
(m

�
�m)g

where � = 1=2 when x is real and � = 1 when x is complex.
To simplify the remainder of the discussion, assume that the mean is

known, m
�
= m, so that we can focus on the estimation of the covari-

ance matrix and compare the results with those by Burg, Luenberger,
Wenger [4] and Gray, Anderson, Sim [5] . The two estimation prob-
lems reduce to minimizing

CE : H(q�; p) = �ftr(R�1R�)�N � log jR�1R�jg (6)

RCE : H(p; q�) = �ftr(R�1
�
R)�N � log jR�1

�
Rjg (7)

Setting the gradients of the above two objective functions with re-
spect to � to zero, we obtain the necessary conditions that � be the
optimal solution

CE : tr R�1 �R�1
�

@R�
@�i �=�

= 0 (8)

RCE : tr (R�R�)
@R�1

�

@�i �=�

= 0 (9)

for all i, where �i is the ith element of �. When R� is invertible and
differentiable in �

@R�1
�

@�i
= �R�1

�

@R�
@�i

R�1
�
: (10)

Substituting this into the RCE formula gives an alternate set of neces-
sary conditions for the optimal RCE solution

RCE : tr R�1
�
RR�1

�
�R�1

�

@R�
@�i �=�

= 0: (11)

III. APPLICATION TO ARRAY BEAMFORMING

In this section, we will apply the CE and RCE methods to fitting a
low rank plus noise covariance matrix to data. Such problems arise in
a variety of contexts, including narrowband sensor array processing,
harmonic retrieval, and factor analysis. We focus on the array problem.
Let x[n] = (x1[n]; . . . ; xN [n])

T be a vector of sensor measurements
at time n, where N is the total number of sensors in the array. Assume
that the signal is narrowband (perhaps because the sensor data has been
preprocessed through a fast Fourier transform of each sensor’s data).
Let our initial pdf estimate for the data be given by p(x[n]) = N(0; R),
where R is any non-parameterized estimate of the signal covariance,
such as R = (1=K) K

k=1
x[k]xH [k] where K snapshots of array

data are used.
Now suppose we wish to model the data x[n] as

x[n] =

P

i=1

si[n]ui + �w[n] (12)

where s1[n]; . . . ; sP [n] are P source signals, P < N , arriving from
unknown directions u

1
; . . . ; u

P
; with additive noise w[n] with gain �.

Assume the number P is known. Suppose that signals si[n] are statis-
tically independent, real or complex zero mean Gaussian random vari-
ables with covariance �i > 0, and that the noise samples w[n] are
statistically independent, real or complex zero mean Gaussian random
variables with covariance W

p(si[n]) = N(0;�i) (13)

p(w[n]) = N(0;W ): (14)

Thus, the parameterized model pdf of x[n] is Gaussian

q�(x[n]) = N(0; R�) (15)

where

R� =

P

i=1

�iuiu
H

i
+ �2W: (16)

We will assume that the noise covariance W is known, but that all
the other parameters � = (�1; . . . ;�P ; u1; . . . uP ; �)

T must be es-
timated. For convenience, define

R� = U�UH + �2W (17)
where

U = [u
1

u
2
� � � u

P
]

and

� =

�1 0
. . .

0 �P

: (18)

Suppose there are no a priori constraints on the matrix U , and that the
only constraints on � are that �i > 0. This would typically be true
if the array were uncalibrated, or subject to heavy unknown multipath
distortion. (Note that because we assume an uncalibrated array, we will
not be able to directly derive information about the direction of arrival.)
Appendices A and B apply the CE and RCE criteria to this model. They
show that the solution to these two problems are quite similar, and can
be found by the following algorithm.
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CE and RCE BEAMFORMING ALGORITHMS
1) Find the generalized eigenvector ui and eigenvalue �i solutions

to

�iR
�1
ui = W

�1
ui (19)

with normalization constraint uHi W
�1uj = �i;j .

2) Sort the eigenvectors and eigenvalues so that �1 � �2 � � � � �
�N . Then the optimal structured covariance matrix approximation
R̂� to R is

R̂� = (u1 u2 � � � uP )

�

�1 � �2 0
. . .

0 �P � �2

�

uH1
uH2
:

:

:

uHP

+ �
2
W (20)

where

1

�
= 1

N�P
N
i=P+1

1
�

for CE

�2 = 1
N�P

N
i=P+1 �i for RCE

(21)

3) The CE for the optimal model is

CE : H(q̂�; p) = �

N

i=P+1

log
�i

�2
(22)

RCE : H(p; q̂�) = �

N

i=P+1

log
�̂2

�i
: (23)

The estimates of R̂� and �̂2 will be unique if and only if �P > �P+1

(The estimate of U will not be unique.)
An interesting alternative form for the CE formulas can be found by

substituting the value of �̂2 from (21) into (22)

CE : H(q̂�; p) = �(N � P ) log

1
�

; . . . ; 1
�

avg

1
�

; . . . ; 1
�

geo

(24)

RCE : H(p; q̂�) = �(N � P ) log
[�P+1; . . . ; �N ]avg
[�P+1; . . . ; �N ]geo

(25)

where

[�P+1; . . . ; �N ]avg =
1

N � P

N

i=P+1

�i (26)

[�P+1; . . . ; �N ]geo = (�P+1�P+2 � � � �N)1=(N�P ): (27)

The CEs are proportional to the log of the ratio of the arithmetic mean
to the geometric mean of the eigenvalues (or their inverses) that are
not used in building U . The CEs will, therefore, be positive, and will
attain their minimum value of zero only if the geometric average of
�P+1; . . . ; �N (or their inverses) equals their arithmetic mean. This
will only occur if theseN �P smallest generalized eigenvalues are all
equal. Note that (21), (24), and (25) have either CE or RCE meaning
and are useful in identifying the number P .

Note the similarity of the RCE formula to the MDL order determi-
nation algorithm suggested by Wax and Kailath [2]. The RCE crite-
rion is also strongly related to the Maximum Likelihood problem of

estimating the structured covariance matrix given independent obser-
vations x1; . . . ; xK

R̂�  max
�

log p(x1; . . . ; xK j�) (28)

where

p(x1; . . . ; xK j�) =

K

i=1

p(xij�) (29)

and

p(xij�) = N(0; R): (30)

This is because

H(p; q�) =
1

K
log p(x1; . . . ; xK j�)� �(N + log jRj) (31)

Since the second term in (31) does not depend on �, the RCE estimate
of R� will be identical to the ML estimate.

For the special case when the background noise is white Gaussian
noise W = I , the ui must satisfy

Rui = �iui (32)

and, thus, the ui are the eigenvectors of the observed data correlation
matrix R. This special case is thus quite similar to that used in the
MUSIC algorithm [1] and other similar beamforming algorithms.

If subroutines for computing generalized eigenvectors are not avail-
able, we can use subroutines for computing eigenvectors of symmetric
positive definite matrices as follows. Factor W = W 1=2WH=2 where
W 1=2 is any square root of W and WH=2 is its Hermitian. Then to
compute the ui

1) From the whitened data correlation matrix

~R = W
�1=2

RW
�H=2 (33)

where W�1=2 is the inverse of W 1=2. Note that ~R is symmetric
and positive definite.

2) Solve for the eigenvectors ti and corresponding eigenvalues �i
of ~R.

~Rti = �iti (34)

where tTj ti = �i:j . Sort these so that the eigenvalues are in de-
scending order.

3) Then

ui = W
1=2

ti (35)

It is also interesting to consider the effect of using the structured
covariance matrix estimate when forming either a classical or optimal
beamformer. Let w0be the ideal array response for a signal in a partic-
ular direction. The classical beamformer estimates the signal s[n] from
the array data as s[n] = wT

0 x[n]. The expected received power from
this direction is then E[s2[n]] = wT

0 R�w0. Now suppose that wo is
in the space spanned by the columns of R�1U , i.e., w0 = R�1U�

for some vector �. It is shown in Appendix A that R�1� U = R�1U .
Therefore

w
H
0 R�w0 = �

H
U
H
R
�H

R�R
�1
U�

= �
H
U
H
R
�H

U�

= w
H
0 Rw0 (36)

In this case, replacing R with the structured covariance estimate R�

in the classical beamformer makes no difference. However, if w0 is
not in the subspace spanned by R�1u1; . . . ; R

�1uP , then R�1� w0 6=
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R�1w
0
, and using the structured covariance estimate in the classical

beamformer will yield a different beam pattern.
A similar statement holds for the optimum minimum variance beam-

former, s[n] = wTx[n], which uses a window w designed such that
the expected response energywTR�w is minimized subject to the con-
straint that the response to a plane wave from the direction of interest is
unity, wTw

0
= 1. The solution is w = (wT

0
R�1� w

0
)�1R�1� w

0
. Note

that if w
0

is in the subspace spanned by the columns of U , then there
exists some vector � such that w

0
= U�. Since R�1� U = R�1U ,

R
�1

� w
0
= R

�1

� U�

= R
�1
U�

= R
�1
w
0

(37)

which in turn implies

w = w
T
0
R
�1

� w
0

�1

R
�1

� w
0

= w
T
0
R
�1
w
0

�1

R
�1
w
0
: (38)

In this case, replacing R with the structured covariance estimate R� in
the optimal beamformer makes no difference. However, if w

0
is not in

the subspace spanned by the columns of U , then R�1� w
0
6= R�1w

0
,

and using the structured covariance estimate in the optimal beamformer
will yield a different beam pattern. These results are contrary to the
suggestion implied in [5] that replacingRwithR� in an optimal beam-
former should make no difference.

IV. CONCLUSION

In this paper, we have derived the optimal solution for correlation
matrix estimation by the CE and RCE principles. The two methods
give identical directions ui of each source, differing only in the value
of the noise level estimate. Strikingly, the closed-form solution in the
ALGORITHMS is similar to the oblique rotation in factor analysis in
psychometrics where various intelligence traits are obtained from such
analysis. To our knowledge, the closed-form solution cannot be reached
or derived from any other existing approaches. The RCE method gives
the same results as the maximum likelihood approach, and when the
noise is white, both methods are similar to MUSIC. It is interesting
that the CE approach thus provides a framework for deriving spec-
tral estimation algorithm including Bartlett, MLM [8], MEM [10], and
now MUSIC. The results of the approach can be connected, via the
Eckart-Young-Mirsky theorem [12], to the approximation of covari-
ance matrices in norms 2 and Frobenius.

APPENDIX A
DERIVATION OF CE BEAMFORMING ALGORITHM

In this Appendix we derive the optimal structured covariance esti-
mate using the CE principle. First, to simplify the effort, let us define
V = U�1=2, where �1=2 = diag(�

1=2
1

; . . . ;�
1=2
N ). Then

R� = V V
H + �

2
W (39)

Substitute this into the CE entropy expression (6), and set the deriva-
tives with respect to the real and imaginary part of every element of the
V matrix, and with respect to �2, to zero. Arranging these derivatives
in complex matrix fom gives

R
�1 �R

�1

� V = 0 (40)

tr R
�1 �R

�1

� W = 0: (41)

Using the Woodward lemma

R
�1

� =
1

�2
W
�1 �

1

�2
W
�1
V

� V
H 1

�2
W
�1
V + I

�1

V
H 1

�2
W
�1
: (42)

Substituting into (40) and simplifying gives

R
�1
V =

1

�2
W
�1
V V

H 1

�2
W
�1
V + I

�1

: (43)

This equation has many possible solutions. Let V refer to any one of
these. Then let 	 = V HW�1V . Diagonalize 	 by factoring it 	 =
Q�QH , where � is diagonal andQ is orthonormal,QHQ = I . Define
~V = V Q. Note that ~V is also a solution to (43). In fact

R
�1 ~V =

1

�2
W
�1 ~V

1

�2
�+ I

�1

(44)

and
~V H

W
�1 ~V = �: (45)

Let theP columns of ~V be ~v
1
; . . . ; ~vP , and let theP diagonal elements

of � be �1; . . . ; �P . Then

�iR
�1~vi =W

�1~vi (46)

where

�i = �i + �
2
: (47)

The columns of ~V must therefore either be zero, or else must be gen-
eralized eigenvector solutions to (46). Because R and W are conju-
gate symmetric and positive definite, there are always N linearly in-
dependent generalized eigenvector solutions ~v

1
; . . . ; ~vN to (46), with

corresponding generalized eigenvalues �1; . . . ; �N which are positive.
Assume without loss of generality that the first P0 columns of ~V are
nonzero, where P0 � P . These first P0 columns must be selected from
among the N possible generalized eigenvectors, in a manner we will
determine later. Also note that it is not necessary to estimate Q or V
directly, since we can construct R� directly from ~V

R� = V V
H + �

2
W

= V QQ
H
V
H + �

2
W

= ~V ~V H + �
2
W: (48)

Now to solve for �2. Substitute (42) into (41), and simplify by ex-
ploiting the facts that tr(AB) = tr(BA) and tr(C +D) = tr(C) +
tr(D) and tr(�C) = �tr(C) where A;B are matrices, C;D are
square matrices, and � is a scalar.

0 = tr R
�1

� �R
�1

W

= tr
1

�2
W
�1 �

1

�2
W
�1 ~V ~V H 1

�2
W
�1 ~V + I

�1

� ~V H 1

�2
W
�1 �R

�1
W

= tr
1

�2
I �

1

�2
tr ~V H 1

�2
W
�1 ~V + I

�1

� ~V H 1

�2
W
�1 ~V � trfR�1Wg

=
N

�2
�

1

�2

P

i=1

�i

�i + �2
� trfR�1Wg

=
N � P0

�2
+

P

i=1

1

�i
� trfWR

�1g (49)
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where we used (45) in the fourth line, and (47) in the fifth. This can be
further simplified by noticing that if ~vi is any generalized eigenvector
solution to (46), then

WR�1~vi = W
1

�i
W�1~vi

=
1

�i
~vi: (50)

Therefore, the ~vi are eigenvectors of WR�1 with eigenvalues 1=�i.
Thus

trfWR�1g =

N

i=1

1

�i
: (51)

Substituting back into (49), then solving for �2 gives

�2 =
N � P0
N
i=P +1

1
�

: (52)

Now substitute the solution for ~V and for �2 into (48), and then
substitute this back into the formula (6) for the CE. The algebra is sim-
plified by noting that if ~vi is any generalized eigenvector solution to
(46), then

R�R
�1~vi = (~V ~V H + �2W )

1

�i
W�1~vi

=
1

�i
( ~V ~V HW�1~vi + �2~vi)

=
1
�
(�i + �2)~vi for i = 1; . . . ; P0

1
�
�2~vi for i = P0 + 1; . . . ; N

=
~vi for i = 1; . . . ; P0
�
�

~vi for i = P0 + 1; . . . ; N:
(53)

Therefore, the ~vi are all eigenvectors of R�R
�1. The first P0

eigenvalues are equal to 1, and the remainder are equal to
�2=�P +1; . . . ; �

2=�N . Putting all this together, the CE at this
solution has the value

H(q�; p) = �ftrfR�R
�1g�N � log jR�R

�1jg

= � P0 + �2
N

i=P +1

1

�i
�N � log

N

i=P +1

�2

�i

= �

N

i=P +1

log
�i
�2

: (54)

Substituting the value of �2 from (52) gives the alternate form

H(q�; p) = �(N � P0) log

1
N�P

N
i=P +1

1
�

N
i=P +1

1
�

1=(N�P )
: (55)

Now to return to the issue of which of the N possible generalized
eigenvector solutions should be used for the P0 nonzero columns of
~V . Let us call the selected P0 eigenvectors ~v1; . . . ; ~vP the “signal
eigenvectors,” and let us call the remainder the “noise eigenvec-
tors.” The signal eigenvectors satisfy ~vi 6= 0; since W�1 > 0,
then �i = ~vHi W

�1~vi > 0 and thus �i = �i + �2 > �2 for
i = 1; . . . ; P0. We show that these signal eigenvalues must be the
largest eigenvalue solutions to (46). Suppose this were not true, so
that the global optimum solution corresponded to an R� such that
one of the signal eigenvalues, say �P ; was smaller than the largest
of the noise eigenvalues, say �P +1. Thus, �2 < �P < �P +1.
But then, as we will see, swapping these eigensolutions, making
~vP +1 a signal eigenvector and ~vP a noise eigenvector will further

decrease the CE, contradicting our assumption of global optimality.
To show this, let H(�P +1; �P +2; . . . ; �N ) represent the CE with
a model R� built using nonzero solutions ~v1; . . . ; ~vP �1; ~vP , and
let H(�P ; �P +2; . . . ; �N ) represent the CE with a model R� built
using nonzero solutions ~v1; . . . ; ~vP �1; ~vP +1. Then, because the
CE formula (55) is an analytic function of the �i, by the mean value
theorem

H(�P +1;�P +2; . . . ; �N )�H(�P ;�P +2; . . . ; �N )

=
@H

@�
(�; �P +2; . . . ; �N )j�=��(�P +1 � �P ) (56)

where �� is some value in the range �P < �� < �P +1. But

@H

@�
= �

1

�2
��

N � P0
1
�
+ N

i=P +2
1
�

> 0 (57)

for all �P < � < �P +1, where the last line is true because

� > �P

> �2

=
N � P0
N
i=P +1

1
�

>
N � P0

1
�
+ N

i=P +2
1
�

: (58)

Since �P +1 � �P > 0, the change in (56) must be positive. There-
fore, swapping ~vP and ~vP +1 reduces the CE, and our assumed global
optimum solution cannot be globally optimum. The P0 signal eigen-
values must therefore be the largest eigenvalue solutions to (46), and
the nonzeroP0 columns of ~V must be the corresponding general eigen-
vectors.

Finally, we must show that we should always choose P0 = P eigen-
vectors. Without loss of generality, let us sort all the eigenvalues �1 �
�2 � � � � � �N . Let Hi represent the minimum CE with i nonzero
columns in ~V . Then using (55)

HP �HP +1 = �(N � P0)

� log

1
(N�P )

1
�

+ 1� 1
(N�P )

(1=��)

1
�

(1=��)
1�

� 0 (59)

where (1=��) = [(1)=(N �P0� 1)] N
i=P +2(1)=(�i) and where we

used the inequality �� + (1� �)� � ���(1��) for any 0 � � � 1 in
the last line. Thus, the CE decreases as P0 varies from 0 to P , so the
best choice for P0 must be P0 = P .

The proof thatR� is unique when �P > �P+1 is messy but straight-
forward. The key issue is that the space spanned by the signal eigen-
vectors is uniquely determined. If there are multiple signal eigenvalues,
then the eigenvectors themselves may not be uniquely determined, and,
thus, ~V may not be uniquely determined. We get the formulas in the
text by defining U = ~V ��1=2.

APPENDIX B
DERIVATION OF RCE ALGORITHM

In this Appendix we give the solution to the RCE problem. The
derivation is quite similar to that for the CE problem, and, therefore,
we present this quickly. With our Gaussian models, the RCE cross-en-
tropy has the value

RCE : H(p; q�) =� tr R�1� R �N � log R�1� R : (60)
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Differentiating with respect to the real and imaginary parts of V and
setting these to zero, as before, gives

R�1
�
RR�1

�
�R�1

�
V = 0: (61)

Multiplying both sides by R�1R� gives

R�1
�
�R�1 V = 0 (62)

which is exactly the same equations which the solution for V in the CE
problem must satisfy, (40). Therefore, we can construct R� from (48),
where the columns of ~V must be solutions to the generalized eigen-
vector problem (46).

Now differentiating (60) with respect to �2 and setting it to zero
gives

tr (R�1
�
RR�1

�
�R�1

�
)W = 0: (63)

Combining this with (61) gives

0 = tr R�1
�
RR�1

�
�R�1

�
( ~V ~V H + �2W )

= tr R�1
�
RR�1

�
�R�1

�
R�

= tr R�1
�
R� I (64)

which implies that

tr R�1
�
R = N: (65)

But (53) implies that R�1
�
R has P0 eigenvalues equal to 1, and the rest

have values �P +1=�
2; . . . ; �N=�

2. Since the trace of a matrix is just
the sum of its eigenvalues

P0 +
1

�2

N

i=P +1

�i = N (66)

which gives

�2 =
1

(N � P0)

N

i=P +1

�i: (67)

Using the facts that the trace of a matrix is the sum of the eigenvalues,
and the determinant is the product of the eigenvalues

H(p; q�) = � trfR�1
�
Rg �N � log R�1

�
R

= �

N

i=P +1

log
�2

�i
: (68)

The proofs that we must choose �1; . . . ; �P to be the largest eigen-
values, that we should choose P0 = P , and that the solution R� is
unique if �P > �P+1, are similar to the proofs for the CE algorithm.
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Comments on “Statistical Analysis of the Nonhomogeneity
Detector for Non-Gaussian Interference Backgrounds”

Saralees Nadarajah

Abstract—Rangaswamy [“Statistical Analysis of the Nonhomogeneity
Detector for Non-Gaussian Interference Backgrounds,” IEEE Trans.
Signal Process., vol. 53, no. 6, pp. 2101–2111, Jun. 2005] presented a
statistical analysis with respect to the nonhomogeneity detector (NHD) for
non–Gaussian interference scenarios. However, except for one case, Ran-
gaswamy did not provide explicit expressions for the statistical quantities
of interest. In this Comment, exact and elementary expressions are derived
for all of the quantities considered by the statistical analysis.

Index Terms—Beta function, moments, nonhomogeneity detector, prob-
ability density function, probability of type I error.

I. INTRODUCTION

Rangaswamy [1] derived the nonhomogeneity detector (NHD) for
non–Gaussian interference scenarios and presented a statistical anal-
ysis of the method. The statistical analysis focused on the following
quantities:

1) the probability density function (pdf) of the NHD test statistic �eq
given by

f� (r) =
L

B(L+ 1;M � 1)

1

0

L(1� )M�1

f1 + (1� )rgL+1
d (1)

[see (10)], where B(a; b) denotes the beta function defined by

B(a; b) =
1

0

ta�1(1� t)b�1dt;
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