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EM Analysis of a Conducting Scatterer
in Optic Dielectric Waveguide

Chun-Ting Chou and Shyh-Kang Jeng,Member, IEEE

Abstract—A method to compute the scattered field of curved
mirrors and gratings in a dielectric slab waveguide is proposed.
In contrast to the beam propagation method (BPM) for this kind
of problems, the method of moment is adopted. By introducing
the dyadic Green’s function in a slab waveguide, the electric
field integral equations for induced current distribution on the
conducting obstacles are derived. To improve the computational
efficiency, the modified Green’s function is incorporated into the
computation program. With this study, the effects of grooves
of gratings and the finite extent of the mirrors in dielectric
waveguides can be investigated in more detail.

Index Terms—Gratings, integral equations, slab waveguide,
scattering.

I. INTRODUCTION

PERIODIC structures are widely used in integrated-optics
field. Through its wavelength selective property, the laser

can be operated in single mode, for example, the distributed
feedback (DFB) or distributed Bragg reflector (DBR) lasers.
For the wavelength division multiplexing (WDM) in optical
communication system, the reflection grating can separate
lights with different wavelengths from optical fiber as a
demultiplexer [1], [2] or a planar spectrometer [3]. It has
the advantage of compact size and availability of more chan-
nels. Geometric optics is useful for design consideration such
as groove pattern and grating constant [4], [5]. A general
procedure of BPM to construct gratings with correction of
aberration is also presented in [6], but it is restricted to two-
dimensional (2-D) device. Besides, the distribution of scattered
field cannot be found in these literature. Another approach
is the electromagnetic (EM) analysis developed to treat the
grating problem as an electromagnetic scattering problem
using the Rayleigh expansion with point match method (PPM)
or Fourier transform method (FSM). By this method, grooves
of grating are restricted not to be too deep or the groove
function should be analytic [7]. It also assumes an infinite
grooves to apply the Floquet–Bloch theorem, and derives an
integral method to obtain a pseudoperiodic scattering field.
Furthermore, scattered field of a (2-D) periodic grating with
finite number of grooves in dielectric thin-film waveguides
is also presented in [8], [9]. However, the effects of the
finite extent of the gratings are all neglected in these works.
In this study, EM analysis is applied to analyze conducting
periodic structures with finite extent in the transverse direction

Manuscript received July 24, 1997; revised February 5, 1998.
The authors are with the Department of Electrical Engineering, National

Taiwan University, Taipei, Taiwan 10617 R.O.C.
Publisher Item Identifier S 0733-8724(98)04094-8.

Fig. 1. Cross section of a slab waveguide with conducting scatterer.

of optical slab waveguide. By evaluating the scattered field,
we try to show the effects of groove shapes and finite width
of grating structure. With these additional considerations, the
reflection gratings can be modified to get better performance at
insertion loss and resolution for further researches. Scattered
field pattern of arbitrary metal obstacles with various curvature
in a slab waveguide will also be investigated.

It is well known that electric-field integral equations (EFIE)
or magnetic-field integral equations (MFIE) can solve scatter-
ing from perfect conductors. Since all conducting scatterers are
assumed to be thin, the EFIE is better than MFIE [10], and this
study adopts the EFIE. For the EFIE, the kernel of the integral
equation consists of a dyadic Green’s function in a multilayer
slab waveguide, which has been derived in spectral domain
[11], [12]. Then in this research the obstacle or the grating is
divided into small patches, each has a very small area such
that the induced current on each patch can be assumed to be
constant. By matching the boundary condition at the centers
of all patches, a linear system of equations is obtained.
The unknowns are the tangential current components of
all patches, each with two components defined in the local
coordinate system. With the current distribution, the scattered
field can be calculated by the same dyadic Green’s function.
For far field pattern, simplification can be made to reduce the
complexity and increase the computation efficiency without
losing the accuracy.

II. DYADIC GREEN’S FUNCTION

To obtain the induced current distribution on the conducting
scatterer, we should derive the dyadic Green’s function in
a slab waveguide. Consider a slab waveguide with substrate
permittivity and background permitivity . As shown in
Fig. 1, the -axis is taken to be perpendicular to the interface,
and the -axis is in the direction of propagation of the incident
wave.

In this paper, we restrict the slab waveguide to be symmet-
ric, although the theory can be readily extended to asymmetric
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cases. By the image theory, our problem can be divided into
an odd part and an even part. The upper half space of the
odd part is equivalent to a slab waveguide grounded with a
PEC plate, and that of the even part is related to a waveguide
with a PMC ground. For our problem, we assume that only
the fundamental mode TM0 is incident, and it will excite only
odd modes. Hence, we can consider an equivalent dielectric
slab waveguide with a PEC ground only.

Physically, the dyadic Green’s function

(1)

is related to the electric field generated by a point electric
current source. For example, is the -component of
the electric field at due to a -directed point source
at Now, let’s first consider an -directed electric current
source

(2)

where and
Expand

(3)

where is the polar angle of measured from the-axis.
From the Appendix, we have

(4)

The magnetic vector potential due to satisfies

(5)

where and or to indicate the region
outside or inside the slab. With we write as

(6)

By substituting (6) into (5), and keeping only the
term by symmetry consideration to achieve

(7)

where By matching the boundary conditions,
the wave function in region can be obtained for the
dielectric slab and the background.

To get the components of due to the - or the -
directed sources, we start by considering an arbitrary surface
current source parallel to the- plane at From
electromagnetic theory [14], the generated field due to such
a source can be written as a linear combination of a TMfield

and a TM field. For the TM part, the field is related to a
magnetic vector potential and is also in the form
of (6). Its components also satisfy (7), except that the right
hand side source term is set to be zero. This equation is easily
solved first. Then boundary conditions including the source
condition at are applied to get a TMsolution. For
the TE part, the field is corresponding to an electric vector
potential and is again written in the form of
(6). The related also satisfies a source-free version of (7).
By solving the differential equation, and matching boundary
conditions as well as the source condition at we obtain
the TE solution.

From the above procedures, we also derive the TMcur-
rent (corresponding to the field) and the current
(corresponding to the TEfield) in the form of

(8)

and

(9)

(10)

Hence, for and at

or

otherwise
(11)

otherwise.

(12)

We thus find and and

(13)

(14)

Through (13) and (14), the total field for an arbitrary surface
current source at can be obtained. Using this method we
may solve the field due to and
at and the components of the dyadic Green’s function
are solved.

In practical computation, we apply
to rewrite (13) and (14) as

(15)

(16)
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in order to halve the integration interval and avoid the singu-
larity of Hankel function. Note also the property

by reciprocity can be used to reduce the derivation work.

III. E-FIELD INTEGRAL EQUATION

FOR CURRENT DISTRIBUTION

To find the induced current distribution, consider a current
source at point and the observation point at The current
distribution at is defined by the local right-hand Cartesian
coordinate

(17)

where denotes the tangential unit vector of source plane.
The electric field at observation point generated by the current
source of a small patch around is

(18)

where is the dyadic Green’s functions whose compo-
nents have been discussed in last section. Since the surface cur-
rent contains -directed and-directed components, only four
field components should be considered; that is
and where the first subscript denotes the field component
of observation point and the second subscript denotes the
current component on source plane. Then, the contribution
of current source to the observed field can be obtained from
dyadic Green’s function derived earlier with some coordinate
transforms. By the PEC boundary condition, the tangential
field vanished on the scatterer, and the E-field integral equation
could be obtained as

The method of moment is then applied to transform the integral
equation into a linear system of equations. Rectangular pulse
function is used as the basis function such that the current is
uniform within the surface and vanish outside it. The Dirac
function is chosen to be the weighting function (the point-
matching method). A equation system is derived
as

(19)

(20)

By solving this matrix equation, we can solve the induced
current, and the excited scattered field can be evaluated by
summing the contributions from every patches on scatterers.

(a) (b)

Fig. 2. Approximation for (a) original slab waveguide and (b) infinite space
with dielectric constant.

IV. M ODIFIED GREEN’S FUNCTION

The Green’s function, which is an improper integral of
will decay as when the source point and field point are
very close. To integrate more efficiently and accurately, the
Green’s function must be handled separately in such case. To
illustrate the modification, we consider the component in
Fig. 2(a). When and the wave function can
be approximated as

which is identical to that in an infinite space with dielectric
constant [Fig. 2(b)]

if is applied. Because the infinite space
Green’s function has a closed form, the slab waveguide
Green’s function can be divided into two parts

Closed-form of infinite space Green’s function

where the first part will converge in a smaller integral interval
and the integration will be more efficient. All other compo-
nents of the dyadic Green’s function can be treated in the same
way. In addition, more cares must be taken for the singular
case where the source point and the field point are in the
same patch. For regular cases, all fields can be computed by
exchanging the order of integration and differentiation to evade
the error resulted from the numerical differentiation. But for
singular cases, the numerical nine-point differentiation must
be adopted after numerical integration.

V. NUMERICAL RESULTS AND DISCUSSIONS

In our numerical simulation, the slab waveguide is designed
to support only a single mode, the fundamental odd TM mode.
The film layer’s refractive index is assumed to be 3.2 and
that of the cover layer is 3.0. The effective refractive index
for this waveguide is 3.115 and The
problems are divided into three categories: planar obstacles
(type I), scatterers with curvatures (type II), and periodic
grating structures (type III). Type I scatterers are mainly used
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Fig. 3. Convergence with respect to division size.

Fig. 4. Scattered field for normal incidence to a curved mirror with focal
length= 20 h.

to verify our method. Type II scattterers are designed to
observe the focusing effect and type III structures are used
to observe the light-splitting phenomena.

First the convergence of the size of subdivision is examined.
A PEC plate with size 0.2 h 0.4 h is normally illuminated.
Fig. 3 shows that the current distribution has the maximal error
of 10% for patch sizes 0.1 and 0.05 h. Since there is a tradeoff
between patch size and numerical accuracy, the patch size is
chosen to be 0.1 h for compromise between efficiency and
error tolerance. Next, a type II scatterer, a curved mirror with
focal length to be 20 h and normal incidence, are investigated.
The scattered field is concentrated within4.3 of the center
of the conducting mirror as shown in Fig. 4. The first sidelobe
is just 17 dB below the main beam, which demonstrates
the focusing effect of the curved mirror. Fig. 5(a) shows the
structure of a curved mirror with a focal length of 25 h and
Fig. 5(b) is the computed results for this structure with an
oblique incident angle A main beam is observed
far from the center of the curved mirror at a reflection angle
about 45 (with respect to the normal direction at the center
of the curved mirror), which is consistent with the reflection
theorem, as shown in Fig. 5(b).

For type III structure, an oblique incidence case with
incident angle shown in Fig. 6(a) is considered first.
Fig. 6(b) shows the scattered field observed at 20 h away from

(a)

(b)

Fig. 5. Oblique incidence to a curved mirror with incident angle= 45

degrees. (a) Structure of curved mirror. (b) Scattered electric field pattern.

the grating, and two dominant lobes are observed at reflection
angle and , respectively (with respect
to the normal direction of the grating plane). Since the period
of the grating is according to the grating reflection
law [13]

there will be a zeroth-order lobe at and a first-order
lobe at The results deviate from the classical
theorem significantly since the grating reflection equation [13]
is based on the assumption of periodicity of grating, which
ignores the effect of finite number of grooves. Thus our results
demonstrate how scattering field is affected by the finite extent
of grating. The third grating lobe is also observed, which is
mainly resulted from the contribution of the top edge of the
finite grating. The magnitude ratio of the order one lobe to
the order zero lobe is about 1.085, which can be changed by
the grating structure. Next we consider a grating the same
as the above case but with normal incidence. The number of
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(a)

(b)

Fig. 6. Oblique incidence to a grating with incident angle= 30�. (a)
Structure of grating. (b) Scattered electric field pattern.

the groove has been doubled as shown in Fig. 7(a) and the
scattered electric field are observed at 30 h away from the
center of the grating as shown in Fig. 7(b). According to the
grating law and the 0incident angle, there will be an order
zero, an order one, and an order1 whose reflection angles are
0, 53.7, and 53.7 , respectively. The magnitude ratio of the
order 1 to the order 1 is about 1.64, which is obvious since
the grating is asymmetric. Compared to the first example of
type III scatterers, the diffracted angles,54 agree with the
grating law with error less than 1%. It shows that the classical
theorem will predict the scattering field accurately by increase
the number of groove. We can also find that the order zero
lobe does not focus very well. To improve the resolution, we
consider a symmetric grating mounted on a curved surface
as shown in Fig. 8(a). The period of the grating is 2.6 h and
the focal length of the curved surface is 26 h. The scattered
field is observed at the focal circle of the curved grating.
According to grating law, there will be order 0, 1, and lobes
whose reflection angles are 0, 38.3, and38.3 , respectively,
which are consistent with the scattered field pattern shown in
Fig. 8(b). Besides, the width of the reflecting beam decreases
because we mount the grating on a curved surface. Based on
these design considerations, we can improve the resolution
of the reflecting grating by changing the groove shape or the
curvature of the mounted surface.

VI. CONCLUSIONS

In this study, EM analysis has been applied to the scattering
problems of three types of conducting scatterers in a slab

(a)

(b)

Fig. 7. Normal incidence to a grating. (a) Structure of grating. (b) Scattered
electric field pattern.

waveguide. The dyadic Green’s functions for current sources
have been derived. The modified Green’s functions is also
obtained to improve the computational efficiency. A number of
numerical results have been presented to illustrate the charac-
teristics of conducting scatterers, such as current distributions
on the obstacles, focusing-effect and light-splitting phenomena
of gratings. Instead of the periodicity assumption in classical
theorems, the proposed method can treat scatterers with finite
extent.

By suitable modification and extension, the EM analysis
can be applied in handling more general scattering problems
in a slab waveguide. It is also useful for microwave and
millimeter-wave applications.

APPENDIX

In this Appendix, each mode of dyadic current source is
introduced. Consider a delta current source

(A.1)

By the definition of delta function
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(a)

(b)

Fig. 8. Normal incidence to a grating mounted on a circle with focal length
= 26 h. (a) Structure of grating. (b) Scattered electric field pattern.

then

(A.2)

With the aid of Bessel’s equality
and (A.2) is

transformed to a polar form.

(A.3)

Substitute (A.3) into (A.1) and compare the coefficient of (A.3)
with the expansion form (1), only mode will exist

For -directed and -directed delta currents, the components of
TM current and TE current can be derived by the following

relations:

(A.4a)

(A.4b)

where or are derived in (A.3).
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