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Abstract

The inverse problem of parameter structure identification in a distributed parameter system remains challenging. Identifying a more
complex parameter structure requires more data. There is also the problem of over-parameterization. In this study, we propose a mod-
ified Tabu search for parameter structure identification. We embed an adjoint state procedure in the search process to improve the effi-
ciency of the Tabu search. We use Voronoi tessellation for automatic parameterization to reduce the dimension of the distributed
parameter. Additionally, a coarse-fine grid technique is applied to further improve the effectiveness and efficiency of the proposed meth-
odology. To avoid over-parameterization, at each level of parameter complexity we calculate the residual error for parameter fitting, the
parameter uncertainty error and a modified Akaike Information Criterion. To demonstrate the proposed methodology, we conduct
numerical experiments with synthetic data that simulate both discrete hydraulic conductivity zones and a continuous hydraulic conduc-
tivity distribution. Our results indicate that the Tabu search allied with the adjoint state method significantly improves computational
efficiency and effectiveness in solving the inverse problem of parameter structure identification.
� 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Distributed parameter models are used to simulate
groundwater flow, but the reliability of results is strongly
dependent on whether the model parameters are properly
identified. However, the real geological structure of an
aquifer is generally very complex and mostly unknown.
More data are required for identifying a more complex
parameter structure, and there is always the problem of
over-parameterization. Additionally, the inverse problem
of parameter structure identification is highly non-linear
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and non-convex; hence, gradient-based algorithms often
get trapped in local optima. On the other hand, heuristic
search algorithms usually require a very large number of
simulation runs. There remains a need to develop efficient
inverse solution algorithms.

Although the inverse problem in groundwater modeling
has been studied for over four decades, identifying the spa-
tial distribution of a heterogeneous aquifer remains formi-
dable because of the limitation in both quantity and quality
of data. The inverse problem is inherently ill-posed in that
the solution is usually non-unique or unstable. As pointed
out by Yeh [1], parameterization is always necessary in
order to reduce the parameter dimension of a distributed
parameter to a finite dimensional form so that a sta-
ble and unique solution of the inverse problem can be
sought.
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Parameterization as well as the efficiency and effective-
ness of the inverse algorithm are the two most important
components in parameter structure identification. In this
study, Tabu search is allied with the adjoint state method
to improve the search efficiency and parameterization is
achieved by Voronoi tessellation (VT).

Sykes et al. [2] developed adjoint sensitivity theory for
both the continuous and discrete (numerical) equations of
two-dimensional steady state flow in a confined aquifer.
They derived a performance measure with respect to the
system parameters, such as the piezometric heads, veloci-
ties, travel time, and mass discharge with respect to
recharge–discharge rates, prescribed boundary heads or
fluxes, thicknesses, and hydraulic conductivities. As Yeh
[1] pointed out, there are basically three methods, the influ-
ence coefficient method, the sensitivity equation method,
and the variational or adjoint state method (ASM) for cal-
culating the Jacobian matrix (parameter sensitivity matrix).
The ASM is particularly efficient when the sensitivities of a
large number of parameters are required. Sun and Yeh [3]
proposed a general procedure for deriving the adjoint state
equations and described their associated conditions for
solving coupled inverse problems in groundwater
modeling.

In recent years, heuristic algorithms have been used to
identify model parameters in groundwater modeling.
Zheng and Wang [4] used Tabu search (TS) and simulated
annealing (SA) to search for an optimal hydraulic conduc-
tivity zonation structure in one-dimensional problems. Tsai
et al. [5] developed a sequential global–local optimization
method, which consists of a genetic algorithm (GA), a
quasi-Newton method, and local search to solve the combi-
natorial problem. More recently, Tung and Chou [6] and
Tung and Tan [7] applied heuristic optimization algo-
rithms, such as TS and SA, with different zonation methods
to identify the spatial distribution of hydraulic conductivity
or transmissivity. This study proposes to use the ASM to
improve computational efficiency of TS. We note that TS
requires running the simulation model N times to evaluate
N neighbor solutions. More neighbor solutions require
more simulation runs. When TS is allied with the ASM,
it only requires running the simulation model twice regard-
less of how many neighbor solutions there are. Details will
be explained in a later section.

To reduce the parameter dimension of a distributed
parameter to a finite dimensional form, either zonation
or interpolation can be used [1]. Doherty [8] used the pilot
point method as an interpolation method to identify the
spatial distribution of transmissivity. Tsai et al. [5] and
Tung and Tan [7] applied Voronoi tessellation (VT) to
automatically parameterize the zonation pattern of
hydraulic conductivity or transmissivity. Tung and Chou
[6] proposed a pattern zonation based on the pattern clas-
sification to identify the spatial distribution of pumping.

In this paper, we first use VT to automatically parame-
terize the distributed hydraulic conductivity for a given
parameter dimension, represented by the number of basis
points. Second, the ASM is used to improve the efficiency
of the TS search. To further improve computational effi-
ciency, we apply a coarse-fine grid search over the modified
TS. For each parameter dimension, we calculate the fitting
residual error, the parameter uncertainty error and the
modified Akaike Information Criterion. We use these three
indices to determine the optimal level of parameter com-
plexity. Numerical experiments are carried out to demon-
strate the validity and computational efficiency of the
proposed approach.

The rest of this paper is organized as follows. In Section
2, the inverse problem and its formulation for parameter
structure identification in groundwater modeling are intro-
duced. The stopping criteria used to determine the optimal
level of parameter complexity are also described. The pro-
posed integrated optimization algorithm, which consists of
VT, TS and the ASM are illustrated in Section 3. Section 4
outlines the numerical experiments with hypothetical study
fields and the proposed integrated optimization algorithm
is applied with the coarse-fine grid search technique. We
then summarize the results with conclusions.

2. Inverse problem of groundwater modeling

Sun et al. [9] proposed a procedure for parameter struc-
ture identification that starts from a simpler parameter
structure and gradually increases the parameter dimension
by adding one zone at a time until the stopping criteria are
satisfied. At each level of parameter complexity, the fitting
residual error and the model structure error of using a sim-
plified model to replace a more complex model were com-
puted. In this study, we employ the same concept of
systematically increasing parameter complexity in order
to capture the spatial variation of the hydraulic conductiv-
ity. However, a key purpose of our study is to develop a
computationally more effective and efficient integrated
inverse algorithm.
2.1. Groundwater flow equations

Eqs. (1)–(3) show the governing equation of a two-
dimensional, transient flow for a heterogeneous, isotropic
and confined aquifer as well as the associated initial and
boundary conditions.

S
o/
ot
�r � ðTr/Þ � Qdðx� xiÞdðy � yiÞ ¼ 0;

ðx; yÞ 2 ðXÞ; 0 6 t 6 tf ; ð1Þ
initial condition : /ðx; y; 0Þ ¼ f0ðx; yÞ; ðx; yÞ 2 ðXÞ; ð2Þ
boundary condition : /jðC1Þ ¼ f1ðtÞ; Tr/ � njðC2Þ

¼ f2ðtÞ 0 6 t 6 tf ; ð3Þ

where /(x,y, t) is the head [L]; S(x,y) is the storage coeffi-
cient (dimensionless) which is the specific storage [1/L]
multiplied by the aquifer thickness [L]; T(x,y) is the trans-
missivity [L2/T]; Q(x,y, t) is the source/sink term [L3/T];
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d is the Dirac function [1/L]; x and y are the space variables
[L]; t is the time variable [T]; (X) is the flow region; C1 and
C2 are the boundary of the aquifer (C = C1 [ C2); n is the
normal derivative of C2; f0, f1, f2 are specified functions;
and tf is the simulation ending time. With known parame-
ters S, T and Q, Eq. (1) is solved to estimate the heads /
with various numerical methods and software packages,
such as MODFLOW [10]. This is a procedure for solving
the forward problem. However, a successful prediction of
head / requires first solving the inverse problem to identify
the parameters imbedded in the governing equation.

2.2. Objective function of the inverse problem

To illustrate the proposed integrated optimization algo-
rithm, we assume that transmissivity (or hydraulic conduc-
tivity) is the distributed parameter to be identified from
head observations and that all other parameters in Eq.
(1) are known. Generally, the performance criterion used
to solve the inverse problem is the residual error between
observed and simulated heads. Thus, the residual error as
well as the objective function E(T) is

Min
T ðx;yÞ

EðT Þ ¼ k/simðT Þ � /obsk; T ðx; yÞ 2 XT ; ð4Þ

where /sim is the vector of the simulated heads at the obser-
vation locations using an estimated parameter structure
T(x,y); /obs is the vector of observed heads; XT is the
admissible set of T(x,y); and k�k is a norm. From Eq.
(4), however, transmissivity can be regarded as the hydrau-
lic conductivity because a constant thickness is assumed for
the aquifer.
2.3. Stopping criteria for parameter structure identification

How to determine the optimal number of zones is a crit-
ical issue in parameter identification. An increase in param-
eter dimension by increasing the number of zones will
decrease the residual error. However, at some point an
increase in parameter dimension will result in a drastic
increase in parameter uncertainty error and over-parame-
terization occurs. Yeh and Yoon [11] and Tsai et al. [5]
studied the tradeoff between the residual error and the
parameter uncertainty error. Other than the parameter
uncertainty error, several model selection criteria based
on information theory have been developed for determin-
ing model complexity, such as the Akaike Information Cri-
terion (AIC) [12] and the modified AIC for small samples
(AICc) [13]. The preferred model is the one with the small-
est value of AIC or AICc. In this study, the parameter
uncertainty and AICc are used as the criteria to determine
the optimal parameter dimension.

We adopt a covariance matrix to quantify the parameter
uncertainty and the trace or the norm of the covariance
matrix can be used to compute the overall parameter
uncertainty at n computation nodes. The covariance matrix
of an estimated parameter can be expressed as [11,7]
CovnðbT nÞ ¼ Gm
JðbT mÞ

No � m
½AðbT mÞ��1

 !
GT

m; ð5Þ

where Gm is the structure matrix, JðbT mÞ is the residual er-
ror, No is the number of observations, m is the number
of parameters, A is ½J T

DJ D�, and JD is Jacobian matrix of
heads with respect to parameter structure bT m. A norm of
the covariance matrix, such as the trace, can be used to rep-
resent overall parameter uncertainty.

Hurvich and Tsai [13] obtained a bias-corrected version
of the Akaike Information Criterion, called AICc, and
extended the applicability of AICc to both regression and
time series. AICc is the sum of AIC and an additional
non-stochastic penalty term. An equivalent form is

AICc ¼ AIC þ 2ðmþ 1Þðmþ 2Þ
No � m� 2

; ð6Þ

where

AIC ¼ N o log
JðbT Þ
No

 !
þ 2ðmþ 1Þ: ð7Þ

In Eqs. (6) and (7), JðbT Þ is the residual error, No is the
number of observations, and m is the number of parame-
ters. The suggested model parameter structure should have
the smallest value of ACIc. The minimized ACIc seeks a
compromise between model simplicity and complexity.

3. An integrated optimization algorithm

In the proposed integrated optimization algorithm, for a
given parameter dimension (number of zones) the spatial
distribution of hydraulic conductivity is first parameterized
by VT. Then, TS allied with the ASM is used to optimize
the basis point locations and their associated values. We
further use a coarse-fine grid technique to improve the
solution. The manner in which these methods are combined
is described below.

3.1. Voronoi tessellation (VT)

As with a distributed parameter model, it is unrealistic
to determine the parameter value for each grid associated
with the numerical model. Parameterization is necessary
in order to reduce the parameter dimension. The zonation
and interpolation methods are two different popular means
of parameterization [1]. VT is an automatic zonation
method that tessellates the domain into a set of Voronoi
polygons given a set of distinct points in space [5]. VT
was first introduced by mathematicians Dirichlet [14] and
Voronoi [15], and has been applied to many fields. More
recently, Tsai et al. [5] and Tung and Tan [7] have success-
fully applied VT to identify the equivalent zone-based
hydraulic conductivity for a heterogeneous field. Although
VT has been studied for more than 150 years, it remains a
powerful tool for spatial and pattern analysis [16].

To construct VT, a finite number of points, m, and their
location in a Euclidean plane are first given and
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2 6 m <1. The m basis points are respectively labeled by
p1, . . . ,pm with locations (px1,py1), . . . , (pxm,pym) and the
associated parameter values are PV(pxi,pyi). Let
PVe(px,py) be an estimated parameter value in the Euclid-
ean plane with location pe(px,py) over n computation

nodes. The Euclidean distance from pe to pi is kpe � pik ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðpx� pxiÞ

2 þ ðpy � pyiÞ
2

q
. If pi is the nearest point from

pe, pe is assigned to the zone ZVT
i containing the basis point

pi with the value PV(pxi,pyi). Each zone ZVT
i can be repre-

sented as

ZVT
i ¼ fpejkpe � pik 6 kpe � pjk for i 6¼ j; j 2 Ing; ð8Þ

where In is an integer set. Meanwhile, each zone ZVT
i has a

uniform parameter value PV(pxi,pyi). Accordingly, a plane
ZVT can be divided into a set of homogeneous zones and is
given as

ZVT ¼ fZVT
1 ðp1Þ; . . . ; ZVT

n ðpnÞg; ð9Þ
where pi is the basis point of zone ZVT

i , and the set
{p1, . . . ,pm} is called the basis set. Fig. 1 shows an example
in which the zonation of hydraulic conductivity is repre-
sented by three basis points with coordinates (2,4), (3, 9),
and (7, 10). For the rigorous mathematical properties and
applications of VT, readers are referred to Okabe et al.
[16]. According to VT, there are three parameters for each
zone: pxi, pyi, and PV(pxi,pyi). Increasing one zone re-
quires three more parameters.

3.2. Tabu search (TS)

Fig. 2 shows the flowchart of TS. TS explores the neigh-
bor solutions of a current solution and moves to the best
Fig. 1. The spatial distribution of hydraulic conductivity of Voronoi tessell
one in the neighborhood. The process updates the best
solution recorded once the current solution is superior
and continues until the stopping criteria are met. Further-
more, TS has the ability to prevent the search from being
trapped in a local optimum. This core ability of TS results
from the constraints of a Tabu list which memorizes the
search history. Besides the Tabu list, neighborhood and
movement, the aspiration criteria and the principle to stop
searching are also important components of TS. These
components are briefly introduced in this section. More
detailed descriptions of TS can be found in Glover and
Laguna [17].

3.2.1. Neighborhood and movement
All the parameters of a distributed numerical model are

discretized. The solution space of the parameters depends
on the number of parameters and their discretization. In
the process of parameter identification, any one of the
parameters of the current solution being modified by a D
(one step size) is defined as a neighbor solution, and all
neighbor solutions form a neighborhood of a current solu-
tion. Moving one step from a current solution to its neigh-
bor solution is called a movement. A more complex
parameter structure has more parameters and thus results
in a larger solution space and larger neighborhood. Each
iteration in TS moves to the best neighbor solution and is
not tabued. The best neighbor solution is then used as a
new current solution for the next iteration. If there are N

variables and each variable can be modified by +D or
�D, there are (2 � N) neighbor solutions. Therefore, TS
requires evaluating (2 � N) neighbor solutions, i.e. running
the simulation model (2 � N) times, before taking a move-
ment. More neighbor solutions require more computations
ation (VT) (X and Y axes represent the study area with 12 � 12 grids).
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to determine a movement. Furthermore, more movements
may be required to explore a larger solution space to find
the optimum. In this study, the ASM is applied to enhance
the efficiency of movement by reducing the computation
from (2 � N) times to twice regardless of how large the
number N is.

3.2.2. Tabu list

The Tabu list serves as a memory to direct or prohibit
movements. There are four types of memory: recency, fre-
quency, quality, and influence [17]. The recency memory
records recently explored current solutions and prohibits
the search process from moving back to these solutions
to avoid being trapped in a local optimum. This type of
memory is adopted in this study. Moreover, the length
of the Tabu list should be sufficiently long to avoid falling
in a search cycle. On the other hand, the length of the
Tabu list cannot be too long, because it may limit the
search space to a small feasible region and could reduce
the search efficiency. There is no universal principle for
determining the length of the Tabu list. The length can
be an arbitrarily small number as an initial guess. Then,
the length of the Tabu list can be increased, if necessary,
to avoid cycling.

3.2.3. Aspiration criterion

The Tabu list can be designed to memorize the entire
current solutions recently explored or memorize parts of
the variables of a solution. If the Tabu list only records
the modified parameters of current solutions, it may be
too rigid and require aspiration criteria. For example,
although the value of some parameter of a neighbor solu-
tion is tabued, if the neighbor solution has a better objec-
tive function value than the recorded best solution, it is a
never-visited solution and should not be tabued. Then, an
aspiration criterion is applied to keep TS moving forward,
i.e., omitting the Tabu. There are some other different aspi-
ration criteria associated with different definitions of how
to record the solutions [6]. However, all aspiration criteria
have the same purpose – to ensure that the search process
continues to move forward until a stopping criterion is
reached.

3.2.4. Principles for stopping the search process

There are different principles for stopping TS, including
(1) the current solution satisfies the pre-defined residual
error tolerance; (2) the given number of maximum itera-
tions is reached; and (3) successive iterations do not
improve the objective function. The most adequate selec-
tion of the stopping criterion is case-dependent. Addition-
ally, after each movement, the current solution is compared
to the best-recorded solution which can be replaced by any
better current solution. When the search process is stopped,
the final best-recorded solution is the selected optimal
solution.

3.3. Adjoint state method (ASM)

The ASM based on the variational theory has been used
in groundwater modeling for more than three decades [18].
The most common application of the ASM in environmen-
tal applications is for improving the computational effi-
ciency of sensitivity analyses [19]. In this study, the ASM
is applied to derive the adjoint equation of the groundwater
governing equationZ tf

0

Z
ðXÞ
�S

ow
ot
�r � ðTrwÞ

� �
d/ � dXdt

þ
Z tf

0

Z
ðXÞ
ðrw � r/ÞdT � dXdt ¼ 0; ð10Þ

where w(x,y, t) is an arbitrary function having continuous
second-order space derivatives on (X) and first-order time
derivative in [0, tf].

The adjoint equation is used to calculate the sensitivity
of the objective function to direct TS’s search process. A
detailed derivation of the adjoint equation can be found
in Sun [18]. Meanwhile, in order to estimate transmissivity
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T(x,y) of the inverse problem of Eq. (4), an objective func-
tion E( � ) is revised to measure the residual error of the sim-
ulated and observed heads. Moreover, the objective
function E( � ) is the integration of the performance function
f( � ) through time and space:

f ½/ðx; y; tÞ; ðpx1; py1; T 1Þ; ðpx2; py2; T 2Þ; . . . ; ðpxm; pym; T mÞ�

¼
XI

i¼1

XJ

j¼1

f/sim½ðx; y; tÞ; ðpx1; py1; T 1Þ; ðpx2; py2; T 2Þ;

. . . ; ðpxm; pym; T mÞ� � /obsðx; y; tÞg2

� dðx� xobs
i Þdðy � yobs

i Þdðt � tobs
j Þ ð11Þ

and

E½/ðx; y; tÞ; ðpx1; py1; T 1Þ; ðpx2; py2; T 2Þ; . . . ; ðpxm; pym; T mÞ�

¼
Z tf

0

Z
X

f ð/ðx; y; tÞ; ðpx1; py1; T 1Þ; ðpx2; py2; T 2Þ; . . . ;

ðpxm; pym; T mÞÞdXdt; ð12Þ

where pxm and pym are the variables of VT with the mth
zone and Tm represents PV(pxm,pym). The term d( � ) repre-
sents the Dirac function; (xi,yi) (i = 1,2, . . . , I) are locations
of observations wells; and tj (j = 1,2, . . . ,J) are the observa-
tion times.

From Eq. (12), any variation dpxm, dpym, and dTm will
cause a variation of E( � ). Taking a variation of E( � ) yields

dE¼
Z tf

0

Z
ðXÞ

of
o/

d/þ of
opxm

dpxmþ
of

opym

dpymþ
of
oT m

dT m

� �
dXdt:

ð13Þ

Furthermore, dT can be represented as

dT ¼ oT
opxm

dpxm þ
oT

opym

dpym þ
oT
oT m

dT m: ð14Þ

The terms dE/dpxm, dE/dpym, and dE/dTm now can be de-
rived, respectively, with Eqs. (10), (13), and (14). For exam-
ple, to derive dE/dpxm, Eqs. (10) and (14) can be used to
obtainZ tf

0

Z
ðXÞ
�S

ow
ot
� ðTrwÞ

� �
d/dXdt þ

Z tf

0

Z
ðXÞ
ðrwr/Þ

� oT
opxm

dpxm þ
oT

opym

dpym þ
oT
oT m

dT m

� �
dXdt ¼ 0: ð15Þ

Since the left hand side of Eq. (15) is equal to zero, it can be
added to Eq. (13), yielding

dE ¼
Z tf

0

Z
ðXÞ
�S

ow
ot
�rðTrwÞ þ of

o/

� �
d/dXdt

þ
Z tf

0

Z
ðXÞ

of
opxm
þ ðrwr/Þ oT

opxm

� �
dpxm

þ of
opym
þ ðrwr/Þ oT

opym

� �
dpym

þ of
oT m
þ ðrwr/Þ oT

oT m

� �
dT m

0BBBB@
1CCCCAdXdt:

ð16Þ
Since w(x,y, t) is the arbitrary function, it can be assumed
as

S
ow
ot
þr � ðTrwÞ � of

o/
¼ 0: ð17Þ

The final condition and boundary conditions are shown
below.

wðx; y; tf Þ ¼ 0; ð18Þ

wðx; y; tÞjðC1Þ ¼ 0; T
ow
on

				
ðC2Þ
¼ 0: ð19Þ

Rearranging Eq. (16) with Eq. (17) and noting df/dpxm = 0,
the derivation of dE/dpxm can be obtained:

dE
dpxm

¼
Z tf

0

Z
ðXÞ
ðrwr/Þ oT

opxm

� �
dXdt; ð20Þ

where dpym
dpxm
¼ 0 and dT m

dpxm
¼ 0. Meanwhile, dE/dpxm and dE/

dpxm can be derived in the same way

dE
dpym

¼
Z tf

0

Z
ðXÞ
ðrwr/Þ oT

opym

� �
dXdt; ð21Þ

dE
dT m
¼
Z tf

0

Z
ðXÞ
ðrwr/Þð ÞdXdt: ð22Þ

We note in Eq. (22), ‘‘$w$/” directly relates to the zonal
area of the selected Tm because the variation of Tm does
not change the zonal pattern but the value. However, the
variation of variables pxm or pym may change both the pat-
tern and the value of the zonal structure.

Considering Eqs. (1) and (4), the spatial distribution of
transmissivity can be regarded as the spatial distribution
of hydraulic conductivity when the thickness of the aquifer
is a constant or known. Thus, transmissivity Tm can be
replaced with hydraulic conductivity Km. Consequently,
dE/dTm can be replaced by dE/dKm in this study.
3.4. Optimization framework for parameter structure

identification

For a given parameter dimension, we first use VT to
automatically parameterize the spatial distribution of the
hydraulic conductivity with variables pxm, pym, and Km.
Then the ASM is applied to calculate the sensitivities of
the objective function, dE/dpxm, dE/dpym, and dE/dKm,
respectively. We compare the gradient of each parameter
(dE/dpxm, dE/dpym, and dE/dKm) to decide the direction
for the next iteration. However, the exact step size of the
gradient is not required because we only use the order of
the gradient to decide the direction for the next iteration
and apply the Tabu list and step size to determine the best
neighbor solution which is also the moving mechanism of
the Tabu search. In the traditional gradient-based algo-
rithm, the search process always moves in the direction
to improve the solution and has no chance to reach a
worse solution. On the contrary, the gradient employed
in this study helps the search process to reach both a better
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or worse solution which is totally different from the tradi-
tional gradient-based algorithm. We note from Eqs. (20)–
(22), to obtain all sensitivities of each parameter we only
need to run the simulation model twice. One is to compute
the head / with the groundwater governing equation,
while the other is to compute the arbitrary function w with
the adjoint equation. With all sensitivities of the objective
function computed, an iteration of TS is carried out to
identify which neighbor solution should be chosen as a
new current solution for the next iteration. Note that if
only TS is applied to determine the best neighbor solution,
(3 � m � 2) simulation runs are needed to calculate the
objective function values of all neighbor solutions within
one iteration, where m represents the number of zones.
In this way, the optimization efficiency of TS is signifi-
cantly improved by the ASM and the number of simula-
tion runs is reduced from (3 � m � 2) to two. Thus,
more feasible solutions can be explored with reduced com-
putational effort. After the principles for stopping the TS
VT p
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Fig. 3. Flowchart of the proposed in
search process are satisfied, the stopping criteria of param-
eter structure identification can be verified. The optimal
parameter structure is determined once the stopping crite-
ria of parameter structure identification are met. The flow-
chart of the integrated optimization algorithm is illustrated
in Fig. 3.

4. Numerical experiments

To verify the proposed methodology, we conducted
numerical experiments for two hypothetical cases: one with
discrete hydraulic conductivity zones and another with a
continuous hydraulic conductivity distribution. For Case
1, we assume that the number of discrete hydraulic conduc-
tivity zones is known as prior information. There are three
zonation scenarios tested. Then in Case 2, we further tested
the efficiency and effectiveness of the proposed methodol-
ogy for the purpose of identifying a continuous hydraulic
conductivity distribution.
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Fig. 4. The study area (#1 to #13 represent the observation wells, @1
represents the pumping well).

Table 1
Parameter values used in the groundwater model

Parameter Thickness
of aquifer
(m)

Specific
storage
(1/m)

Simulation
period (d)

Number
of
pumping
well

Number of
observation
well

Design
value

50 0.0001 10 1 13
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4.1. Hypothetical aquifer

Fig. 4 shows a hypothetical confined aquifer system. The
dimension of the aquifer is 10 � 10 km2 with a constant
depth of 50 m. The constant head boundary conditions
are 10 m in the north and 30 m in the south. No flow
boundary conditions apply to all other boundaries. Fig. 4
shows the locations of the 13 observation wells, #1 to
Fig. 5. The true spatial distributions of hydraulic conductivity (m/d) of the hy
represent the study area with 10 � 10 grids).
#13. One pumping well is denoted as @1 in Fig. 4 and
the pumping rate is constant with a value of 8640 m3/d
from day 1 to day 5. The simulation period is 10 d and
head observations are collected from these thirteen wells
at the end of each day. In total, there are 130 head obser-
vations. These observations are subsequently corrupted
with Gaussian noise of zero mean and standard deviation
rh = 0.15 m. The specific storage (Ss) is assumed homoge-
nous and set at 0.0001 (1/m). Table 1 summarizes the
design parameters.

4.2. Formulation of the optimization model

In Eq. (4), the residual error (RE) between observed and
simulated heads is used as the objective function of the
inverse problem. A mathematical model for the inverse
problem can be formulated as
pothetical field: (a) two zones (b) three zones (c) four zones (X and Y axes
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MinE ¼ 1

Nwell � SP

XNwell

n¼1

XSP

t¼1

ð/simðn; tÞ � /obsðn; tÞÞ2
" #1=2

;

ð23Þ
Zonation 2 ½ZVTðpxi; pyi;KiÞ�; ð24Þ
pxl
6 pxi 6 pxu; i ¼ 1; . . . ;m; ð25Þ

pyl
6 pyi 6 pyu; i ¼ 1; . . . ;m; ð26Þ

Kl
6 Ki 6 Ku; i ¼ 1; . . . ;m; ð27Þ

X ¼ ½ðZVT
1 Þ; . . . ; ðZVT

m Þ�: ð28Þ

The parameter Nwell is the number of observed wells
(including #1 to #13). SP is the simulation period. The
/sim(n, t) and /obs(n, t) are the simulated and observed
heads of well n at time t. In Eq. (24), VT is applied as
the zonation method to parameterize the spatial distribu-
tion of hydraulic conductivity. In Eqs. (25)–(27), the terms
pxl, pxu, pyl, pyu, Kl, and Ku represent the lower and upper
bounds of the corresponding parameters. In this study, pxl

and pyl are set at 1 km, and pxu and pyu are set at 11 km. Kl

and Ku are set to be 1[m/d] and 40[m/d], respectively. In
Eq. (27), m is the number of zones and the spatial distribu-
tion of the hydraulic conductivity (X) is defined once the
zonation [ZVT(pxi,pyi,Ki)] is determined. Thus, the deci-
Fig. 6. The spatial distributions of hydraulic conductivity (m/d) of the initial so
the study area with 10 � 10 grids).
sion variables of this optimization problem are pxi, pyi,
Ki, i = 1, . . . ,m.

4.3. Case 1: Discrete hydraulic conductivity zone

Fig. 5 shows the three zonation patterns used for gener-
ating the observations at the 13 observation well locations.
Using only the corrupted observations, the inverse problem
seeks to uncover (identify) the true spatial distributions. In
this study we adopt PMWIN (Processing MODFLOW for
Windows), developed by Chiang and Kinzelbach [20], to
model the groundwater flow. We also use the software,
Visual Basic (VB), to write the codes to perform the Tabu
search and the integrated optimization. Additionally, we
use the VB module to execute MODFLOW which also
solves the adjoint state equation.
4.3.1. Specification of TS

As for the specification of TS, the neighborhood can be
constructed after the step sizes of all decision variables are
defined. In Case 1, the step sizes of pxi, pyi, and Ki are fixed
at Dpxi = 1 km, Dpyi = 1 km, and DKi = 1 [m/d]. The
movements then are defined to adjust each decision vari-
able one step at a time. There are two directions for each
lution: (a) two zones (b) three zones (c) four zones (X and Y axes represent
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variable, reflecting a positive or negative step. Each zone
has three parameters, and each parameter has two direc-
tions for modification. Thus the number of neighbor solu-
tions is related to the number of zones. For example, if
there are two zones, the six decision variables for ZVT are
{px1, py1, K1, px2, py2, K2}. Therefore, the number of
neighbor solutions is (3 � 2 � 2). Increasing the number
of zones i will result in more decision variables and also
enlarge the neighborhood. The search process is stopped
when the current solution satisfies the pre-defined residual
error tolerance which is 0.15 m, or the standard deviation
of the observation errors or successive iterations do not
improve the objective function value. The Tabu list needs
Fig. 7. Tracking the objective function values with each i
to define recorded items and the length of the list. When
any parameter of zone i of the current solution is selected
to be changed for a movement, the three parameters of
the ith zone are recorded in the Tabu list. For example, if
py1 is selected to be changed, px1, py1, K1 are all recorded.
As a part of the Tabu search, we also use some aspiration
criteria for keeping the search process from premature ter-
mination. For example, a movement is allowed when the
value of some parameters of a neighbor solution is tabued
but the neighbor solution has a better objective function
value than the recorded best solution. And all the tabued
memories are erased as long as all neighbor solutions are
tabued.
teration: (a) two zones (b) three zones (c) four zones.



Fig. 8. The spatial distributions of hydraulic conductivity (m/d) of the optimal solution: (a) two zones (b) three zones (c) four zones (X and Y axes
represent the study area with 10 � 10 grids).

Table 2
Results of optimal spatial distributions of hydraulic conductivity

Two zones Three zones Four zones

True Optimal True Optimal True Optimal

K1 (m/d) 14 14 11 11 14 17
K2 (m/d) 33 33 24 24 22 23
K3 (m/d) – – 32 31 30 30
K4 (m/d) – – – – 38 34
RE (m) – 0.153 – 0.147 – 0.174
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4.3.2. Parameter identification results

Fig. 6 shows the spatial distribution of hydraulic con-
ductivity with randomly assigned K values as the initial
solutions for the two zone, three zone, and four zone sce-
narios, respectively. Comparing the true hydraulic conduc-
tivity in Fig. 5 with the initial solution in Fig. 6, the two
spatial distributions are notably different both in shape
and value. Then TS is allied with ASM to optimize these
parameters {pxi,pyi,Ki} for the three respective zonation
scenarios with the objective of minimizing the residual
error. Fig. 7 shows the objective function value for each
iteration. The optimal solution is identified at the 42th iter-
ation for the two zone case, the 182th iteration for the three
zone case, and the 201th iteration for the four zone case.
With the increasing number of zones, the required itera-
tions to reach the optimum are larger due to the more com-
plicated parameter structures Fig. 8 illustrates the optimal
spatial distributions of hydraulic conductivity of two
zones, three zones, and four zones. Table 2 shows the
results in detail. As can be seen from Table 2, the optimal
values of hydraulic conductivity are not exactly the same
with the true values due to observation errors but the pat-
terns are very similar. The search processes of two zones
and four zones are stopped when there are no improve-
ments in residual error after successive iterations. The lar-
ger residual error with four zones implies that the observed
heads with observation error of rh = 0.15 m may not be
sufficient to identify a four zone structure. Identifying a
more complex parameter structure requires more data of
good quality.

To demonstrate the advantage of embedding ASM in
the Tabu search, we solve the same problems only with
TS. Comparisons of these two approaches are shown in
Table 3. The proposed TS allied with ASM requires 84,
364, and 404 MODFLOW simulation runs (each iteration
needs 2 runs) to reach the optimum for the two zone, three
zone, and four zone cases, respectively. Using TS alone
requires 432, 1872, and 5592 MODFLOW simulation runs



Table 3
Comparisons between TS and TS allied with ASM

Initial
RE (m)

Optimal
RE (m)

Length of Tabu list Iterations Number of MODFLOW runs
needed in one iteration

Total number of
MODFLOW runs

Two zones TS with ASM 0.81 0.153 8 42 2 84
TS 0.81 0.153 6 36 12 432

Three zones TS with ASM 1.54 0.147 14 182 2 364
TS 1.54 0.145 12 104 18 1872

Four zones TS with ASM 1.02 0.174 40 201 2 404
TS 1.02 0.161 30 233 24 5592

Fig. 9. The continuous spatial distributions of hydraulic conductivity (m/d) of the hypothetical field (X and Y axes represent the study area with lengths of
10 km).
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(each iteration needs 12, 18, and 24 runs, respectively) to
identify the optimal spatial distribution of hydraulic con-
ductivity. It is evident that both methods have the ability
to reach near global optima, but when TS is allied with
ASM, the number of simulation runs is significantly
reduced. This is particularly true for higher parameter
dimensions.

Since the search process of the proposed algorithm
reaches cycles with the same lengths of Tabu list of the
TS, a longer length of Tabu list is assigned as shown in
Table 3. Basically, the search process of TS is deterministic
as long as an initial solution and the length of the Tabu list
are fixed. However, the TS allied with ASM computes the
sensitivities – the tangent slope – to determine a movement.
TS alone has to calculate the neighbor objective function
value to decide the best neighbor solution. Thus, the search
process and the number of iterations of both methods are
not identical. The TS allied with ASM may require more
iterations, but with much less effort to evaluate neighbor
solutions in searching for the direction toward local opti-
mums, while TS alone may require fewer iterations, but
with much more effort to evaluate neighbor solutions.
However, both methods can find satisfying results but with
different efficiency. Thus, this study further proposes to
apply TS alone with larger steps of movement. Then, TS
allied with ASM will be applied to refine the solution with
finer steps of movement. Finally, a coarse-fine grid tech-
nique which is analogous to the quality memory of TS is
used in Case 2 to identify a continuous hydraulic conduc-
tivity distribution.

4.4. Case 2: Continuous hydraulic conductivity distribution

We use the parameterization method by Tan et al. [21]
to generate the continuous hydraulic conductivity field as
shown in Fig. 9. We then use this field to generate observa-
tions. Again, the generated observations are corrupted with
Gaussian noise with different standard deviations. Using
only the corrupted observations, we seek to identify the
best parameter structure to capture the spatial variation
of the heterogeneous field.

4.4.1. Specification of TS

As for the specification of TS, there is only one differ-
ence between Case 1 and Case 2. Rather than using a fixed
step size as in Case 1, Case 2 adopts a coarse-fine grid tech-
nique to adjust the step size. A coarse grid with
Dpxi = 2 km, Dpyi = 2 km, and DKi = 4 [m/d] is utilized
to approximate the optimal basis point locations and the
associated values. Faster convergence is expected with the



Fig. 10. The optimal spatial distributions of hydraulic conductivity (m/d): (a) two zones (b) three zones (c) four zones (d) five zones (e) six zones.
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coarse grid. The optimal solution from the coarse grid is
then chosen as the initial solution for the fine grid with
Dpxi = 400 m, Dpyi = 400 m, and DKi = 0.2 [m/d]. The
optimization procedure with the coarse-fine grid technique
starts from two zones and continues to increase the number
of zones. For each level of complexity, we calculate the
residual error, the parameter uncertainty error and AICc.

4.4.2. Parameter identification results

Fig. 10 shows the optimal spatial distribution of hydrau-
lic conductivity of two zones, three zones, four zones, five
zones, and six zones. Compared to the true hydraulic con-
ductivity distribution in Fig. 9, the optimized parameter
patterns after four zones start to capture the variation of
the true distribution. Table 4 shows the optimization
results. As can be seen from the results and Fig. 11, the
residual error decreases not only from coarse grid to fine
grid but also from two zones to six zones. It is obvious that
with more zones the fit improves as far as the residual error
is concerned. Although the residual error decreases as the
number of zones increases, caution must be exercised so
that over-parameterization is avoided. In many instances,
a model with fewer parameters may have greater sensitivity
and less uncertainty. Therefore, we examine two other



Table 4
Results of the integrated optimization algorithm with rh = 0.15 m

Structure TS with coarse grid TS with ASM and fine grid

Ki (m/d) RE (m) Ki (m/d) RE (m) tr(Cov) � 104 AICc AIC

Two zones (6 Param.) 20 0.632 18.4 0.58 3.53 �46.59 �49.51
8 6.2

Three zones (9 Param.) 28 0.448 21.4 0.281 4.39 �121.49 �125.34
4 5.8

12 13.2

Four zones (12 Param.) 20 0.289 18 0.232 7.15 �136.32 �141.46
24 22.8
4 5.4

12 12.8

Five zones (15 Param.) 16 0.264 11.8 0.215 25.8 �136.75 �143.57
12 20.4
32 23.4
4 4.2

12 13

Six zones (18 Param.) 24 0.257 25.4 0.209 – �131.31 �140.22
12 12.8
20 18.4
4 4.8

20 10.4
12 10
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Fig. 11. Parameter dimension with residual error and parameter
uncertainty.
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indices; that is, the parameter uncertainty error and AICc.
From Table 4, for rh = 0.15 m the optimal number of
zones is four. Parameter dimension higher than four results
in a drastic increase in parameter uncertainty error. The
parameter uncertainty error of five zones is almost 261%
greater than the parameter uncertainty error of four zones.
We note that the AICc value of five zones is only 0.32% less
than the AICc value of four zones. This implies that the
AICc value approaches a minimum around four zones since
there is no significant improvement in AICc beyond four
zones. For comparison purposes, we also presented the
AIC values in Table 4. For this particular example, the
AIC and AICc values show consistent results. We also note
that in Table 4 the residual error is further improved from
coarse grid to fine grid. Both the basis point locations and
the hydraulic conductivity values are changed to produce a
better fit. However, most of the changes are associated with
the hydraulic conductivity rather than the basis point loca-
tions. Tsai and Yeh [22] also showed that the sensitivity of
basis point location is lower than that of the hydraulic
conductivity.

We also apply the proposed methodology to the same
set of observations but corrupted with different observation
errors of rh = 0.45 m and rh = 0.03 m. The results are
shown in Tables 5 and 6. Generally, observations with less
errors provide better information for parameter structure
identification, which in turn allow for a higher parameter
dimension. Again, the residual error continues to decrease
with increasing parameter dimension, but the parameter
uncertainty error and AICc worsen. The results in Tables
5 and 6 suggest that the optimal numbers of zones are three
with a larger observation error and five with a smaller
observation error. These results are also consistent with
the results when rh = 0.15 m.

5. Conclusions

In this study, we have proposed an integrated optimiza-
tion algorithm that combines TS with the ASM. Numerical
experiments have demonstrated that this approach signifi-
cantly reduces the number of simulation runs when com-
pared to the traditional TS. The proposed methodology
is particularly efficient when the number of parameters is
large. Traditional TS requires evaluating all neighbor solu-
tions in one iteration, whereas TS allied with the ASM only
requires two simulation runs regardless of the parameter
dimension.



Table 5
Results of the integrated optimization algorithm with rh = 0.45 m

Structure TS with coarse grid TS with ASM and fine grid

Ki (m/d) RE (m) Ki (m/d) RE (m) tr(Cov) � 104 AICc

Two zones (6 Param.) 20 0.722 18.8 0.672 3.65 �29.97
8 6.8

Three zones (9 Param.) 20 0.58 20.8 0.44 4.61 �70.85
8 4.6

12 13.4

Four zones (12 Param.) 40 0.508 35.8 0.416 65.81 �69.89
12 13.2
20 19.6
4 2.8

Table 6
Results of the integrated optimization algorithm with rh = 0.03 m

Structure TS with coarse grid TS with ASM and fine grid

Ki (m/d) RE (m) Ki (m/d) RE (m) tr(Cov) � 104 AICc

Two zones (6 Param.) 20 0.602 19.4 0.55 3.91 �52.59
8 6.6

Three zones (9 Param.) 4 0.309 4.2 0.241 4.44 �138.83
12 12.8
20 20.8

Four zones (12 Param.) 24 0.24 19 0.174 28.25 �168.32
20 22.8
4 6

12 12.6

Five zones (15 Param.) 20 0.21 13 0.124 32.3 �198.9
24 23.8
20 20.2
4 5.6

12 13

Six zones (18 Param.) 40 0.198 24 0.122 48.92 �192.64
4 4.6

20 19.4
24 6.8
12 8.6
12 13
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We used VT as the zonation method in this study to
parameterize the spatial distribution of hydraulic conduc-
tivity. There is no doubt that VT has some limitations –
for example, it can only delineate a straight boundary.
However, VT still remains a powerful tool for automatic
parameterization of a heterogeneous field. The proposed
optimization algorithm was verified to reasonably identify
both discrete hydraulic conductivity zones and the contin-
uous hydraulic conductivity distribution.

We added a coarse-fine grid technique to the proposed
algorithm to further improve computational efficiency. A
coarse grid search was conducted to reduce the feasible
region. The optimal solution obtained from the coarse grid
search was used as the initial estimate for the fine grid
search.

The ability to identify parameter structure complexity is
directly related to data quantity as well as quality. Better
observations afford more information to identify a more
complex parameter structure. The ASM is applicable for
deriving the sensitivity of any other parameters such as
the storage coefficient, the pumping history, and the release
history in groundwater flow and mass transportation.
Thus, the proposed integrated optimization algorithm can
be extended to other studies. Moreover, different parame-
terization methods can be used to replace the VT and
increase spatial variability.
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