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Using first order perturbation theory, we show that the bandwidth, intensity, and lineshape in transmission
spectra of a single molecular junction calculated by the non-equilibrium Green’s function (NEGF) method
can be rationalized by the one- and two-resonant state approximations. Particularly, we find that the line-
shape of the transmission function is strongly influenced by the relative phases between the two nearest-
neighbor resonant states. Finally, we utilize these results to examine two systems: a Hückel model system
with five sites and a single fluoro-1,4-benzenedithiol molecule within the extended Hückel approximation.

� 2008 Published by Elsevier B.V.
1. Introduction

With the advances of self-assembling techniques and scanning
tunneling microscopes, the molecular electronics has given rise
to extensive investigations [1–7] owing to its potential applica-
tions to nanoelectronic devices [4,8–10]. Among many different
molecular electronic devices, the single molecular junction is the
simplest and is composed by two electrodes and a molecular wire.
Over the last decade, it has been found that transport properties of
the single molecular junction are strongly influenced by the types
of contacts [11,12] and the electronic structure of the bridged mol-
ecule [13,14]. Therefore, it is important to understand the correla-
tion between the transport properties and molecular electronic
structures because it may provide us a guide to design appropriate
molecular electronic devices.

In this Letter, we will start with the Landauer formula, and con-
sider only the elastic electron scattering between the molecule and
two electrodes in the weak coupling limit. From the Landauer for-
mula and within the NEGF formalism, the transmission function
can be represented as the follows

TðEÞ ¼ Tr CLGRCRGA
� �

; ð1Þ

where GR(A) is the retarded (advanced) Green’s function and C L(R) is
the spectral function of the left (right) electrode. The spectral func-
tion is related to the imaginary part of the self-energy, CLðRÞ ¼
i RR

LðRÞ � RA
LðRÞ

� �
¼ 2DLðRÞ, which can be calculated by the Newns–

Anderson Model [15] or the surface Green’s function [16,17]. The re-
tarded Green’s function is

GR ¼ 1
E� Hmol � RR ; ð2Þ
Elsevier B.V.
where Hmol is the molecular Hamiltonian and RR is the retarded
self-energy contributed from two electrodes. In the weak coupling
limit and using the tight-binding approximation, the Green’s func-
tion in Eq. (2) can be approximated by first order perturbation the-
ory [18] as

ðGRÞlm ¼
X

n

Cð0Þ�ln Cð0Þmn

E� eð0Þn � eð1Þn

;

eð1Þn ¼ nð0Þ RR
�� ��nð0Þ� �

¼
X
lm

Cð0Þln Cð0Þmn RR
lm;

ð3Þ

where we have written the molecular orbital, | n(0)i, as a linear com-
bination of atomic orbitals, jnð0Þi ¼

P
lCð0Þln jli. Eqs. (1) and (3) are the

starting point in the next two sections.
2. Bandwidth and intensity: one-resonant-state approximation

In order to obtain the analytical forms for the bandwidth and
the intensity in the transmission spectrum, we consider only one
orbital on each site, nearest-neighbor couplings and neglect of
the electron correlation, hence the total Hamiltonian is written as

Htotal ¼ Hmol þ Helectrode þ Hcoupling;

Hmol ¼
XN

lm

elmaylam;

Helectrode ¼
X

i

eia
y
i ai þ

X
j

eja
y
j aj;

Hcoupling ¼
X

i

bi ay1ai þ c:c
� �

þ
X

j

bj ayNaj þ c:c
� �

;

ð4Þ

where 1 and N stand for the junction atom orbitals; i and j stand for
the left and the right electrode orbitals. According to the nearest-
neighbor coupling approximation, Eq. (1) turns into
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TðEÞ ¼ CLð Þ11 GR
� �

1N
CRð ÞNN GA

� �
N1

¼ 4 DLð Þ11 DRð ÞNN GR
� �

1N
GA
� �

N1
; ð5Þ

and the retarded Green’s function becomes

GR
� �

1N
¼
X

n

Cð0Þ�1n Cð0ÞNn

E� eð0Þn � Cð0Þ1n

��� ���2ðK11 � iD11Þ � Cð0ÞNn

��� ���2ðKNN � iDNNÞ
;

ð6Þ

where K is the real part of the self-energy. Suppose the energy of an
incident electron is close to a certain resonant state a, and is far
away from the other resonant states. It is reasonable to neglect
the contribution from the other resonant states, and Eq. (6) can
be approximated as

GR
� �

1N
� Cð0Þ�1a Cð0ÞNa

E� eð0Þa � Cð0Þ1a

��� ���2ðK11 � iD11Þ � Cð0ÞNa

��� ���2ðKNN � iDNNÞ
; ð7Þ

and the transmission function can be calculated as

TðEÞ

¼
4D11DNN Cð0Þ1a

��� ���2 Cð0ÞNa

��� ���2
E� eð0Þa �ð Cð0Þ1a

��� ���2K11þ Cð0ÞNa

��� ���2KNNÞ
	 
2

þ Cð0Þ1a

��� ���2D11þ Cð0ÞNa

��� ���2DNN

	 
2 :

ð8Þ

It is evident that the intensity of the transmission function is related
to the MO coefficients, spectral density, and the position of the res-
onant state energy. For simplicity, if we neglect the energy shift
term and assume that two electrodes and the electrode-molecular
contacts are exactly the same, and also ignore the energy depen-
dence of the self-energy, thus we have D11 = DNN = a, where a is a
constant. Eq. (9) becomes

TðEÞ �
4a2 Cð0Þ1a

��� ���2 Cð0ÞNa

��� ���2
E� eð0Þa

� �2
þ a2 Cð0Þ1a

��� ���2 þ Cð0ÞNa

��� ���2	 
2 6 1: ð9Þ

It is obvious that the inequality in Eq. (9) is ensured by the Cauchy–

Schwarz inequality, 4 Cð0Þ1a

��� ��� Cð0ÞNa

��� ��� 6 Cð0Þ1a

��� ���2 þ Cð0ÞNa

��� ���2. The maximum of

transmission functions occurs only when Cð0Þ1a ¼ Cð0ÞNn and the incident
electron is exactly on resonance, i.e. E� eð0Þa . In other words, the total
transmission can never occur in the non-symmetric resonant states

Cð0Þ1a 6¼ Cð0ÞNa

� �
. Additionally, this formula can also explain that the
TasymðEÞ ¼
4Cð0Þ1a Cð0ÞNa Cð0Þ1b Cð0ÞNb ðE� eaÞðE� ebÞ þ a2Cð0Þ1a Cð0ÞNa Cð0Þ1b Cð0ÞNb

h i

E� eð0Þa

� �2
þ a2 Cð0Þ1a

��� ���2 þ Cð0ÞNa

��� ���2	 
2
" #

E� eð0Þb

� �2
þ a2 Cð0Þ1b

��� ���2 þ Cð0ÞNb

��� ���2	 
2
" # ð14Þ

� 4Cð0Þ1a Cð0ÞNa Cð0Þ1b Cð0ÞNb ðE� eaÞðE� ebÞ

E� eð0Þa

� �2
þ a2 Cð0Þ1a

��� ���2 þ Cð0ÞNa

��� ���2	 
2
" #

E� eð0Þb

� �2
þ a2 Cð0Þ1b

��� ���2 þ Cð0ÞNb

��� ���2	 
2
" # : ð15Þ
molecular orbitals with the MO coefficients satisfying Cð0Þ1a � Cð0ÞNa

or Cð0Þ1a � Cð0ÞNa make little contributions to electric conduction. More-
over, we can use Eq. (9) to obtain the approximate half-width of
peaks of various resonant states without complicated calculations.
It is noteworthy that when the energy of an incident electron is
close to a symmetric resonant state Cð0Þ1a ¼ Cð0ÞNa

� �
, the half-width of

each peak can be simplified as 2aCð0Þ21a .
Eq. (9) can be extended to the situation that each site has more
than one orbital. Suppose the off-diagonal terms of R L(R) are impor-
tant, the transmission functions can then be generalized as follows

TðEÞ �
4a2P

lm
Cð0Þln

��� ���2 Cð0Þmn

��� ���2

E� eð0Þn

� �2
þ a2

P
l

Cð0Þln

��� ���2 þP
m

Cð0Þmn

��� ���2
 !2 : ð10Þ

Notice that the off-diagonal terms of R L(R) can have a nontrivial
influence on the transmission function in some special cases [18].
Nevertheless, Eq. (10) still provides us a preliminary analysis to
determine which MO is a major resonant state in the single molec-
ular junction.

3. Lineshape: two-resonant-state approximation

The one-resonant-state approximation can explain the band-
width and the intensity of the transmission function. In order to
further understand the origin of the lineshape of the transmission
function, we have to go beyond the one-resonant-state approxima-
tion, and consider at least two resonant states in Eq. (6), a and b,
which are close to the energy of the incident electron. Similarly,
by ignoring the term of energy shift and the energy dependence
of the self-energy, D11 = DNN = a, Eq. (6) becomes

GR
� �

1N
�
X
n¼a;b

Cð0Þ�1n Cð0ÞNn

E� eð0Þn þ ia Cð0Þ1n

��� ���2 þ Cð0ÞNn

��� ���2	 
 : ð11Þ

Substituting Eq. (11) into Eq. (5), we found that the transmission
function can be divided into a symmetric and an asymmetric parts:

TðEÞ ¼ TsymðEÞ þ TasymðEÞ: ð12Þ

The symmetric part of the transmission function can be regarded as
the superposition of two Lorentzian-type peaks:

TsymðEÞ ¼
X
n¼a;b

4a2 Cð0Þ1n

��� ���2 Cð0ÞNn

��� ���2
E� eð0Þn

� �2
þ a2 Cð0Þ1n

��� ���2 þ Cð0ÞNn

��� ���2	 
2 : ð13Þ

When the energy of incident electron is close to one of the resonant
states, the symmetric part of the transmission function will reduce
to Eq. (9). However, in order to obtain the asymmetric part of the
transmission function, we have to take advantage of the fact that
the MO coefficients, Cð0Þlm , are real. Therefore, we have
In simplifying Eq. (15) from Eq. (14), we have assumed that the
second term of the numerator in Eq. (14) is much smaller than the
first term in the weak coupling condition, a� 1 and far away from
these two resonances, and can thus be neglected. Additionally,
since the denominator in Eq. (14) is positive, thus, the value of
the asymmetric term is determined mainly by the MO coefficients
of the two nearest-neighbor resonant states and the energy of the



–3 –2 –1 0 1 2 3
–4

–3

–2

–1

0

Energy of the incident electron (eV)

Lo
g(

Tr
an

sm
is

si
on

)
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incident electron. The total transmission function of the two-reso-
nant-state model is shown in Fig. 1.

Let us consider the situation when the energy of an incident
electron is located in between these two resonances, ea < eb, as
shown in Fig. 1. If the phases of the two resonant states satisfy
Cð0Þ1a Cð0ÞNa Cð0Þ1b Cð0ÞNb > 0, the magnitude of transmission function in this
region is strongly suppressed due to destructive interference. On
the contrary, if Cð0Þ1a Cð0ÞNa Cð0Þ1b Cð0ÞNb < 0, the magnitude of transmission
function in this region is enhanced due to constructive
interference.

4. A simple model system

To illustrate how our previous results can be employed, here we
consider a simple one-dimensional molecular wire that contains
five sites with one orbital on each site. In the tight-binding approx-
imation, the molecular Hamiltonian can be written as

Hmol ¼ �
X5

i¼1

ayi ai � t
X4

i¼1

ayi aiþ1 þ h:c
� �

: ð16Þ
(I)(II)(III)(IV)

φa

φb

φc

φd

φe

left tip

right tip

A

B

Fig. 2. (A) The molecular wire connected with two tips. (B) Five molecular orbitals
of the corresponding molecular wire.
Now let’s consider a gedanken experiment as shown in Fig. 2A, in
which the molecular wire is connected by two tips. Assume that
the left tip is fixed and the right tip can be moved to four different
positions, (I), (II), (III), and (IV). Fig. 2B shows the five molecular
orbitals of the molecular wire in increasing energy. The black and
white colors stand for the positive and negative phases of the orbi-
tals. The size of a circle represents the relative magnitude of the cor-
responding atomic orbital.

The calculation of the transmission spectra is based on the NEGF
method. For simplicity, the real part of the self-energy is assumed
to be zero and the imaginary part a constant. The calculated trans-
mission spectra for these four hypothetical situations are shown in
Fig. 3. These figures clearly exhibit that the different positions of
the right tip can affect the shapes of transmission spectra enor-
mously. Here we will demonstrate that these non-trivial changes
can be interpreted by the one- and two-resonant-state approxima-
tion introduced in the previous sections.

The gross features of Fig. 3A–C such as the positions, intensities,
and bandwidths of transmission resonances can be well under-
stood by the one-resonant-state approximation. For instance, the
five resonances in Fig. 3A occur exactly at the eigenvalues of the
molecular Hamiltonian due to the neglect of the real part of the
self-energy. The relative magnitudes of bandwidth for each trans-
mission resonance are roughly in proportion to the Cð0Þ1a

��� ���2þ
Cð0ÞNa

��� ���2, which is consistent with the prediction based on Eq. (9). Un-
like the hypothetical experiment (I), the transmission spectra for
(II) and (III) as shown in Fig. 3B and C exhibit interesting antireso-
nances at the molecular orbitals with vanishing amplitude right at
the position of the right tip. The transmission suddenly drops to
zero when the energy of the incident electron is close to the anti-
resonance. Based on the molecular orbitals as shown Fig. 2, there is
no antiresonance for experiment (I), exactly one antiresonance at
0 eV for experiment (II) and (IV), and two antiresonances at
±1 eV for experiment (III).

Finally, we can see that the transmission spectrum for the exper-
iment (IV) shows additional change in its lineshape between the
transmission resonances, �1.732 eV and �1 eV. The origin of this
mis-shape can be understood only through the two-resonant-state
approximation. In this case, the right tip is put right next to the left
tip. We can easily see that the intensities of the peaks at �1 eV and
1 eV reach the maximum since the MO coefficients on the first and
the second atoms are equal (see /b and /d in Fig. 2B). The shape
between the transmission resonances, �1.732 eV and �1 eV, is
strongly distorted owing to the MO coefficients conforming to the
requirement of destructive interference, Cð0Þ1a Cð0ÞNa Cð0Þ1b Cð0ÞNb > 0 (see /a

and /b in Fig. 2B). In addition, the fact that the width is the peak
at �1 eV is larger than that of the peak at �1.732 eV can be ex-
plained due the the larger magnitude of the MO coefficients.

From the calculation based on this simple model, we have found
that the single molecule conductance is strongly influenced by the
position of the connection, in addition to the molecular structure,
the electrodes and the junction atoms. This kind of sensitive
dependence on the connection has been demonstrated in the
recent experiments [19,20].
5. A single fluoro-1,4-benzenedithiol molecule

In this section, we apply our rules to examine the transmission
function of a single fluoro-1,4-benzenedithiol molecule (see Fig. 4).
The transmission function is calculated by the NEGF method with-
in the extended Hückel theory(the NEGF-EHT). The NEGF-EHT
codes are based on the combination of the HuckelIV 2.0 [21] and
the Yaehmop [22]. The sulfur atom of the molecular wire is as-
sumed to be connnected to the hollow position of the 111 surface
of Au electrodes, and the distance between the sulfur atom and Au



Fig. 3. The transmission functions of a molecular wire consisting of five orbitals. The indices (A), (B), (C), and (D) are corresponding the positions of the right tip on (I), (II), (III),
and (IV) in Fig. 2(B). Parameters: � = 0, t = 1, and D = 0.1.
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Fig. 5. The transmission function of a single fluoro-1,4-benzenedithiol molecule.

Table 1
The energy and MO coefficients of a fluoro-1,4-benzenedithiol molecule

Molecular Orbital A B C

Energy �10.42 �8.11 �7.48

Types of Orbital left right left right left right

s 0.000 0.000 0.000 0.000 0.000 0.000
px 0.000 0.000 0.000 0.000 0.000 0.000
py 0.000 0.000 0.000 0.000 0.000 0.000
pz 0.626 �0.669 0.047 0.089 �0.323 �0.299

Molecular orbital energy in eV calculated by Yaehmop.
The MO coefficients of the left sulfur atoms attached onto the left and right
electrodes.
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surface is chosen to be 1.905 Å, which is determined by the DFT
optimization in previous work [23].

The calculated transmission spectrum is shown in Fig. 5. The
two peaks located at �7.6 eV and �8.2 eV, as shown in Fig. 5, cor-
respond to the transmission through MOs of the fluoro-1,4-ben-
zenedithiol with eigenvalues, �7.4 eV and �8.1 eV, respectively.
The peak located at �10.8 eV is related to the MO with energy,
�10.4 eV . In Table 1, we list the energies and the corresponding
MO coefficients on the sulfur atoms of these three MOs. It is easy
to see from Table 1 that the atomic coefficients of these three
MOs are all concentrated on the pz orbital. Thus, it is adequate to
apply the previous lineshape analysis to explain the transmission
spectra of the conjugated systems.

The AO coefficients of the left and the right sulfur atoms for
molecular orbitals, A and C, are close to each other in magnitudes.
Thus, the intensities of these two peaks in the transmission function
are larger than the one due to the molecular orbital B. Additionally,
the magnitudes of MO coefficients on A and C are greater than that
on B, so their bandwidths of the transmission function are wider
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than that of B. Note also that the MO coefficients of B and C satisfy
the condition of destructive interference, Cð0Þ1b Cð0ÞNb Cð0Þ1c Cð0ÞNc > 0, so that
the lineshape is strongly mis-shaped when close to resonance. On
the other hand, the MO coefficients of A and B satisfy the condition,
Cð0Þ1a Cð0ÞNa Cð0Þ1b Cð0ÞNb < 0, thus, the lineshape decreases smoothly. These
results are consistent with our theory.

In conclusion, our theory has not only successfully explained
the characteristics of the transmission spectra, but also provided
us a simple analysis of the intensity, linewidth, and lineshape in
the transmission spectra based on a simple molecular orbital com-
putation. However, owing to the neglect of electron correlations
and vibronic couplings, our theory can predict neither the many
body effects such as the Kondo effects and Coulomb blockade
[4,6] nor the vibronic effects like inelastic scattering [24–27]. Al-
beit with the restriction of the independent electron approxima-
tion, we believe the theory we propose is still very useful for the
understanding the transmission function. The deviation from this
picture of the transmission spectrum indicates the importance of
electron–electron correlation and the electron–phonon interaction.
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