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Flow Allocation in Multi-hop Wireless Networks:
A Cross-Layer Approach
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Abstract— This paper addresses the flow allocation problem
in multi-hop wireless networks. We define and formulate a new
interference model, referred to as the Node-based Interference
Model, to better capture the behavior of medium access control
protocols and the physical layer interference issues. Based on
this model, we formulate the problem as a cross-layer network
utility maximization problem that considers the coordination of
the transport, MAC and physical layers, and avoid the maximum
clique or independent set enumeration approach as adopted in
most of the existing work. The objective of the problem is to
maximize the aggregate network throughput while maintaining
the fairness among flows. We then propose a gradient-based flow
allocation algorithm by using the duality approach, and analyze
the rate of convergence to the optimum for the proposed algo-
rithm. The simulation results show that the proposed algorithm
can rapidly converge to the optimum, and can also rapidly adapt
to the changes in network topology and routing paths in different
flow scenarios.

Index Terms— flow allocation, interference, multi-hop wireless
networks.

I. INTRODUCTION

ESEARCH in multi-hop wireless networks has received

much attention in recent years. In such a network,
packets are forwarded in a hop-by-hop manner without the
assistance of a pre-deployed infrastructure. Each flow, in
addition to contending for local resource at each intermediate
node in its routing path, referred to as local interference, must
also compete for the shared wireless medium with those flows
located within its interference range, referred to as location-
dependent interference. Local interference is characterized by
the half-duplex property of the wireless transceiver, which
means that it can either transmit or receive data at any time,
but not both simultaneously; location-dependent interference
is characterized by the property of the radio signal reception.
These unique characteristics spawn many research challenges
in resource management for end-to-end sessions in multi-hop
wireless networks. Due to resource contention from different
layers, traditional single layer design disciplines lead to inef-
ficient performance. This calls for cross-layer design manner
[1], [2] to coordinate among the transport, MAC and physical
layers so that the resource can be efficiently utilized.
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The two models which are used widely for describing the
location-dependent interference among packet transmissions in
single channel wireless networks are the Protocol Model [13]
and the Physical Model [13], [14]. Variations to the Protocol
Model include the static interference model [15], [16] and the
flow-dependent conflict graph [17]. Existing work [11], [20],
[22] solve resource allocation by building on the concept of
the conflict graph. In a conflict graph, each vertex corresponds
to a wireless link and an edge between two vertices exists
if the transmissions on the two wireless links contend with
each other. A complete subgraph of the conflict graph is
referred to as a clique. The maximal clique, representing
a maximum set of mutually contending wireless links, is a
clique that is not contained within any other cliques. The
interference problem is then tackled by the enumeration of the
maximal cliques in the network. However, clique computation
is NP-complete [23], and worse, the clique constraints are
insufficient to guarantee the optimality of link utilization [22].
Additional challenges arise when one attempts to implement
these ideas in a distributed manner. Previous work [24]-[27]
adopts the Physical Model for resource management. The idea
is to optimize the network capacity while satisfying the power
constraint of each node. Once the capacity of each link is
determined, the flow allocation problem in wireless multi-hop
networks can be treated in a similar way as that in wired
networks. However, the calculation of the capacity region
based on the Physical Model requires selecting the sets of
concurrently active communication links. The determination of
the sets of concurrently active links is time-consuming because
each link in a set will interfere with the other links.

The relationship among the interference caused by wireless
communications, the supportable data rate of a node, and the
end-to-end flow rate control problem have not been explicitly
addressed in all of the existing work. The MAC issues caused
by the interference due to simultaneous transmissions have
also not been addressed and characterized. This calls for new
mechanisms which jointly consider these relations without
complicated computation. The following two issues motivate
our work: 1) avoiding the enumeration of maximum cliques or
the sets of concurrently active links when considering location-
dependent interference; 2) providing a general approach which
accounts for the interference constraints in MAC protocol
designs in arbitrary network topologies.

In this paper, we study the flow allocation problem in
wireless multi-hop networks. The objective of this study is
to optimize global resource allocation by maximizing the
aggregate utilization of wireless resource with coordination
between the transport, MAC and physical layers. To achieve
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this objective, we define and formulate a new interference
model, referred to as the Node-based Interference Model,
which accounts for MAC protocols and captures the behavior
of local interference and location-dependent interference for
multi-hop wireless networks. This model enables each node
to locally identify the interference that occurred at the phys-
ical layer and contention behavior at the MAC layer only
through signal power measurement. Therefore, the complexity
of mutual interference and contentions among neighboring
nodes can be reduced while the key factors of physical
and MAC layers can be characterized. Compared with the
Protocol Model and Physical Model, this model can simplify
the cross-layer design for network planning and wireless
resource management, and can characterize the relationship
among interference, data rate, and medium access contentions.
Based on the Node-based Interference Model, we formulate
the optimal flow allocation problem as a convex optimization
problem such that 1) the behavior of the interference and the
supportable data rate at the physical layer, medium contention
at the MAC layer, and end-to-end flow issues at the transport
layer can be jointly considered, and 2) the clique or the
independent set computation can be eliminated with the node-
based interference constraints. We then propose a gradient-
based flow allocation algorithm with the duality approach,
which can be easily extended to a distributed algorithm in a
way similar to [3], [4]. The proposed algorithm is shown to be
primal-dual optimal and can converge to the optimum within a
limited number of iterations. The performance of the proposed
algorithm is evaluated via numerical study in different flow
scenarios.

The rest of the paper is organized as follows. In Sec. II,
the new interference model with respect to local interference
and location-dependent interference in multi-hop wireless net-
works is characterized and formulated. In Sec. III, the flow
allocation problem is formulated and solved by the duality
approach. In Sec. IV, an optimal flow allocation algorithm
based on the gradient projection method is proposed. In Sec.
V, the simulation results are provided. Finally, the paper is
concluded in Sec. VL

II. SYSTEM MODEL
A. Interference in Wireless Networks

We consider a multi-hop wireless network G=(V,E), where
V' is the set of nodes and FE is the set of links in the network.
Let P;(4) denote the transmission power of node 4; d; ; be the
distance between nodes ¢ and j; L(.) be the path gain function,
and o be the thermal background noise. Consider a pair of
nodes i,7 € V, the received power at node j, i.e., P.(j) =
P,(i)L(d; ;), must exceed a threshold to correctly receive a
data unit from transmitter i. Hence, we have SINR; ; > 0,
where SNR; ; = P,(i)L(d; ;)/o is the Signal to Noise Ratio
(SNR) of the wireless link (i, 7), o is a constant, and 0 is the
SNR threshold for a node to correctly decode the signal. The
transmission range r; of transmitter ¢ is the largest distance
from ¢ that node ¢’s data packets can be correctly decoded.
It is determined once the transmission power P;(¢) of node ¢
and 6 are given.

For a multi-hop wireless network, multiple pairs of nodes
may transmit data units simultaneously. In addition to the

thermal noise, the transmission from node ¢ to node j may
be interfered by other concurrent transmitters. Let K denote
the set of concurrent transmitters. The Signal to Interference
Ratio (SIR) for link (4, 7) is defined in [13], [14] by

Pt(i)L(di,j)
>orer Pe(k)L(dyj) + o’

For node j to receive a data unit from node ¢ correctly,
the SIR; ; of link (¢,7) must exceed the threshold (. The
value of threshold 3 is determined by the settings of wireless
physical layer (PHY). In this paper, we adopt the default
setting of IEEE 802.11 PHY, i.e., the collision threshold
(CP_Threshold) of IEEE 802.11 PHY is defined as the
signal to interference ratio. Thus, we have C' P_Threshold =

B X ZkeK Py(k)L(dg,;)-

SIR; ; = (1)

B. Node-based Interference Model

We assume that each node 7 € V is characterized by an
SNR threshold 6; to receive one data unit from a transmitter.
The SIR threshold f;, provided that 6; > (3;, is also given
so as to guarantee correct signal decoding when there are
concurrent transmissions contending for the resource. Based
on the Shannon theorem, the supportable data rate of any
communication link incident to node ¢ is at least R; =
W xloga(1+ 3;), where W is the frequency bandwidth of the
communication channel. Only when the SIR of the received
signal is smaller than [3; can the supportable data rate of this
node be assumed to be zero, and thus the transmission be
prohibited from accessing this wireless link.

Let Pq.(7) denote the maximum transmission power of
node i. Suppose each node ¢ can adjust its transmission power
P(i), 0 < P(i) < Ppasz(i) such that the signal power of
the receiver node j is slightly larger than 6; x o. Then, the
maximum supportable data rate of a wireless link connecting
node j is given by Rj e = W X loga(1 + 6;) if there
is no interference contributed by the neighboring nodes. The
maximum interference budget B;, which denoted that node j
can sustain to correctly decode the signal from a transmitter,
is given by B; = (6; x o/B3;) — o. For a particular node
k, the ratio of the interference contributed by the concurrent
transmission from node ¢ to node j, denoted by wj j ;, can be
expressed by

Pi(i) x L(d; 1) _ L(d; 1.)0r B @)

By L(d; ;) 0k — Br)

The set of nodes which renders the interference ratio
w; k5 > 11is called the set of contending nodes for node k. The
occurrence of any communication at each contending node
will cause the supportable data rate of node & to drop to zero,
and therefore, prohibit node k from accessing the wireless
medium. Let ¢; 5 ; denote the interference indicator for the
communications performed at the set of contending nodes of
node k. g; . ; = 1 if node k contends with the transmission
from node ¢ to node j; otherwise, ¢; 1 ; = 0.

The concept of the Node-based Interference Model is il-
lustrated in Fig. 1. Fig. 1(a) shows the relationship between
the location-dependent interference contributed by the set of
concurrent transmitting nodes and the capacity shared by a

Wik,j =
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Fig. 1. Node-based interference model: (a) location-dependent interference;
(b) local interference.

particular node. During each fixed time period 7', the capacity
region ! can be classified into two types of regions: 1)
the region which can be shared with the set of concurrent
transmitters (i.e., area (1)+(2)), and 2) the entire region which
is consumed by the set of contending nodes (i.e., area (3)).
During the portion of time that the interference caused by the
set of concurrent transmitters (i.e., area (2) in Fig. 1(a)) does
not exceed the budget B, the node is allowed to receive input
traffic at least data rate R (i.e., area (1) in Fig. 1(a)). During
the portion of time for area (3) in Fig. 1(a), the interference
contributed by the set of contending nodes is larger than B,
and thus the data reception at this node is prohibited.

Consider a set of end-to-end flows, denoted by I', in a multi-
hop wireless network. Each end-to-end flow, denoted by f =
{s,d}, traverses the system from the source node s through
multiple hops to the destination node d. Let t - denote the
portion of time shared by flow f traversing from node ¢ to
node j. Based on the location-dependent interference from
both sets of concurrent transmitters and contending nodes, we
have

3

Z Z tfz + Z Z Z Sjyik X tik <T.

ferjev fET JEV keV (i )

2.0, > wall

FET JEV keV (i,5)

Yt <00 @)
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Fig. 1(b) illustrates the impact of local interference of a
node on the channel capacity sharing. The capacity can be
shared by the input traffic and the output traffic. This kind of
interference is imposed by most MAC protocols, giving rise
to the name the MAC constraint, and expressed by

IIDBLIEDIPIL S

fET jev feT jev

&)

III. FLOW ALLOCATION IN MULTI-HOP WIRELESS
NETWORKS

In this section, we formulate the problem based on the
previous discussion with respect to the interference and MAC
constraints in multi-hop wireless networks. Note that the

'Each capacity region is given by a data rate times a period of time.

formulation below is based on single-path routing. It can also
be extended to the multi-path flow allocation problem in a
straighforward manner.

A. Problem Formulation

Each end-to-end flow f € I' is associated with a utility
function Uy(zf), which indicates the degree of satisfaction
of its end-user. Let C; = T x R; denote the total capacity
of node ¢ € V. Assume that the utility function Uy(.) is an
increasing, strictly concave, twice continuously differentiable
function of z ¢ over the interval 0 < x5 < max{C;|i € V}.
The traffic satisfying such a utility function is described as
elastic [30]. We further assume that the utilities are additive
such that the aggregate utility of flows can be regarded as
the network utility. If link (¢,5) carries the traffic of flow
f, then r{ 1; otherwise, rlfj = 0. Thus, we have z; =
> fev tfj ; X R;. The objective of this problem is to maximize
the total network utility over x = (x5, f € I') subject to
the local and location-dependent constraints along with the
medium contention consideration. Such an objective function
can achieve the optimal resource utilization and realize the
fairness models such as max-min or proportional fairness [30].
Substituting the definition of a flow into (3) and (5), we can
formulate the problem of flow allocation in multi-hop wireless
networks as a convex optimization problem as follows.

P: Mazximize f(x ZUf (x¢), (6)
fer
subject to
ZmeﬁZmeff <G, O
fer jev fer jev
ZZT IerZZ Z i kT ng"fg <Ci. (8

fer jev ferjev kev(i,j)

The objective function in (6) is to maximize the aggregate
utility over all flows. By optimizing this objective function,
both optimal and fair flow allocation can be achieved. The
feasible region of the optimization problem jointly formed by
constraints in (7) and (8) is a convex and compact set.

B. Duality

With the assumptions on the utility function, the objective
function of the primal problem P in (6) is differentiable and
concave. In addition, the feasible region of the optimization
problem in (7)(8) is convex and compact. Based on the non-
linear optimization theory, there exists an optimal value of
x* for the primal problem P. The Lagrangian form of the
optimization problem P can be expressed as follows.

T V] IT|
Lz, A\ p) = ZUxf JrZ)\ [C; — Za,f:rf
V] T

€))

Z wilCi — Z bisxy],
i=1 f=1
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. — VI R;
Whereaf - Z]ljz ZglzgRq’

ZLVll "5 Z‘V|1 ZLV‘1 skti,j SThiskT fk gk

In (9), X\, and Wit € V, are Lagrange multipliers as-
sociated with a local interference constraint and a location-
dependent interference constraint on node i, respectively. The
addition of total network utility and the linearity of constraints
lead to a Lagrangian dual decomposition into each individual
flow f as follows.

and b;y =

Tl V1

Lz, M) =Y Ly(wp, M)+ Gl + ), (10)
f=1 i=1

where )\fzzl 1 Aiaiy and ,uf—X:z 1% if -

For each flow f € I, Ly(zs, M, pl) = Up(xy) — (M +

p/)x s and its value is determined by x; and flow prices A/
and /. Considering the expression A/ + ;/, we obtain

Vi Vi

Mapl = > S el i+ xR g +), (1D
i=1i#j j=1

where 7;, = Z‘kvzll WKSj ki represents the price of link
(j,) that is the aggregate interference price from the neigh-
borhood of link (7j,1%).

To determine the Lagrange multipliers, we introduce the
dual problem g of the optimization problem P, which can be
formulated as follows.

12)

g minx>o,.>0 9(A\, 1),

where g(A,pu) = max, L(z, A\, u) = Z‘fF:|
V()‘au))’ and

Vi v
Sy = maX(Uf x§)— Z Z 75 .4( -HM‘HLJ'H% )T f),
i=1,i#j j=1
4
V(A 1) = maz. C’(Z(/\’ + pi)).

=1

The dual approach decomposes the original problem into the
rate control problem Sy and the scheduling problem V (A, ut)
given the Lagrange multipliers A and g . In (10)-(11), the
Lagrange multipliers A; can be interpreted as the implied cost
of a unit flow accessing node ¢, and the Lagrange multiplier
w; can be interpreted as the implied cost of a unit flow
contributing interference to node ¢. From these equations, we
observe that each flow f incurs a cost to each node that it
traverses and to each node to which it contributes interference.

IV. GRADIENT-BASED FLOW ALLOCATION ALGORITHM

To solve the optimization problem presented in the previous
section, we propose a de-centralized algorithm based on the
node-based pricing framework. The objective is to achieve
optimal flow allocation in multi-hop wireless networks. We
first design an algorithm to determine the per-node price and
to obtain the flow allocation schedule by using the gradient
approach. Then, we analyze the properties of the algorithm.

TABLE 1
GRADIENT-BASED FLOW ALLOCATION ALGORITHM

Input: A set of nodes V, a set of source-destination pairs I", and
the routing path of each flow.

Output: Flow assignment x ¢ for each flow f € I'.

1: Initialize flow ¢ (0) « 0,V f € T, and node prices \; < 0, p1; <
0,Vi € V.

2: Update the price at each node 7 € V.
Xi(t+1) = () —a(Ci - S (S - ”+ Lﬁ)w)ﬁ.
it +1) = [us(t) = a(C; - Z‘F' V(]

VI v
)aﬂ/)]

DD Siik

j=1k=1
3: For each node ¢ € V, send the prices \;(¢ + 1) and p;(t + 1)
to the sender of the flow f € I', for which ﬁf,j =1lor i = 1 or
T;’kcj,i,k =1.
4: For each flow originator, after receiving node prices \;(t + 1)
and p; (¢t + 1) from each node ¢ € V, calculate the gradient by

G+ =V ZLVL b+ D) e+ 1)

Aj (t + 1) + 122} (t + 1) + Zk 1 /J'k(t + 1)§],k,1]
5: The flow allocation is adjusted by

zp(t+1) =ap(Cr(t+1)).

A. Gradient-Based Algorithm

By applying the gradient-based approach to the dual prob-
lem g, we propose an algorithm to calculate the multipliers of
each node iteratively. The net benefit of the flow f is defined
as follows.

bp(wy) =Uys(xy) — (13)

In (17), (¢ = M + uf is the shadow price of flow f,
and ¢¢(zs)is the net benefit of flow f corresponding to the
difference between its utility and its cost. Since Uys(.) is an
increasing, strictly concave, twice continuously differentiable
function of z ¢, the maximizer of ¢f(xs) exists when

Cray

dog(zy) o
Il v -V ) =0 14
where the maximizer is defined by

xf(Cr) = arg mazy,er ¢f(zy). (15)

We apply the iterative gradient projection method to solve
the dual problem g. Let = [\, u|T , where A = ()\;,i € V)
and pu = (u;,7 € V) are Lagrange multiplier vectors. In this
method, w is adjusted in the opposite direction to the gradient
Vg(w) as follows.

[wi(t) — (i~ SIS 6L+ oL )]
Zf TD1:>\Z

(i) = a(Cs - DL (S o+

SIS L gadea)| L if w=

(16)
The iterative algorithm of computing an optimal flow allo-
cation is summarized in Table I.
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B. Convergence Analysis

In this section, we analyze the convergence behavior of the
algorithm in Table I and characterize the property of its limit
points. The result shows that the algorithm can converge to a
unique flow allocation schedule such that the summation of
all users’ utilities is maximized.

To show the properties of the iterative algorithm, we define
Y(f) = Z?‘:‘;l Ay, which gives the definition of ¥ =
maxyer Y (f) as, intuitively speaking, the “length” of the
“longest” path. We further define W (n) = Zlflll Apgin =
1,2,...,4,...,2i, and W = maxpei,...2; W(n), which gives
the number of flows at the most “congested” node. Let k =
maxyer k¢, Where ry is the upper bound of Uy (.) within the
range [0, max C;|i € V.

Since @ = [\, u]T, we show that g is the Lipschitz
continuity [29] on Vg . For any @ , ¢(w) is defined by

Wv Up(My) < ¢ < Up(my),

: 17
0, otherwise

p(w) =

where z¢(w) = x¢((f), My = max{C;|i € V}, and
my = 0. If Uy is bounded away from zero on [ : —Uj(zyf) >
1/k > 0, we have 0 < p(w) < (R). We note that the
above expression is of the same form as that used in [18].
The sequence (z(t), w(t)) generated by the iterative algorithm
in TABLE 1 is primal-dual optimal assuming that ¢ < o <
(2 — €)/EWY, where ¢ is a fixed positive scalar.

V. NUMERICAL STUDIES

In this section, we evaluate the proposed algorithm by nu-
merical studies. We assume that message updates are synchro-
nized and communication delays are bounded. The thermal
noise o of each node is assumed to be —90dBmW. The
maximum transmission power is 0.2mW. The SNR threshold
and SIR threshold of each node are set to 1.8 and 1.5,
respectively. We use a simplified path gain function defined
as L(d; ;) = 1/d};, where d; ; is the distance between the
transmitter and the receiver. If the frequency bandwidth is
assumed to be 1.6M H z, then the wireless channel capacity
can be derived as 2Mbps. The routing path of a flow is
determined by the shortest path routing algorithm. The utility
function used in our simulation is defined by Uf(xy) =
In(x ), because it has been shown in [20] that the proportional
fairness can be achieved and the optimal condition can be
satisfied with this utility function. We evaluate the convergence
rate, the aggregate utility, and the flow throughput in a tandem
network in different flow allocation scenarios as shown in Fig.
2. The distance between two adjacent nodes is set to 100
meters. Then, we evaluate the impact of routing configuration
on our proposed algorithm in a random network.

A. Tandem Networks

We vary the tandem network size from 6 to 20 nodes
and consider four scenarios for flow allocation: 1) a 3-flow
scenario, 2) a mutual flow scenario, 3) an aggregate flow
scenario, and 4) a reverse flow scenario. Fig. 2 (a) gives the
3-flow scenario, in which flow 1 goes through all hops of the

Flow2  Flow 3 Flow4 _ Flow 5 Flow 6

Flow 2 Flow 3
— —_—

@ @ & @ 5 6 © & Dt @ ©

Flow 1

(a) 3-flow scenario (b) Mutual flow scenario

E—
Tow 4 Flow 4
Flow 2
@ @ O 1® 6, © @ & 5 @ &
Flow 2 Flow 1

Flow3 Flow 3

(c) Agregate flow scenario (d) Reverse flow scenario

Fig. 2. A 6-node tandem network with three end-to-end flow scenarios.
TABLE II
THE STEP SIZE FOR CONVERGENCE

3-flow | Mutual flow | Aggregate flow | Reverse flow
6-node 3.65 6.08 7.76 7.85
10-node 3.50 5.99 10.6 2.89
15-node 3.28 5.25 16.5 1.39
20-node 3.28 5.00 23.3 0.9

network and flows 2 and 3 each traverse only one hop, i.e.,
the first hop and last hop, respectively. In this example, flow
1 interferes with both flows 2 and 3, and flows 2 and 3 are
forwarded simultaneously. Fig. 2 (b) gives the mutual flow
scenario, in which one flow (i.e., flow 1) traverse all hops
of the network, and the other five flows are non-overlapped
single-hop flows. Fig. 2 (c) gives the aggregate flow scenario
with five flows in the network, each with a different source
node but destined for the same node, i.e., node 6. This scenario
can be used to investigate the optimal flow allocation in
wireless mesh networks. In Fig. 2(d), the reverse flow scenario
with four flows is given. In this scenario, flows 1 and 2 traverse
all hops in the network but in opposite directions. Flows 3 and
4 are both sent from node 3 but each traverses along the path
in a different direction.

We evaluate the convergence rate of the proposed gradient-
based flow allocation algorithm by properly adjusting step
sizes. In all simulations, the initial values of all flows are
fixed at 0 Kbps and the initial shadow prices are set to
1. Table II and Table III give the relationship between the
step size and the number of iterations, respectively, in these
four flow scenarios. Given the number of nodes and the flow
scenario, we adjust the step size such that convergence to the
optimum can be achieved at the least number of iterations.
The optimum is achieved if |z (t) —2}| < € |Ai(t) — A]| <,
and |p;(t) — pf| < € are satisfied for all f € " and i € V,
where ¢ = 107

From these results, we observe that when the network size
grows, smaller step sizes and more number of iterations are
required for convergence in the 3-flow, the mutual flow, and
the reverse flow scenarios. Among these three scenarios, the
reverse flow scenario gives the largest step size variance and
the most number of iterations to converge. This is because
flows 1 and 2 traverse the same set of nodes but in the opposite
directions. Since the neighboring links along the path of a flow
will interfere with each other, and the communication in the
reverse direction will also contend for the node’s bandwidth,
a small change in price at each node will result in a higher
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TABLE III
NUMBER OF ITERATIONS FOR CONVERGENCE

3-flow | Mutual flow | Aggregate flow | Reverse flow
6-node 24 17 19 21
10-node 30 40 23 37
15-node 31 63 27 52
20-node 31 75 37 70
1 oy
S s g0 ]
E 0 2 0
2 6 node = 6 node
B —— 10 node g —— 10 node
5 s ——15 node $ 20 —— 15 node
g — ~20 node EX — ~20 node
@ <
1% 100 200 300 400 500 o 100 200 300 400 500

Number of iterations Number of iterations

(a) Convergence of the objective value vs. the number
of iterations under the 3-flow scenario

(b) Convergence of the objective value vs. the number
of iterations under the mutual flow scenario

20 5

L ————————

-20¢("

T
o\,
|

_5‘/

40t [,

Aggregated network utilization
Aggregated network utilization

6o/ 10 ’/ — 6 node
! —— 6 node ! — - 10 node
-801 | —— 10 node . —— 15 node
) —— 15 node 15 — 20 node
-100 — - 20 node
-120 204 100 200 300 400 500
0 100 200 300 400 500 2

Number of iterations Number of iterations

(¢) Convergence of the objective value vs. the number
of iterations under the aggregate flow scenario

(d) Convergence of the objective value vs. the number
of iterations under the reverse flow scenario

Fig. 3. The convergence of objective value under different flow scenarios.

cost to the neighboring nodes and this increased cost will be
propagated through the network. Thus, when the network size
increases, it needs smaller step sizes and more number of
iterations to achieve the optimum. In addition, the variance
of step sizes and the number of iterations in the mutual-flow
scenario is larger than that in the 3-flow scenario in the steady
state for a network with larger than 10 nodes. While there
is a long-path flow traversing all nodes in the network, all
intermediate nodes of this flow are only interfered by the
two neighboring wireless links two hops away. Due to this
regularity among all intermediate nodes, the pricing updates
at these nodes are consistent and hence the flow converges
once other non-mutual interfering flows is determined. In the
mutual-flow scenario, flows interfere with each other mutually,
and thus more flows are affected when prices are updated at
a particular node in the network, compared with the 3-flow
scenario, and this may require further flow adjustments. Any
change in flow rates may result in further price coordination
to approach the optimum. Hence, a higher degree of mutual
interference among flows leads to more iterations and a
smaller step size for convergence to the optimum. In the
aggregate flow scenario, the number of iterations and the step
sizes increase with the network size. This is because the degree
of mutual interference among flows at a particular node and
the number of flows going through the node are un-balanced
compared with the mutual flow scenario.

Fig. 3 gives the trajectories of the aggregate network utiliza-
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Fig. 4. Throughput comparison under different flow scenarios.

tion with different network scales in different flow scenarios,
and Fig. 4 gives the throughput of each flow in each scenario.
Consider Figs. 3 (a) and 4 (a) first, which are the results in the
3-flow scenario. The network utilization remains unchanged
even though the network size is larger and the longest flow
traverses over more number of nodes. This is because all
intermediate nodes for the longest flow are interfered in the
same way. Once the longest path flow is determined, the flows
traversing the first hop and last hop can use the remaining
resource of the destination node optimally since they will
not interfere with one another. However, in the mutual-flow
scenario as shown in Fig. 3(b), the aggregate network utiliza-
tion increases with the network size. Due to the spatial reuse
property of the wireless channel, the flows not contending
mutually may share a node’s capacity simultaneously. Fig.
4(b) gives the throughput of each flow in this scenario. The
throughput of flow 1 may decrease due to traversing more
intermediate nodes and thus incurring more contentions with
the other flows.

Next, we move to the aggregate flow scenario. Fig. 3(c)
shows that the overall network utilization is decreased as the
network size increases. This is because the last hop suffers
from the resource competition from all flows, and experiences
the highest degree of mutual interference among flows. There-
fore, this hop can be regarded as the bottleneck in the network
and all other flows going through it will be affected. Fig. 4(c)
shows that the two flows with their source nodes closer to
the destination node gain more throughputs than the other
flows. This is because these two flows experience less wireless
resource contentions, and thus are allocated more resources.
Finally, we observe the results of the reverse flow scenario.
Fig. 3 (d) shows that as the network size increases, the total
network utilization stays unchanged but the convergence time
is increased. Fig. 4 (d) shows that each flow is allocated
the same amount of resources under different network sizes.
These results show that the flow change is sensitive to the
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(a) Routing paths in the initial network topology (b) Routing paths after node 16 becomes unavailable. (c) Routing paths after node 18 becomes unavailabl

Fig. 5. A 20-node wireless network topology with 6 flows.

network scale, and thus the convergence rate degrades as
the network size increase. However, the aggregate network
utilization is not sensitive to the network size. When looking
into the throughput of each flow in Fig. 4(d), we find that the
same throughput distribution can be obtained under different
network sizes. This is because the set of nodes that will be
interfered by a particular link is limited, and the nodes outside
of the interference range of a particular link can transfer
data simultaneously thanks to the spatial reuse factor. Thus,
irrespective of the increase in the network size, only a finite
set of links contend for a node’s resource.

B. Random Networks

In this section, we study the impact of sudden changes
in the routing path on the convergence rate of our proposed
algorithm in a randomly generated network as shown in Fig.
5(a). This network consists of 20 nodes distributed in a
500 x 500m? region. In this simulation, 6 flows between 6
pairs of source and destination nodes start at the same time
instant. The simulation is performed for 1000 iterations. At the
250" iteration, node 16 is assumed to be down, and the set of
links incident to it becomes disabled immediately. The routing
paths for flows 3 and 4 are changed as shown in Fig. 5(b).
Similarly, node 18 becomes unavailable at the 500t iteration
and the routing paths for flows 1 and 2 are also changed as
shown in Fig. 5(c).

The actual throughput of each flow is plotted in Fig.
6. Initially, each flow is assumed to transmit at OM bps.
After about 50 price updates, all flow allocations converge
to 500K bps which is a proportional fair value. At the 250"
iteration, the routing paths for flows 3 and 4 are changed due
to the unavailability of node 16. The sudden change to routing
paths causes nodes 1 and 20 to be overloaded. Since nodes
1 and 20 are the bottlenecks for flows 3, 4, and 5, the actual
allocated throughput for each of these flows is thus decreased
rapidly. Flow 3 suffers more throughput degradation since the
number of hops it traverses is more than flows 4 and 5. In
addition, the effects of interference and MAC contention make
flows 1,2 and 6 contending for the resources of nodes 1 and
20, resulting in a slight throughput degradation for each of
these flows even though their routing paths are not affected.

When the routing paths of flows 1 and 2 are changed due to
the unavailability of node 18 at the 500 iteration, the rate of
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Throughput trajectory of each flow when the network topology is

each flow still converges within 50 iterations. This time, the
flows converge to two groups of rates. The group of the higher
rate includes flows 1 and 6. The other flows obtain a lower rate
when flow allocation converges. At this stage, flows 1 and 6
obtain a higher throughput since they have lower interference
caused by other concurrent flows. We can observe from tracing
the trajectory of each flow in Fig. 5 that the throughput of flow
6 decreases when node 16 is down but increases after node
18 becomes unavailable. Therefore, we find that the impact
of topology and routing change is not always negative for a
particular flow. The flow contending with less number of flows
in the routing path and suffering less interference from other
concurrent flows will gain higher throughput.

VI. CONCLUSION

In this paper, we developed the Node-based Interference
Model and a flexible theoretical framework to consider inter-
ference, data rate, and signal reception power at the physical
layer, the contention behavior at the MAC layer, and end-
to-end flows at the transport layer for multi-hop wireless net-
works. Based on this framework, we formulate an interference-
aware optimal flow allocation problem without clique or
independent set enumeration. The objective of the problem is
to maximize network utilization and maintains fairness among
flows. We then propose a gradient-based flow allocation
algorithm by using the duality approach. The convergence
of the gradient-based flow allocation algorithm is analyzed.
The numerical results show that our proposed algorithm can
achieve the optimum within a small number of iterations
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and can allocate resource to the end-to-end multi-hop flows
to maximize optimal network utilization while maintaining
fairness among flows. The simulation results show that the
proposed algorithm can rapidly adapt to changes in network
topology and routing paths. To the best of our knowledge, this
is the first work which formulates the interference constraints
for the flow allocation problem without any global information
in multi-hop wireless networks. The results demonstrate that
the proposed solution can also be used in emerging wireless
mesh networks.
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