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Abstract

We consider the reconstruction of elastic inclusions embedded inside of a planar region, bounded or unbounded, with isotropic
inhomogeneous elastic parameters by measuring displacements and tractions at the boundary. We probe the medium with complex
geometrical optics solutions having polynomial-type phase functions. Using these solutions we develop an algorithm to reconstruct
the exact shape of a large class of inclusions including star-shaped domains and we implement numerically this algorithm for some
examples.
© 2009 Elsevier Masson SAS. All rights reserved.

Résumé

On considère le problème de la reconstruction des inclusions dans un domaine élastique plan borné ou non borné, les paramètres
élastiques, supposés isotropes et non homogènes, sont déterminés à partir de mesures de déplacements et de tractions à la frontière
du domaine. On teste le milieu en utilisant des solutions de l’optique géométrique complexe dont les fonctions de phase sont de type
polynomial. En utilisant ces solutions on développe un algorithme de reconstruction de la forme exacte d’une classe importante
d’inclusions contenant les domaines étoilés ; on implémente numériquement cet algorithme dans quelques exemples.
© 2009 Elsevier Masson SAS. All rights reserved.
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1. Introduction

The purpose of this paper is several fold. First, we provide numerical evidence for the algorithms developed in [19]
and [20] for determining elastic inclusions embedded in an inhomogeneous background. Second we extend, and
simplify, the object identification result in [16] from the conductivity equation on an infinite slab to the elasticity
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system. Third we also develop a numerical algorithm for the case of the infinite slab and we test it numerically. Our
main method is to use complex geometrical optics (CGO) solutions with general phases constructed in [20] to treat
the inverse problems.

We consider the problems in the plane. Let Ω be an open domain in R
2 with smooth boundary ∂Ω which is not

necessarily bounded. The domain Ω is filled with an inhomogeneous, isotropic, elastic medium characterized by the
Lamé parameters λ(x) and μ(x). Assume that λ(x) ∈ C2(Ω), μ(x) ∈ C4(Ω) and the following inequalities hold:

μ(x) > 0 and λ(x) + 2μ(x) > 0 ∀x ∈ Ω (strong ellipticity). (1.1)

We consider the static isotropic elasticity system without sources:

Lu := ∇ · (λ(∇ · u)I + 2μS(∇u)
) = 0 in Ω. (1.2)

Here and below, S(A) = (A + AT )/2 denotes the symmetric part of the matrix A ∈ C
2×2. Equivalently, if we denote

σ(u) = λ(∇ · u)I + 2μS(∇u) the stress tensor, then (1.2) becomes:

∇ · σ = 0 in Ω.

On the other hand, since the Lamé parameters are differentiable, we can also write (1.2) in the nondivergence form:

μ�u + (λ + μ)∇(∇ · u) + ∇λ∇ · u + 2S(∇u)∇μ = 0 in Ω. (1.3)

Recently, a framework of constructing CGO solutions with general phases for systems with the Laplacian as the
leading part was proposed by the first two authors [20]. The elasticity system (1.2) is among the systems considered
in [20]. To simplify the presentation, we will not go over the development of CGO solutions and their important role
in inverse problems. For more details, we refer to [17,18] and references therein.

To really appreciate the usefulness of CGO solutions with general phases, we shall study the inverse problem
with an unbounded background domain. Ikehata in [10] considered the inverse conductivity problem in an infinite
slab where the location of an inclusion is reconstructed by infinitely many boundary measurements. In [10], he used
Calderón type harmonic functions [4], i.e., ex·(ω+iω⊥) with ω ∈ S

n−1. These functions are not integrable on hyper-
planes. To remedy this, he introduced Yarmukhamedov’s Green function to construct a sequence of harmonic functions
with finite energy that approximate the Calderón type function on a bounded part of the slab and are arbitrarily small
on an unbounded part of the slab.

In [16] the authors used complex spherical waves rather than Calderón type functions for the object identifica-
tion problem in the slab. The most obvious advantage is that they do not need Yarmukhamedov’s Green function to
“localize” complex spherical waves since these solutions decay faster than any given polynomial order on infinite
hyperplanes. In this work, we extend the result in [16] to the elasticity system (1.2). We also simplify some argu-
ments in [16]. Likewise, we consider the object identification problem in an infinite strip. As in [20], we will use
CGO solutions with phases being complex polynomials. For these solutions, the probing fronts are confined in a suit-
able cone. By increasing the degree of the polynomial, one can shrink the opening angle of the cone and, therefore,
squeeze the probing fronts. We remark that the probing fronts of complex spherical waves are spheres or circles. In
other words, we are able to determine more information of the unknown object using CGO solutions with polynomial
phases.

For the reconstruction of the unknown object in two dimensions, we would like to mention an interesting result by
Ikehata in [11] where he introduced the Mittag–Leffler function in his method. The numerical implementation of [11]
was carried out by Ikehata and Siltanen in [12]. However, the approach with the Mittag–Leffler function cannot be
applied to the isotropic elasticity system with inhomogeneous medium.

To put this work in perspective, we would like to mention another reconstruction method for the elasticity sys-
tem developed by Ikehata [8], which is called the probe method. The ideas of the probe method came from Isakov’s
fundamental work [13]. The probe method uses singular solutions (or the fundamental solution) to do the reconstruc-
tion. A key ingredient of the probe method is a Runge type approximation theorem which guarantees the existence
of an approximating sequence to the singular solution. The boundary conditions of the approximating sequence char-
acterize the input data needed for reconstruction. However, in general, a Runge type approximation theorem is not
constructive. That is, to actually characterize the needed input data is problematic. Therefore, it is hard to numerically
realize the probe method, at least, for the elasticity. Our method uses CGO solutions which are globally defined in a
bounded domain. We do not need a Runge type theorem. The boundary conditions of the CGO solutions are exactly
the input data for reconstruction.
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For imaging elastic inclusions by boundary measurements, we would like to mention an effective method
developed by Ammari and Kang’s group. They assume that the size of inclusion is small and the background medium
is homogeneous. Using layer potential techniques, a full asymptotic expansion of the displacement field in the order
of the size of inclusion can be derived [2]. The most important quantities in the expansion are so-called elastic mo-
ment tensors. These elastic moment tensors contain significant information of the inclusion and its medium properties.
Some numerical results based on this method was reported in [14]. For more detailed development of this method for
imaging small inclusions, we refer the reader to Ammari and Kang’s book [1].

Another interesting related topic is the imaging problem for the quasi-incompressible elasticity in which λ � μ.
The quasi-incompressibility assumption is valid for the biologic tissues. Therefore, it is widely used in the magnetic
resonance elastography (MRE). MRE is an approach aiming to determine the material properties by interior measure-
ments. Recently, a new method based on the assumption of small inclusions was proposed by Ammari et al. [3]. In
this method, the quasi-incompressible elastic system is approximately by a sequence of nonhomogeneous modified
Stokes system. Similar to the elastic moment tensors, the information of the shape of the elastic anomaly and its shear
modulus is contained in the viscous moment tensors which appear in the expansions of the displacement field. Our
method can also used to image inclusions for the quasi-incompressible elasticity in the plane when it is approximated
by the Stokes system. In [5], we consider the reconstruction of the obstacle for the Stokes system with inhomogeneous
medium coefficients in three dimensions using complex spherical waves. It is rather easy to extend the result of [5] to
the case of reconstructing inclusions in two dimensions using our new complex geometrical optics solutions. It is an
interesting project to explore the possibility of determining the material properties of inclusions by our method.

This paper is organized as follows. In Section 2, we show how to construct CGO solutions with general phases for
the elasticity system. In Section 3, we apply these CGO solutions to study the reconstruction of inclusions by boundary
measurements and give a numerically feasible algorithm. In Section 4, we provide some computational results with
simulated data.

2. CGO solutions with general phases for the elasticity system

In this section we recall the construction of CGO solutions to (1.2) outlined in [20]. To do so, we first reduce the
system to the one with the Laplacian as the leading part. We will use the reduced system derived by Ikehata (see for
instance [9,17]). Let

( w
g

)
satisfy:

�

(
w

g

)
+ A(x)

( ∇g

∇ · w
)

+ Q(x)

(
w

g

)
= 0, (2.1)

where

A(x) =
(

2μ−1/2(−∇2 + �)μ−1 −∇ logμ

0 λ+μ
λ+2μ

μ1/2

)
,

and

Q(x) =
(−μ−1/2(2∇2 + �)μ1/2 2μ−5/2(∇2 − �)μ∇μ

− λ−μ
λ+2μ

(∇μ1/2)T −μ�μ−1

)
.

Here ∇2f is the Hessian of the scalar function f . Then

u := μ−1/2w + μ−1∇g − g∇μ−1 (2.2)

satisfies (1.3).
Now let Ω0 be a suitable subdomain of Ω and ρ(x) = ϕ(x) + iψ(x) be conformal in Ω0. Moreover, we assume

that ρ(x) is a diffeomorphism in Ω0. Then we can find U(x) satisfying (2.1) in Ω0 with

U(x) =
(

w

g

)
= e(ϕ+iφ)/h(L + R), (2.3)

for some three-dimensional vectors L and R, where L is independent of h and R satisfies:∥∥∂αR
∥∥

2 � Ch1−α, ∀|α| � 2. (2.4)

L (Ω0)
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Our method of constructing U(x) in the form (2.3) goes as follows. Let (y1, y2) be the new coordinates defined by
y1 = ϕ(x) and y2 = ψ(x). In the new coordinates (y1, y2), (2.1) is transformed into

�

(
w̃

g̃

)
+ Ã(y,D)

(
w̃

g̃

)
+ Q̃(y)

(
w̃

g̃

)
= 0, (2.5)

where Ã(y,D) is a first order differential operator. Using the Carleman technique or the method of intertwining
operators [15], one can construct CGO solutions to (2.5) with linear phases, namely,

Ũ (y) =
(

w̃

g̃

)
= e(y1+iy2)/h(L̃ + R̃).

Then to get (2.3), we simply make a change of coordinates y → x, i.e. U(x) = Ũ (y(x)) (see [20] for more details).
The key idea in this approach is that the Laplacian is invariant under conformal mappings. Hence, if we take u as
the form (2.2), then u is a CGO solution to (1.2) in Ω0. We want to remark that L is a nonzero vector satisfying a
Cauchy–Riemann type equation. Denote L = (


d

)
with  ∈ C

2 and d ∈ C
1. Generically, we can assume that both 

and d do not vanish in Ω0 (see [19, Remarks 3.1 and 4.1]).
Due to the conformality of ρ, ϕ and ψ are harmonic functions in Ω0. Conversely, given any ϕ harmonic in Ω0 with

∇ϕ 	= 0 in Ω0, we can find a harmonic conjugate ψ of ϕ in Ω0 so that ρ = ϕ + iψ is conformal in Ω0. The freedom
of choosing ϕ plays a key role in our reconstruction method for the object identification problem. Actually, we will
mainly focus on level curves of ϕ. As in [20], we choose ρ(x) to be complex polynomials.

Pick a point x0 /∈ Ω . It is no restriction to assume x0 = 0. We now consider ϕN = Re(cNxN) for N � 2, where
cN ∈ C with |cN | = 1. In the polar coordinates, ϕN(r, θ) = rN cosN(θ − θN) for some θN determined by cN . We
observe that ϕN > 0 in some open cone ΓN with an opening angle π/N . Now assume that ΓN ∩ Ω 	= ∅. The complex
function ρN(x) = cNxN = ϕN + iψN is clearly conformal in Ω . For solving the inverse problem, we want to shrink
the opening angle of ΓN by taking N → ∞. However, there are two serious problems in doing so. On one hand, ϕN

is periodic in the angular variable, which means that it is positive in some other cones with the same opening angle
which also intersect Ω when N is large. This property of ϕN prohibits us from using corresponding CGO solutions
with large N to the object identification problem. On the other hand, the complex function ρN(x) fails to be injective
in the whole domain Ω when N is large. To overcome those difficulties and construct useful CGO solutions in the
whole domain Ω , we shall carry out the construction described above in

Ω0 = ΓN ∩ Ω,

and extend the constructed solutions to Ω by cut-off functions. From now on, we assume that Ω0 is bounded.
We first note that ρN is conformal in Ω0 and is bijective from Ω0 onto ρN(Ω0). We denote:

UN,h(x) =
(

wN,h

gN,h

)
= e(ϕN+iψN )/h(L + R),

solving (2.1) in Ω0. That is,

uN,h = μ−1/2wN,h + μ−1∇gN,h − gN,h∇μ−1,

satisfies (1.2) in Ω0. Now to get solutions of (1.2) in the whole domain Ω , we use a cut-off technique. For s > 0, let
ls = {x ∈ ΓN : ϕN = s−1}. This is the level curve of φN in ΓN . Let 0 < t < t0 such that( ⋃

s∈(0,t)

ls

)
∩ Ω 	= ∅,

and choose a small ε > 0. Define a cut-off function φN,t (x)∈C∞(R2) so that φN,t (x) = 1 for x∈(
⋃

s∈(0,t+ε/2) ls) ∩ Ω

and is zero for x ∈ Ω \ (
⋃

s∈(0,t+ε) ls). We now define:

uN,t,h(x) = φN,t e
−t−1/huN,h,

for x ∈ (
⋃

s∈(0,t+ε) ls) ∩ Ω . So uN,t,h can be regarded as a function in Ω which is zero outside of Ω0. We now take
fN,t,h = uN,t,h|∂Ω . We remark that fN,t,h can be used as the boundary data in the inverse problem. An obvious reason
of using fN,t,h is that they are local and so we only need to collect Neumann data over the support of fN,t,h when we
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study the object identification problem with boundary measurements. Note that since Ω0 is bounded, we can see that
uN,t,h ∈ H 1(Ω) and therefore

fN,t,h ∈ H 1/2(∂Ω).

The function uN,t,h is not a solution to the elasticity equation in Ω . However, we shall show that the difference
between uN,t,h and the true solution to the elasticity equation with the same Dirichlet condition as uN,t,h is exponen-
tially small. Precisely, let us consider the boundary value problem:{

LwN,t,h = 0 in Ω,

wN,t,h = fN,t,h on ∂Ω.
(2.6)

Then we can show that

Lemma 2.1. There exists a unique solution wN,t,h to (2.6). Moreover, there exist C > 0 and ε′ > 0 such that

‖uN,t,h − wN,t,h‖H 1(Ω) � Ce−ε′/h. (2.7)

Proof. Denote ũN,t,h = uN,t,h − wN,t,h. Then ũN,t,h satisfies:{
LũN,t,h = gN,t,h in Ω,

ũN,t,h = 0 on ∂Ω,

where gN,t,h = LuN,t,h. Note that LuN,h = 0 in (
⋃

s∈(0,t0)
ls) ∩ Ω and ∂xj

φN,t (x) for j = 1,2 are supported in( ⋃
s∈(t+ε/2,t+ε)

ls

)
∩ Ω.

So gN,t,h is supported in (
⋃

s∈(t+ε/2,t+ε) ls) ∩ Ω and we have that

‖gN,t,h‖L2(Ω) � C′e−ε′/h (2.8)

for some C′ > 0 and ε′ > 0. Now the lemma follows from the first Korn inequality and the Lax–Milgram theorem. �
3. Reconstruction of inclusions

We will use the special solutions constructed in the previous section to study the inverse problem of reconstructing
embedded inclusions. Here we follow the presentation given in [19]. Assume that Ω is either a bounded domain or
an infinite strip. Also, let 0 /∈ Ω and Ω = {(x1, x2): x1 ∈ R, a < x2 < b < 0} if Ω is a strip. Now consider D an open
subset of Ω with Lipschitz boundary satisfying that D � Ω and Ω \ D is connected. Suppose that λ0(x) ∈ C2(Ω)

and μ0(x) ∈ C4(Ω) satisfy the strong convexity condition, i.e.,

λ0(x) + μ0(x) > 0 and μ0(x) > 0 ∀x ∈ Ω. (3.1)

It is obvious that (3.1) implies (1.1). On the other hand, we assume that λ̃(x), μ̃(x) be two essentially bounded
functions such that either

μ̃ � 0 and λ̃ + μ̃ � 0 a.e. in D,

or

μ̃ � 0 and λ̃ + μ̃ � 0 a.e. in D.

Furthermore, suppose that λ = λ0 + χDλ̃ and μ = μ0 + χDμ̃ satisfy (3.1) a.e. in Ω , where χD is the characteristic
function of D. Therefore, for any f ∈ H 1/2(∂Ω), there exists a unique (weak) solution u to,{

LDu = 0 in Ω,

u = f on ∂Ω.
(3.2)
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Here the elastic operator LD is defined in terms of λ and μ. As before, we can prove the well-posedness of (3.2) by
combining the first Korn inequality and the Lax–Milgram theorem. The arguments remain valid even when Ω is an
infinite strip. The Dirichlet-to-Neumann map related to LD is now defined as

ΛD :f → σ(u)n|∂Ω,

where n is the unit outer normal of ∂Ω and for x ∈ ∂Ω ,

σ(u) = λ(∇ · u)I + 2μS(∇u) = λ0(∇ · u)I + 2μ0S(∇u).

Now assume that all parameters are known except λ̃, μ̃, and D. The inverse problem is to determine D by ΛD . Here
we will provide a reconstruction algorithm to this inverse problem. We begin with some useful integral inequalities.
Let Λ0 be the Dirichlet-to-Neumann map related to L0, where L0 is the elastic operator defined in terms of λ0 and
μ0. Assume that u0 is the solution of {

L0u0 = 0 in Ω,

u0 = f on ∂Ω.
(3.3)

Then one can derive the following integral inequalities:

Lemma 3.1. ∫
D

{
λ0 + μ0

λ + μ
(̃λ + μ̃)|∇ · u0|2 + 2

μ0

μ
μ̃

∣∣∣∣S(∇u0) − ∇ · u0

2
I2

∣∣∣∣2}
dx

�
〈
(ΛD − Λ0)f,f

〉
�

∫
D

{
(̃λ + μ̃)|∇ · u0|2 + 2μ̃

∣∣∣∣S(∇u0) − ∇ · u0

2
I2

∣∣∣∣2}
dx. (3.4)

Proof. Similar inequalities for the three-dimensional isotropic elasticity were given in [8, Proposition 5.1]. One can
prove (3.4) using some identities in [7] (see (3.8), (3.9) in [7]). Here we give a direct proof following the arguments
in [8]. By virtue of the definition of the Dirichlet-to-Neumann map, we can see that〈

(Λ0 − ΛD)f,f
〉 = ∫

Ω

{
λ
∣∣∇ · (u − u0)

∣∣2 + 2μ
∣∣S(∇u) − S(∇u0)

∣∣2

+ (λ0 − λ)|∇ · u0|2 + 2(μ0 − μ)
∣∣S(∇u0)

∣∣2
}

dx. (3.5)

We now write:

S(∇u0) =
(

S(∇u0) − ∇ · u0

2
I2

)
+ ∇ · u0

2
I2 = T0 + ∇ · u0

2
I2,

and

S(∇u) =
(

S(∇u) − ∇ · u
2

I2

)
+ ∇ · u

2
I2 = T + ∇ · u

2
I2.

Note that the traces of T0 and T vanish. Thus T0 · I2 = T · I2 = 0. Therefore, we have that∣∣S(∇u0)
∣∣2 = |T0|2 + 1

2
|∇u0|2,

∣∣S(∇u)
∣∣2 = |T |2 + 1

2
|∇u|2,

and (3.5) becomes: 〈
(Λ0 − ΛD)f,f

〉 = ∫
Ω

{
(λ + μ)

∣∣∇ · (u − u0)
∣∣2 + 2μ|T − T0|2

+(
(λ0 − λ) + (μ0 − μ)

)|∇ · u0|2 + 2(μ0 − μ)|T0|2
}

dx. (3.6)

Since λ + μ > 0 and μ > 0, the second inequality of (3.4) follows from (3.6) immediately.
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Exchanging the roles of u and u0, (3.6) changes to

〈
(ΛD − Λ0)f, f

〉 = ∫
Ω

{
(λ0 + μ0)

∣∣∇ · (u0 − u)
∣∣2 + 2μ0|T0 − T |2

+ (
(λ − λ0) + (μ − μ0)

)|∇ · u|2 + 2(μ − μ0)|T |2
}

dx. (3.7)

Next we estimate the integrand on the right-hand side of (3.7). We compute:

(λ0 + μ0)
∣∣∇ · (u0 − u)

∣∣2 + 2μ0|T0 − T |2 + (
(λ − λ0) + (μ − μ0)

)|∇ · u|2 + 2(μ − μ0)|T |2
= (λ0 + μ0)|∇ · u0|2 − (λ0 + μ0)∇ · u∇ · u0 − (λ0 + μ0)∇ · u∇ · u0 + (λ + μ)|∇ · u|2 + 2μ0|T0|2

− 2μ0T · T 0 − 2μ0T · T0 + 2μ|T |2

=
∣∣∣∣√λ + μ∇ · u − λ0 + μ0√

λ + μ
∇ · u0

∣∣∣∣2

+
∣∣∣∣√2μT − 2μ0√

2μ
T0

∣∣∣∣2

+ λ0 + μ0

λ + μ

[
(λ − λ0) + (μ − μ0)

]|∇ · u0|2

+ 2
μ0

μ
(μ − μ0)|T0|2. (3.8)

Combining (3.7) and (3.8), we have the first inequality of (3.4). �
We are now at a position to discuss the inverse problem. First of all, we give an appropriate jump condition

across ∂D:

for y ∈ ∂D, there exists a ball Bε(y) such that one of the following conditions holds:⎧⎪⎨⎪⎩
μ̃ > ε, λ̃ + μ̃ � 0,

μ̃ = 0, λ̃ > ε,

μ̃ < −ε, λ̃ + μ̃ � 0,

μ̃ = 0, λ̃ < −ε.

∀x ∈ Bε(y) ∩ D, (3.9)

Now let wN,t,h be the solution of (3.3) with the Dirichlet condition f = fN,t,h. To construct the inclusion D, we rely
on the quantity:

E(N, t, h) = 〈
(ΛD − Λ0)fN,t,h, f N,t,h

〉
.

Clearly, this quantity is completely determined by the boundary data localized in ΓN ∩ ∂Ω . This localization property
is of great value in actual applications, especially when Ω is an infinite strip. Now E(N, t, h) satisfies the integral
inequality (3.4) with u0 being replaced by wN,t,h, i.e.∫

D

{
λ0 + μ0

λ + μ
(̃λ + μ̃)|∇ · wN,t,h|2 + 2

μ0

μ
μ̃

∣∣∣∣S(∇wN,t,h) − ∇ · wN,t,h

2
I2

∣∣∣∣2}
dx

� E(N, t, h)

�
∫
D

{
(̃λ + μ̃)|∇ · wN,t,h|2 + 2μ̃

∣∣∣∣S(∇wN,t,h) − ∇ · wN,t,h

2
I2

∣∣∣∣2}
dx. (3.10)

Argued as in [19] and [20], we can prove the following important behaviors of E(N, t, h).

Theorem 3.2. Let t > 0 and Dt = {x ∈ ΓN : ϕN � t−1}. Assume that one of the jump conditions (3.9) holds. Then we
have:

(i) if Dt ∩ D = ∅ then there exist C1 > 0, ε1 > 0, and h1 > 0 such that E(N, t, h) � C1e
−ε1/h for all h � h1;

(ii) if Dt ∩ D 	= ∅ then there exist C2 > 0, ε2 > 0, and h2 > 0 such that E(N, t, h) � C2e
ε2/h for all h � h2.
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Proof. The proof here relies on the integral inequalities (3.10). Replacing wN,t,h in (3.10) by uN,t,h and taking into
account of (2.7) leads to∫

D

{
λ0 + μ0

λ + μ
(̃λ + μ̃)|∇ · uN,t,h|2 + 2

μ0

μ
μ̃

∣∣∣∣S(∇uN,t,h) − ∇ · uN,t,h

2
I2

∣∣∣∣2}
dx + O

(
e−ε′/h

)
� E(N, t, h)

�
∫
D

{
(̃λ + μ̃)|∇ · uN,t,h|2 + 2μ̃

∣∣∣∣S(∇uN,t,h) − ∇ · uN,t,h

2
I2

∣∣∣∣2}
dx + O

(
e−ε′/h

)
. (3.11)

Recall that

uN,t,h(x) = φN,t e
−t−1/huN,h = φN,t e

−t−1/h
{
μ0

−1/2wN,h + μ−1
0 ∇gN,h − gN,h∇μ−1

0

}
,

where
( wN,h

gN,h

)
solves (2.1) in Ω with Lamé parameters λ0 and μ0. We now write:

wN,h = e(ϕN+iψN )/h( + r) and gN,h = e(ϕN+iψN )/h(d + s).

Through tedious but straightforward computations, the leading terms of ∇ · uN,t,h and S(∇uN,t,h) are respectively,

e(ϕN−t−1+iψN )/hμ
−1/2
0

(
1 − λ0 + μ0

λ0 + 2μ0

)∇ϕN + i∇ψN

h
· ,

and

e(ϕN−t−1+iψN )/hμ−1
0

1

h2
∇(ϕ + iψ) ⊗ ∇(ϕ + iψ)d

(see [19]).
Assume that the first assumption of (3.9) holds. Then the leading terms of two integrals in (3.11) come from

S(∇uN,t,h) and are determined by:

1

h4
e2(ϕN−t−1)/h

(
(∇ϕN)2 + (∇ψN)2)2|d|2. (3.12)

On the other hand, if the second assumption of (3.9) holds, then the leading terms in those integrals in (3.11) come
from ∇ · uN,t,h and are governed by:

2

h2
e2(ϕN−t−1)/h(∇ϕN)2||2. (3.13)

Now the statement (i) and (ii) follow directly from (3.11) and (3.12) or (3.13). The other two cases of (3.9) are treated
similarly. �

In view of Theorem 3.2, we are able to reconstruct some part of ∂D by looking into the asymptotic behavior of
E(N, t, h) for various t’s. More precisely, let:

tD,N := sup
{
t ∈ (0,∞): lim

h→0
E(N,h, t) = 0

}
,

then if tD,N = ∞ we have ΓN ∩ D = ∅. On the other hand, if tD,N < ∞ then there exists a pD,N ∈ DtD,N
∩ ∂D.

By taking N arbitrarily large (the opening angle of ΓN becomes arbitrarily small), we can reconstruct even more
information of ∂D. A point p on ∂D is said to be detectable if there exists a semi-straight line L starting from p such
that L does not intersect ∂D except p. For example, if D is star-shaped, every point of ∂D is detectable.

Corollary 3.3. Every detectable point of ∂D can be reconstructed from ΛD .

We refer to [20] for a proof of this corollary. To end this section, we give an algorithm of our reconstruction method.

Step 1. Pick a point x0 /∈ Ω (but close to Ω). Given N ∈ N and choose the cone ΓN which intersects Ω .



G. Uhlmann et al. / J. Math. Pures Appl. 91 (2009) 569–582 577
Step 2. Start with t > 0 such that Dt ∩ Ω 	= ∅. Construct uN,t,h and determine the Dirichlet data fN,t,h = uN,t,h|∂Ω .
Step 3. Compute E(N, t, h) = ∫

supp(fN,t,h)
(ΛD − Λ0)fN,t,h · f N,t,h ds.

Step 4. If E(N, t, h) is arbitrarily small, then increase t and repeat Steps 2 and 3; if E(N, t, h) is arbitrarily large,
then decrease t and repeat Steps 2 and 3.

Step 5. Repeat Step 4 to get a good approximation of ∂D in ΓN .
Step 6. Move the cone ΓN around x0 by taking a different cN in ϕN = Re(cNxN). Repeat Steps 2–5.
Step 7. Choose a larger N and a new cone ΓN . Repeat Steps 2–6.
Step 8. Pick a different x0 and repeat Steps 1–7.

4. Numerical results

4.1. Preliminaries

In this section, we provide some computational results based on our method. We shall demonstrate numerical
results for two cases – Ω is a rectangle and Ω is an infinite strip. In both cases, we assume that the background
parameters λ0,μ0 satisfy λ0(x) ≡ λ > 0 and μ0(x) ≡ μ > 0 for all x ∈ Ω . For such λ0 and μ0, we can construct
special solutions uN,h satisfying L0uN,h = 0 quite explicitly. In other words, we do not need to go through the
general procedures given in Section 2. More precisely, for λ0,μ0 given here, the corresponding matrices A and Q

in (2.1) are reduced to

A(x) =
(

0 0
0 ζ

)
,

and

Q(x) ≡ 0,

where ζ = λ+μ
λ+2μ

μ1/2 > 0. Therefore, (2.1) can be written as{
�w = 0,

�g + ζ∇ · w = 0.
(4.1)

To construct special solutions for (4.1), we first choose,

w = e(ϕ+iψ)/hw0,

where w0 = ∇ϕ + i∇ψ . To simplify the notations, we denote ϕ = ϕN and ψ = ψN . To check that w satisfies the first
equation of (4.1), we note that

�ϕ + i�ψ = 0 and (∇ϕ + i∇ψ)2 = 0. (4.2)

Therefore, from (4.2) we obtain:

�w = �
(
e(ϕ+iψ)/hw0

)
= �e(ϕ+iψ)/hw0 + 2∇(

e(ϕ+iψ)/h
) · ∇w0 + e(ϕ+iψ)/h�w0

= 2

h
e(ϕ+iψ)/h(∇ϕ + i∇ψ) · ∇w0 + e(ϕ+iψ)/h∇(�ϕ + i�ψ)

= 1

h
e(ϕ+iψ)/h∇(∇ϕ + i∇ψ)2

= 0.

Furthermore, due to (4.2), we observe that

∇ · w = 0.

Thus, we simply choose g ≡ 0 and the second equation of (4.1) holds. In other words,

uN,h = e(ϕN+iψN )/h(∇ϕN + i∇ψN),
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satisfies L0uN,h = 0. Thus, our simulated (exact) Dirichlet condition is given by:

fN,t,h = φN,t e
−t−1/he(ϕN+iψN )/h(∇ϕN + i∇ψN)|∂Ω.

To indicate the dependence of ϕN and ψN on the vertex point of the associated cone, in what follows, we will write
ϕN = ϕN(x, x0) and ψN = ψN(x, x0), where x0 stands for the vertex point.

We now describe our reconstruction strategies. The same procedures were also used in [6] and [20]. In our program,
in order to show the numerical results more efficiently without using excessive computational time, we fix N = 4 and
probe the region Ω by moving the vertex point of the probing cone with θ4 = 0 (i.e., without rotating the probing
cone). Hence, we first design M different probing cones based on M different vertex points. Remind that each cone
is congruent to the cone with vertex at the origin and opening angle π/4. We then take appropriate h1 and h2 with
h1 > h2 and choose a suitable number of probing fronts determined by tj for j = 1, . . . , J with tj < tj+1. In each
probing cone Γm (m = 1, . . . ,M) given above, we construct the Dirichlet data f supported in the intersection of Γm

and the bottom boundary of ∂Ω for every hk and tj , k = 1,2, j = 1, . . . , J . We now evaluate Ej,k := E(N, tj , hk)

and determine tn such that

En+1,2 > En+1,1. (4.3)

Then the region Rm defined by:

Rm = {
x ∈ Γm: ϕN(x, x0) � t−1

n

}
,

is the estimated largest region in Γm which does not contain the inclusion. So the region R := ⋃M
m=1 Rm is the es-

timated largest region with absence of inclusion with a given sweeping scheme. We would like to point out that
condition (4.3) is our rule of thumb in determining whether the level curve ϕN(x, x0) = t−1 intersects the inclusion in
our numerical experiments. It is not equivalent to Theorem 3.2, but based on the reasoning that E(N, t, h) is exponen-
tially decaying when ϕN(x, x0) = t−1 stays away from the inclusion and exponentially growing when ϕN(x, x0) = t−1

intersects the inclusion.
To show the effect of noise to our method, we add appropriate noise to the simulated data. We consider the form of

noise given in [6]. To be precise, let η : [−1,1] �→ C be a random function defined by:

η(s) =
32∑

k=−32

(ak + ibk)e
iksπ/2,

where ak, bk ∼ N (0,1) are normally distributed random numbers. For the conductivity problem, the number 32 in η

is chosen to roughly model a collection of 32 electrodes on the bottom boundary of Ω . Measurement noise is modeled
by ΛDf by ΛDf + cη with

c = A‖ΛDf ‖∞
‖η‖∞

,

where A > 0. Finally, we would like to point out that in our simulation, a big chunk of computational time is used to
obtain the simulated data. This is the forward problem. Once having the simulated data, the inverse procedure is rather
trivial. In order to obtain desired accuracy on the simulated data and be able to adapt to different shapes of inclusions,
we use the finite element method (FEM) to solve the forward problem. In our FEM program, we perform the grid
refinement near the boundary and the inclusion to ensure the accuracy of the simulated data (see Fig. 1 for example).

4.2. Ω is a rectangle

In our numerical computations, we take the domain:

Ω = {
(x1, x2): −1 < x1 < 1, −1.01 < x2 < −0.01

}
.

We shall use the Dirichlet data localized on {(x1,−0.01): −1 < x < 1} (top boundary), {(x1,−1.01): −1 < x < 1}
(bottom boundary). To this end, we choose vertex points from {x2 = −1.02} and {x2 = 0}, respectively. Let
x0 = (x0,1, x0,2) denote the vertex point and we write

ρ4(x, x0) := ϕ4(x, x0) + iψ4(x, x0) = (
(x1 − x0,1) + i(x2 − x0,2)

)4
.
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Fig. 1. Example of our FEM meshes.

Fig. 2. Probing fronts of our numerical method. In this figure, the nonzero Dirichlet condition is on the bottom boundary.

Thus, the probing fronts are level curves of ϕ4. In Fig. 2, we show some probing fronts with nonzero Dirichlet
condition on the bottom. To set up the Dirichlet condition, we ignore the cut-off function φN,t and take:

fN,t,h|∂Ω =
{

e(ρ4(x,x0)−t−1)/h∇ρ4(x, x0), for (x1, x2) ∈ ∂Ωobs,

0, ∂Ω \ ∂Ωobs,

where ∂Ωobs is determined by x0. For example, if x0 = (0,0), then

∂Ωobs =
{
(x1, x2): −1.01 × tan

(
π

8

)
< x1 < 1.01 × tan

(
π

8

)
, x2 = −1.01

}
.

In the following figures, we show our reconstruction method for three cases with different inclusions. As we
mentioned above, due to computational costs, we only provide numerical results obtained by putting nonzero Dirichlet
condition on either the top or the bottom boundaries. In conventional expression, we describe the elastic medium by
the Young’s modulus E and the Poisson ratio ν. The relation between (E, ν) and (λ,μ) is given by:

λ = Eν

1 − ν2
and μ = E

2(1 + ν)
.

In our simulations, we take (E, ν) = (6 × 106,0.45) for the background medium (gray area) and (E, ν) =
(6 × 107,0.45) inside of the inclusions (black area) (see Fig. 3).

We now want to make some remarks on the figures mentioned above. Since we are only probing the region from
the top and the bottom boundaries, we are unable to resolve the inclusion-free near the left and the right boundaries.
Thus, the area on near those boundaries are black. Moving the nonzero Dirichlet condition fN,t,h to those places will
certainly improve the resolution of the inclusion. But we need to pay the price of at least double the computational
cost. We believe that showing the figures obtained by probing from the top and the bottom is sufficient to demonstrate
the essential ideas of our method.
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Fig. 3. The first column represents the actual location of the inclusion. The second column is the numerical reconstruction with noiseless simulated
data. The third column is the numerical reconstruction with noisy data with A = 0.01%. All gray areas are inclusion-free regions.

4.3. Ω is a strip

Here we assume Ω = {(x1, x2): −∞ < x1 < ∞, −1.01 < x2 < −0.01}. In order to get the simulated data in
this case, we need to impose appropriate artificial boundary conditions in the x1 direction. We now rewrite elasticity
system (1.2) or (1.3) into,(

λ + 2μ 0
0 μ

)
∂2

1 u +
(

0 λ + μ

λ + μ 0

)
∂1∂2u +

(
μ 0
0 λ + 2μ

)
∂2

2 u = 0. (4.4)

The characteristic polynomial related to (4.4) is:

P(ξ) :=
(

λ + 2μ 0
0 μ

)
ξ2

1 +
(

0 λ + μ

λ + μ 0

)
ξ1ξ2 +

(
μ 0
0 λ + 2μ

)
ξ2

2 ,

which is a symmetric quadratic matrix polynomial. Motivated by the factorizations of symmetric quadratic matrix
polynomials, by some computations, we can see that

P(ξ) = (
Iξ1 − BT ξ2

)(
λ + 2μ 0

0 μ

)
(Iξ1 − Bξ2),

with

B =
(

0 −1
1 0

)
.

Therefore, system (4.4) can be factored into(
I∂1 − BT ∂2

)(
λ + 2μ 0

0 μ

)
(I∂1 − B∂2)u = 0. (4.5)

In view of (4.5), on any artificial boundary x1 = a, we impose condition

∂1u(a, x2) − B∂2u(a, x2) = 0. (4.6)

Explicitly, in our numerical simulation, we truncate the infinite strip Ω into a rectangle considered in Section 4.2.
For example, in case of x0 = (0,0), we impose the boundary condition as follows:⎧⎪⎨⎪⎩

u = e(ρ4(x,x0)−t−1)/h∇ρ4(x, x0) (x1, x2) in ∂Ωobs,

∂1u(1, x2) = B∂2u(1, x2) for − 0.01 < x2 < −1.01,

∂1u(−1, x2) = B∂2u(−1, x2) for − 0.01 < x2 < −1.01,

u = 0 elsewhere.

(4.7)

We will indicate how to implement boundary condition (4.7) in the FEM method in Appendix A. The computational
results for the strip case with noiseless and noisy data are given in Fig. 4.
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Fig. 4. The first column represents the actual location of inclusions. The second column is the numerical reconstruction with noiseless simulated
data. The third column is the numerical reconstruction with noisy data with A = 0.01%. All gray areas are inclusion-free regions.

Fig. 5. The first column is the actual location of the inclusion. The second column is the numerical reconstruction with noiseless simulated data
when Ω is a rectangle. The third column is the numerical reconstruction with noiseless simulated data when Ω is a strip. All gray areas are
inclusion-free regions.

4.4. Ill-posedness

Supported by numerical evidence, it is widely believed that when the unknown object is far away from the
boundary, the determination problem by boundary measurements is more ill-posed than the case where the object
is near the boundary. The following figures give further examples of this interesting phenomenon. In Fig. 5, we can
see that the lower part of the inclusion is clearly resolved; while, the upper part of the inclusion is difficult to detect.

5. Conclusions

In this article, we present a numerically feasible reconstruction algorithm for the determination of inclusions by
boundary measurements for the two-dimensional isotropic elasticity system. The domain can also be unbounded. We
point out that the same method works for the cavity case. Our method depends on a new type of CGO solutions for
the elasticity system. Numerical results show the actually implementation of the method with noiseless or noisy data
simulated data derived from the FEM.

To be able to effectively demonstrate our method without excessively computational efforts, we choose N = 4 and
probe the region from the top and the bottom boundaries in the numerical simulation. It is of course very natural to
choose large N and also probe the region from all sides. However, obtaining the simulated data for this improvement
will be a very time-consuming task.

From the numerical results, our method is very effective in determining parts of the object near the boundary
even when the domain is unbounded. Its flexibility gives us another technique that can potentially be used in real
applications such as medical imaging and nondestructive evaluation.

Appendix A

In this appendix, we show how to implement the artificial boundary condition (4.6) in the FEM. Denote
u = (u1, u2)

T . Let ΓD be the boundary with imposed Dirichlet data fN,t,h and ΓA denote the artificial boundary.
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From the variational formulation of Eq. (1.2), the isotropic elastic system on the truncated domain in Section 4.3 can
be written as follows: ∫

Ω

(
∂1v1
∂2v2

∂2v1 + ∂1v2

)T (
λ + 2μ λ 0

λ λ + 2μ 0
0 0 μ

)(
∂1u1
∂2u2

∂2u1 + ∂1u2

)
dx

−
∫

∂Ω

v1
(
λ∇ · u + 2μ∂1u1,μ(∂2u1 + ∂1u2)

) · nds

−
∫

∂Ω

v2
(
μ(∂2u1 + ∂1u2), λ∇ · u + 2μ∂2u2

) · nds = 0, (A.1)

where v1, v2 are test functions in H 1
0,ΓD

(Ω) = {v ∈ H 1(Ω) | v(x) = 0 for x ∈ ΓD}. From (4.6), one has that

∂1u1 + ∂2u2 = ∇ · u = 0 and ∂1u2 − ∂2u1 = 0, (A.2)

on ΓA. Since the artificial boundary consists of line segments along the x2-direction only, by (A.2), the partial deriva-
tives ∂1u1 and ∂1u2 are replaced by −∂2u2 and ∂2u1, respectively. Thus the variational formulation (A.1) becomes:∫

Ω

(
∂1v1
∂2v2

∂2v1 + ∂1v2

)T (
λ + 2μ λ 0

λ λ + 2μ 0
0 0 μ

)(
∂1u1
∂2u2

∂2u1 + ∂1u2

)
dx

+
∫
ΓA

2μv1(∂2u2,−∂2u1) · ndx2 −
∫
ΓA

2μv2(∂2u1, ∂2u2) · ndx2 = 0. (A.3)

As a result, the standard finite element discretization procedure can now be employed in (A.3).
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