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Statistical methods for evaluating the linearity
in assay validationy,z

Eric Hsieha, Chin-fu Hsiaob and Jen-pei Liua,b*
J. Chemom
One of the most important characteristics for evaluation of the accuracy in assay validation is the linearity. Kroll, et al.
[1] proposed a method based on the average deviation from linearity (ADL) to evaluate the linearity. Hsieh and Liu [2]
suggested that hypothesis for proving the linearity be formulated as the alternative hypothesis and proposed the
corrected Kroll’s method. However, the issue concerning the variability in estimation of the non-centrality parameter
is still unresolved. Consequently, the type I error rates may still be inflated for the corrected Kroll’s method. To
overcome this issue, we propose the sum of squares of deviations from linearity (SSDL) as an alternative metric for
evaluation of linearity. Based on SSDL, we applied the method of generalized pivotal quantities (GPQ) for the
inference of evaluation of linearity. The simulation studies were conducted to empirically investigate the size and
power between current and proposed methods. The simulation results show that the proposed GPQmethod not only
adequately control size but also provide sufficient power than other methods. A numeric example illustrates the
proposed methods. Copyright � 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In validation of quantitative analytical laboratory procedures, one
of the most important characteristics of the accuracy is the
linearity. The ICH Q2A guideline [3], defines the linearity of an
analytical method as its ability (within a given range) to obtain
the test results, which are directly proportional to the
concentration (amount) of the analyte in the test sample. The
objective for evaluation of linearity is to validate existence of a
mathematically verified straight-line relationship between the
observed values and the true concentrations or activities of the
analyte. Linearity represents the simplest mathematical relation-
ship and it also permits simple and easy interpolations of results
for clinical practitioners. The approved Clinical Laboratory
Standard Institute (CLSI) guideline EP6-A [4] recommends that
at least five solutions of different concentration levels across the
anticipated range be included in an experiment for evaluation of
linearity. At each concentration level, two to four replicates
should be run. With respect to EP6-A, if the difference between
the best-fit nonlinear polynomial curve and simple linear
regression equation at each concentration is smaller than some
pre-defined allowable bias, the linearity then can be claimed. On
the other hand, Kroll, et al. [1] proposes a statistical test procedure
based on the average deviation from linearity (ADL) which is
defined as the square root of the average squared distances
between the fitted concentrations of the best fit polynomial
curve and the simple regression equation at each solution level,
standardized by mean concentration. The linearity is concluded
at the a nominal level if the observed value of the ADL is smaller
than the upper a quantile of the sampling distribution of
the observed ADL. However, the sampling distribution of the
observed ADL is a function of a non-central chi-square
distribution. It follows that the Kroll’s method suggests using
the estimate of the unknown non-centrality parameter as the true
etrics 2009; 23: 56–63 Copyright � 2008
parameter. Hence, the variability associated with the estimated
non-centrality parameter is completely ignored in the Kroll’s
procedure.
On the other hand, Hsieh and Liu [2] pointed out that the Kroll’s

method based on the ADL is derived from an improper
formulation of hypotheses and suggested that the hypothesis
of proving the linearity should be formulated as the alternative
hypothesis. They termed their proposed procedure as the
corrected Kroll’s method. However, the issue concerning
the variability in estimation of the non-centrality parameter is
still unresolved for the corrected Kroll’s method. Consequently,
the type I error rates may still be inflated for the corrected Kroll’s
method. As mentioned before, the approved CLSI EP6-A
recommends that for proving the linearity, the deviations from
linearity, defined as the difference between the best-fit nonlinear
polynomial curve and simple linear regression equation, be
smaller than some pre-defined allowable bias, say d0, at all
concentrations. Therefore, we propose the sum of squares of
John Wiley & Sons, Ltd.
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deviations from linearity (SSDL) as an alternative metric for
evaluation of the linearity in assay validation. Tsui and
Weerahandi [5], and Weerahandi [6] propose the generalized
confidence interval (GCI) based on the generalized pivotal
quantity (GPQ) for the exact statistical inference. It has been
successfully applied to various areas including population and
individual bioequivalence [7], tolerance intervals for quality
control [8,9], and the area under the receiver operating
characteristic (ROC) curve [10,11]. As a result, we propose to
apply the concept of GCI for validation of quantitative analytical
laboratory procedures. In addition, we also apply the bootstrap
method [12] to linearity validation. In Section 2, we review
experiment designs for evaluation of linearity recommended by
the approved CLSI guideline EP6-A [4] as well as the corrected
Kroll’s methods proposed by Hsieh and Liu [2]. The impact of
ignoring the variability of estimated non-centrality parameters on
the size of the corrected Kroll’s method is highlighted. In addition,
the proposed exact methods based on the GCI and bootstrap
method using SSDL are provided in Section 2. In Section 3, the
results of a simulation study for investigation of empirical size and
power of various methods are reported. Numeric examples are
employed to illustrate and compare the current and proposed
methods. Discussion and Conclusion are also provided in this
section.
2. MATHEMATICAL SETTING

2.1. Experiment design

The experiments for linearity assessment, as recommended in the
approved CLSI guideline EP6-A [4], require that at least five
solutions of different concentrations be run at least in duplicates.
The following linear, quadratic, and cubic models are also
considered in the guideline for fitting the data obtained from the
experiment

Linear mLi ¼ a0 þ b0
1Xi

QuadraticmQi¼a00þb00
1Xi þ b00

2X
2
i

or

Cubic mCi¼a000þb000
1 Xiþb000

2 X
2
i þ b0003 X

3
i

(1)

where mLi, mQi, and mCi are the predicted mean of the respective
models and a0; a00; a000; b0

1; b
00
1; b

000
1 ; b

00
2; b

000
2 , and b000

3 are the
intercepts, regression coefficients for the corresponding models
in (1). The approved CLSI guideline EP6-A [4] also suggests that
the best-fitted model be used in the linearity assessment. The
best-fit model defined in the EP6-A [4] is the model such that
the lack-of-fit of the model is not statistically significant and the
repeatability meets the manufacturer’s claim. Furthermore, we
also assume that the random error is approximately constant in
the range of concentrations employed by the experiment. The
following two conditions for claiming the linearity of an analytical
procedure are recommended by the approved CLSI guideline
EP6-A [4]:
(a) If
J. Ch
the best-fitted model is the linear model over the same
range of concentrations employed in the experiment.
(b) If
5

the best-fitted model is not linear, the magnitude of
deviations from the linearity at each concentration is within
some pre-specified allowable limit of d0.
emometrics 2009; 23: 56–63 Copyright � 2008 John Wiley
2.2. Current testing procedures

DenotemPi as the predicted mean of the best-fittedmodel, where
mPi can be either mQi or mCi. The deviation from linearity at each
concentration level is defined as the difference in the predicted
means between the best-fit nonlinear model and linear model
mPi–mLi. The average deviation from linearity (ADL) suggested by
Kroll, et al. [1] for assessment of linearity is defined as

u ¼ ADL ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPL
i¼1

ðmPi�mLiÞ2=L
s

m
(2)

where m is the population mean concentration for all solutions of
the assay.
Therefore, Kroll, et al. [1] suggest the following hypothesis for

evaluation of linearity based on the ADL

H0 : u � u0 versus Ha : u > u0 (3)

where u0 is the maximum allowable per cent bound and is
recommended as 0.05 by Kroll, et al. [1].
However, Hsieh and Liu [2] pointed out that the formulation

of hypothesis given in Equation (3) is not appropriate for
linearity validation and they suggested that the hypothesis of
proving the linearity formulated as the alternative hypothesis as
follows:

H0 : u � u0 versus Ha : u < u0 (4)

Let Yij be the test result of replicate j at concentration Xi, where
j¼ 1,. . ., J; i¼ 1,. . .,L, and ŶPi and ŶLi denote the least squares (LS)
estimators of the predicted mean of the best-fit and linear
models, respectively, where

ŶLi ¼ a0 þ b01Xi

and

ŶPi ¼ a00 þ b00
1Xi þ b00

2X
2
i ; if quadratic

a000 þ b000
1Xi þ b000

2X
2
i þ b000

3X
3
i ; if cubic

�

and a0, a00, a000; b0
1; b

00
1; b

000
1; b

00
2; b

000
2 and b000

3 are the LS estimators of the
intercepts, regression coefficients for the corresponding models
in (1).
An estimator of ADL is given as

û ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXL
i¼1

ŶPi � ŶLi
� �2

=L

vuut
X

where X is the observed mean concentration for all solutions of
the assay.
Note that

PL
i¼1 ðŶPi � ŶLiÞ2 follows a non-central x2 distri-

bution with degrees of freedom d�1, and non-centrality
parameter LJu20=ðs=mÞ

2 [1,13], where d is the degrees of freedom
for regression of the best-fitted model, m is the population mean
concentration for all solutions of the assay and s2 is the variance
of residuals under the best-fitted model. It follows that the null
hypothesis in Equation (4) is rejected and the linearity of an
analytical procedure is concluded at the 5% significance level if

bu < s

m

ffiffiffiffiffiffiffiffiffiffi
q0:05

LR

r
(5)
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where q0.05 is the 5th percentile of a non-central x2 distribution
with degrees of freedom d�1 and non-centrality parameter
LJu20=ðs=XÞ

2.
Note that the critical value in (5) contains the unknown

parameters m, s, and the non-centrality parameter. One way
to resolve this issue is to estimate m by X, the observed
mean concentration for all solutions of the assay, s by the
square root of residual mean square obtained the best-fitted
model, ŝe, and LJu20=ðŝe=XÞ2 for the non-centrality parameter.
Although the corrected Kroll’s method has the appropriate
formulation of hypotheses for proving the assay linearity, it
completely ignores the variability in estimation of the
non-centrality parameter. Consequently, probability of incor-
rectly concluding linearity when the assay is in fact nonlinear is
inflated.
2.3. Proposed testing procedures

2.3.1. Statistical hypothesis

According to the approved CLSI guideline EP6-A [4], the linearity
of the proposed analytical method can be concluded if the
deviation from linearity is smaller than some pre-specified limit d0
at all concentrations

mPi � mLij j < d0; for i ¼ 1; . . . ; L

As a result, a natural aggregate metric for assessment of assay
linearity is the SSDL defined as

SSDL ¼
XL
i¼1

ðmPi � mLiÞ2 (6)

It follows that the hypotheses for proving the assay linearity
can be formulated based on SSDL as follows:

H0 :
PL
i¼1

ðmPi�mLiÞ2 � Ld20 versus H0 :
PL
i¼1

ðmPi � mLiÞ2 < Ld20 (7)

or equivalently

H0 :
XL
i¼1

ðmPi � mLiÞ2=L � d20 versus H0 :
XL
i¼1

ðmPi � mLiÞ2=L < d20

As a result, applications of the GCI and the bootstrap method
to hypothesis (7) of evaluation of assay validation are provided in
the following subsequent subsections.

2.3.2. Generalized pivotal quantity approach
2.3.2.1. Generalized confidence interval

2.3.2.1.1. Generalized pivotal quantity for SSDL Suppose that V
is a random variable whose distribution depends on a vector of
unknown parameters z¼ (u, h), where u is a parameter of interest
and h is a vector of nuisance parameter. Let V be a random
sample from V and v be the observed value of V. Also let R¼R(V;
v, z) be a function of V, v and z. The random quantity R is said to
be a GPQ if it satisfies the following two conditions:
(a) T
ww
he distribution of R does not depend on any unknown
parameter.
w.interscience.wiley.com/journal/cem Copyright � 200
(b) T
8 Joh
he observed value of R, say r¼R(V; v, z), is free of the vector
of nuisance parameters h. In other words, the value of R at
V¼ v should be a function only of (v, u).
Specifically, if the observed quantity r¼ u, then the GPQ is
called the fiducial generalized pivotal quantity (FGPQ) and GCI
based on FGPQ are proven to have asymptotically correct
frequent coverage probability in Hanning et al. [14]. In
consequence, an upper 100(1�a)th percentile GCI for u is given
by ð0; R1�aÞ, where R1�a are the 100(1�a)th percentile of the
distribution of R. The percentile of R can be estimated using
Monte-Carlo algorithms.
For the regression models in Equation (1), define

Y ¼ the LJ� 1 vector of observations;
XL ¼ ð1;XÞ;
XP ¼

ð1;X;X2Þ; if the best�fitted model is quadratic; and
ð1;X;X2;X3Þ; if the best�fitted model is cubic;

�
mP ¼ the LJ� 1 predicted mean vector of best�fitted

polynomial model; and
mL ¼ the LJ� 1 predicted mean vector of linear model

where 1 is LJ� 1 vector of 1s, X¼ (Xi), X2¼ (X2
i ), and X3¼ (X3i ).

Let W ¼ ðWP �WLÞ, WP and WL be the projection matrices
corresponding to the column spaces spanned by the design
matrices of the best-fitted and linear models, respectively,
i.e.,WP ¼ XPðX0

PXPÞ�1X0
P and WL ¼ XLðX0

LXLÞ�1X0
L. ŶP ¼ WPY

and ŶL ¼ WLY are then the LS estimators of the predicted mean
vectors of the best-fit and linear models. As a result, the unbiased
and sufficient estimator of mP � mL and its covariance matrix, S,
are given as respectively

m̂P � m̂L ¼ ŶP � ŶL ¼ WY
Cov ŶP � ŶL

� �
¼ S2WW0 (8)

where S2 is the residual mean square obtained from the
best-fitted polynomial model with degree of freedom LJ�d�1.
Under the assumption that random errors in model (1) are
identically and independently distributed as normal distribution
with mean of zero and variance of s2, ŶP � ŶL is distributed as a
multi-normal distribution with mean and variancemP � mL andS
which is equal to s2WW0.
It is easy to verify that the estimatorsWY and S2 are associated

with pivotal quantities Z and U which are independent with the
following distributions

Z ¼ S�1=2½WY� mP � mLð Þ� � NL Jð0; IÞ

U ¼ L J�d�1ð ÞS2
s2

� x2
L J�d�1�

(9)

Here matrix L1/2 denotes the positive definite square root of a
positive definite matrix L and L�1/2¼ (L1/2)�1. Then mP � mL

can be expressed as

mP � mL ¼ WY� S1=2Z

¼ WY� s2WW0� �1=2
Z

¼ WY� LJ � d� 1ð ÞS2
U

WW0
� �1=2

Z

(10)
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Let y and S2 be the observed values of Y and S2, respectively,
the GPQ for mP � mL is given by

RmP�mL
¼ Wy� LJ � d� 1ð Þs2

U
WW0

� �1=2

Z (11)

¼ Wy� s2s2

S2
WW0

� �1=2

S�1=2 WY� mP � mLð Þ½ � (12)

From Equation (11), RmP�mL
has distribution that is free of

parameters. When Y and S2 are substituted by their observed
values y and s2 in Equation (12), then RmP�mL

turns out to be
mP � mL. Hence, it fulfills the requirements of (a) and (b)
and RmP�mL

is a GPQ for mP � mL. Moreover, since
SSDL ¼ ðmP � mLÞ0ðmP � mLÞ=J, where J is the number of
replicates of observation of Y, a GPQ of SSDL can be obtained as

RSSDL ¼
1

J
RmP�mL

� �0
RmP�mL

� �
(13)

where RmP�mL
is defined as Equation (11).

2.3.2.1.2. Generalized confidence interval for SSDL An upper
100(1�a)th percentile GCI for SSDL can be obtained from the
following Monte-Carlo algorithm:

Step 1: Choose a large simulation sample size, say K¼ 10 000. For
k equal to 1 through K, carry out the following two steps.
Step 2: Generate LR� 1 standard normal random vector Z and
central x2 random variable U with degree of freedom LJ�d�1.
Step 3: For the realized values of Y and S2, compute RSSDL;k
defined in Equation (13).

The required upper 100(1�a)th percentiles of the distribution
of GPQ for SSDL, which is also the upper 100(1�a)th generalized
confidence limit for SSDL, is then estimated by the 100(1� a)th
sample percentiles of the collection of K¼ 10 000 realizations
RSSDL,1, RSSDL,2 . . ., RSSDL,10 000.

2.3.2.2. Statistical testing procedure
The upper 100(1�a)% generalized confidence limit for SSDL
based on GPQ can be used to test the statistical hypothesis in
Equation (7) for linearity. The null hypothesis in Equation (7) is
rejected and the linearity of a analytical method is concluded at
the a significance level if the upper 100(1� a)% generalized
confidence limit for SSDL is less than Ld20. It should be noted that
the method of the generalize p-values in the presence of
nuisance parameters may provide more information about the
parameter of interest. [5]
2.3.3. Bootstrap approach
5

2.3.3.1. Bootstrapping confidence interval
The nonparametric bootstrapping for regression model requires
a large number of replicates at each concentration for ensuring
the accuracy of bootstrap estimators of regression parameters.
However, the experiment recommended by approved guideline
EP6-A [4] suggested that only two to four replicates are needed
for assessing linearity. Therefore, the nonparametric bootstrap
method may not be appropriate to be implemented for linearity
J. Chemometrics 2009; 23: 56–63 Copyright � 2008 John Wiley
evaluation. On the other hand, the parametric bootstrap which is
used when the distributional family of the data is considered
known. Since ŶP � ŶL is known as distributed as a multi-normal
distribution with mean and variance mP � mL and s2WW0, we
propose the following parametric bootstrap algorithm to obtain
an upper 100(1�a)% confidence interval for SSDL can be given
as follows:
1. U
& S
se the observed response y to estimate the parameters,
mP � mL and s2WW0 byWy and s2WW0, respectively, where s2

is residual mean square obtained from the best-fitted poly-
nomial model.
2. S
elect a large number of bootstrap samples, say B¼ 3000,
from the multi-normal distribution NLJ Wy; s2WW0ð Þ which are
denoted by ŶP � ŶL

� ��1
, ŶP � ŶL

� ��2
,. . ., ŶP � ŶL

� ��B
.^
3. C
alculate bootstrap replication SSDL�k ¼ ððŶP � ŶLÞ�kÞ0
ððŶP � ŶLÞ�kÞ=J corresponding to each bootstrap sample,
for k¼ 1, 2, . . ., B.
4. T
he upper 100(1�a)% confidence limit is given as

SSDL
^

du¼ SSDL
^

�ð1þð1�aÞBÞ, where SSDL
^

�ð1Þ < SSDL
^

�ð2Þ < . . . <

SSDL
^

�ðBÞ are the order statistics of bootstrap statistics

SSDL�1
^

; SSDL�2
^

; . . . ; SSDL�B
^

.

2.3.3.2. Statistical testing
The linearity of an analytical method can be concluded at the a

significance level if SSDL
^

du, the bootstrap upper 100(1� a)%
confidence limit for SSDL is less than Ld20.
3. SIMULATION STUDY

We conducted a simulation study to compare the empirical sizes
and powers of the corrected Kroll’s, parametric bootstrap and GPQ
methods. Following the specification of the experiment designs for
evaluation of linearity, the number of solutions (or dilutions) of
different concentrations is set to be 5 or 7 and the number of
replications at each concentration is 2, 3, or 4. Throughout the
simulation, mean concentration m is assumed to be 4 and the
allowable margin of linearity based on ADL, u0, is specified 0.05 as
recommended by Kroll et al. [1]. From the relationship that
SSDL¼ L(mu)2, it follows that the margin for SSDL for 5 and
7 concentrations are 0.2 and 0.28, respectively. In addition, standard
deviation of normal random error is specified as 0.1 and 0.2. For
each of 12 combinations, ten thousand (10000) random samples
are generated. For the 5% nominal significance level, a simulation
study with 10000 random samples implies that 95 per cent of the
empirical sizes evaluated at the allowable margins will be within
0.0457 and 0.0543 if the proposedmethods can adequately control
the size at the nominal level of 0.05.
Table I presents the results of the empirical sizes. All of

empirical sizes for the corrected Kroll’s and parametric
bootstrap methods are larger than 0.0543. This indicates that
both methods inflate the size and are quite liberal in concluding
the linearity of an analytical procedure. On the other hand, all of
empirical sizes of the GPQ method are within the range and
showed that it has a good ability for controlling the size at the
nominal level.
It is introduced in section 2.2 that the poor performance for the

corrected Kroll’s method in controlling the size results from s, one
of the components of non-central parameters for non-central x2

distribution of the observed ADL being estimated by the square
ons, Ltd. www.interscience.wiley.com/journal/cem
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Table I. Empirical sizes

No. of solution No. of replicate Standard deviation Corrected Kroll Parametric bootstrap GPQ

5 2 0.1 0.0769 0.0764 0.0535
0.2 0.0734 0.0741 0.0503

3 0.1 0.0679 0.0677 0.0523
0.2 0.0643 0.0651 0.0501

4 0.1 0.0569 0.0569 0.0476
0.2 0.0596 0.0594 0.0504

7 2 0.1 0.0670 0.0673 0.0532
0.2 0.0671 0.0669 0.0532

3 0.1 0.0573 0.0582 0.0502
0.2 0.0557 0.0553 0.0476

4 0.1 0.0563 0.0571 0.0506
0.2 0.0595 0.0593 0.0529

E. Hsieh et al.
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0

root of residual mean square obtained from best-fitted
polynomial model. Compared the results of the corrected
Kroll’s with parametric bootstrap methods, the empirical sizes
are very close to each other. It may indicate that the latter
method cannot control the size due to the same reason since s

used for generating the parametric bootstrap samples is also
estimated by the residual mean square obtained from the
best-fitted model. In contrast, since one requirement for GPQ is
that Rmp�mL

is free of nuisance parameter s, the GPQ approach is
the only method under study that can control the size at the
nominal level.
Table II presents the results of the empirical powers. For the

simulation, the true ADL is specified as 0.005 for both number of
solutions of 5 and 7. The results in Table II also show that the
empirical power increases as the numbers of replicates or
concentrations increases. All these methods provide comparable
powers. However, it can be seen that the empirical powers of the
GPQ method are smaller than all other methods for all
combinations of parameters with the smallest powers is
0.6953 when number of solution is 5, number of replicates is
2, and standard deviation of normal random error is 0.2. However,
all empirical powers of the GPQ method for other combinations
of parameters are still greater than 90%. In addition, from Table I,
both corrected Kroll’s and parametric bootstrap methods fail to
control the size at the nominal level. Therefore, the advantage of
Table II. Empirical powers with the true ADL¼ 0.005

No. of solution No. of replicate Standard deviation

5 2 0.1
0.2

3 0.1
0.2

4 0.1
0.2

7 2 0.1
0.2

3 0.1
0.2

4 0.1
0.2

www.interscience.wiley.com/journal/cem Copyright � 200
power by these two methods comes at the expense of inflated
type I error rates.
Figures 1 and 2 present the empirical powers when the

standard deviations of normal random error are 0.1 and 0.2,
respectively with number of solutions is 5, number of replicates
is 3, and the true ADLs are ranged from 0 to 0.08. Figure 1 show
that when standard deviation is 0.1, the empirical size at
ADL¼ 0.05 for the corrected Kroll’s, and parametric bootstrap
methods are 0.0679 and 0.0677, respectively, while the
empirical size of the GPQ method is 0.0521. It shows that
the GPQ method can control the size better than the
other methods at the nominal level. In addition, the powers
reach 0 and 1 at ADL¼ 0.08 and 0.005, respectively for all
methods. The power curves of the corrected Kroll’s and
parametric bootstrap methods are almost overlapped from ADL
of 0.01 to 0.06. On the other hand, the power of the GPQ
method is quite competitive to the corrected Kroll’s method
and the bootstrap approach although it is little lower than
other methods. The similar results are observed in Figure 2
when standard deviation of normal random error is 0.2. The
empirical sizes for the corrected Kroll’s, parametric bootstrap
and the GPQ methods at ADL¼ 0.05 are 0.0827, 0.0618, and
0.0494, respectively. In addition, the powers for all three
methods when the standard deviation is 0.2 are lower than
those when the standard deviation is 0.1.
Corrected Kroll Parametric bootstrap GPQ

1.0000 1.0000 0.9994
0.8306 0.8185 0.6953
1.0000 1.0000 1.0000
0.9454 0.9451 0.9256
1.0000 1.0000 1.0000
0.9828 0.9831 0.9781
1.0000 1.0000 1.0000
0.9327 0.9317 0.9078
1.0000 1.0000 1.0000
0.9901 0.9900 0.9873
1.0000 1.0000 1.0000
0.9980 0.9980 0.9972

8 John Wiley & Sons, Ltd. J. Chemometrics 2009; 23: 56–63
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Table III. Measurement of calcium

Dilution Replicate 1 Replicate 2

1 4.7 4.6
2 7.8 7.6
3 10.4 10.2
4 13.0 13.1
5 15.5 15.3

Source: The approved CLSI guideline EP6-A (2003).

Figure 3. Regression curves for quadratic versus linear models of

calcium. Source: The approved CLSI guideline EP6-A (2003)
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3.1. Numerical examples

The duplicate determinations at the first five concentrations
given in Example 2 of CLSI guideline EP6-A [4] for assessing
linearity of a new analytical procedure are used to illustrate the
proposed testing procedures. The data are presented in Table III.
As indicated in EP6-A [4], the criteria of mPi � mLij j for claiming
linearity is set as 0.2mg/dL. For the purpose of the illustration, the
allowable margin of per cent bound for ADL is set as 0.05 for the
corrected Kroll’s method. On the other hand, the allowable limit
of SSDL for parametric bootstrap and GPQ methods is set as 0.2
which is calculated by square of 0.2mg/dL multiplying 5
concentrations. Table IV provides the results of regression
analyses for the linear, quadratic and cubic linear regression
models. The results of the regression analyses presented in
Table IV demonstrate that the estimates of the second-order
J. Chemometrics 2009; 23: 56–63 Copyright � 2008 John Wiley
regression coefficients of the quadratic model are statistically
significantly different from 0 at the 5% level (t0.025, 7¼ 2.4469)
while none of them is significantly different from 0 for the cubic
model. In addition, the standard error of the residuals from the
estimated quadratic regression equation is 0.124 that is 39%
smaller than those from the linear model. Furthermore, the
coefficient of determination, R2, is also above 0.99. As a result, the
quadratic model is the best-fittedmodel among the threemodels
recommended by the approved CLSI guideline EP6-A [4]. Figure 3
presents the fitted quadratic, linear regression equations, and
the means at each of the five concentrations. It shows that the
relationship between the dilutions of concentrations and the
analytical results is nonlinear and the quadratic model is a better
fit than the simple linear regression model.
Table V gives the observed predicted means from the

quadratic and linear regression models at each of the five
dilutions as well as their corresponding differences. Table VI
presents the results of each statistical testing procedure. From
these differences and the observed mean concentrations, the
observed ADL yields a value of 0.0146. With respect to the
hypothesis in Equation (4) and a margin of per cent bound of 5%,
the critical value in Equation (5) is 0.0434 which is greater than
the observed ADL of 0.0146, According to the decision rule of the
corrected Kroll method, the analytical method can be concluded
linear at the 5% significance level.
& Sons, Ltd. www.interscience.wiley.com/journal/cem
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Table IV. Summary of results of regression analyses

Order Coefficient LS
Estimate

SE t-test SE Sy.x Degrees
of freedom

Linear a0 2.16 0.15 14.3
b0
1 2.68 0.05 59.0 0.204 8

Quadratic a00 1.54 0.19 8.2
b00
1 3.22 0.14 22.4

b00
2 �0.09 0.02 �3.8 0.124 7

Cubic a000 1.47 0.47 3.15
b000
1 3.32 0.61 5.45

b0002 �0.13 0.23 �0.56
b000
3 0.004 0.02 0.17 0.134 6

Source: The approved CLSI guideline EP6-A (2003).

Table V. Mean differences between the best-fitted curve and
simple linear regression equation

Result
mean

Predicted
(linear)

Predicted
(quadratic)

Difference %
Difference

4.65 4.85 4.67 �0.18 �3.9
7.70 7.54 7.62 0.08 1.0
10.30 10.22 10.40 0.18 1.8
13.05 12.90 12.99 0.09 0.7
15.40 15.59 15.41 �0.18 �1.2

Source: The approved CLSI guideline EP6-A (2003).
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On the other hand, the 95% upper limit confidence limit for
SSDL of the parametric bootstrap and GPQ methods are 0.2388
and 0.2664, respectively. As a result, both methods cannot
conclude that the analytical procedure is linear at the 5%
significance level. However, the 95% upper confidence limit for
SSDL of the GPQ method is greater than that of parametric
bootstrap method. The results presented above show the
consistent results with the simulation results in Section 3.1
which the GPQmethod is more conservative than othermethods.
However, as demonstrated by the simulation, the GPQ method is
the only procedure that can adequately control the size at the
nominal level.
Table VI. Results of the linearity evaluation by three different me

Method Samp
Critical value

Corrected Kroll Sample ADL
Critical value

Parametric bootstrap Upper 95% C.L.
Allowable upper bound

GPQ Upper 95% C.L.
Allowable upper bound

95% C.L.: Upper 95% Confidence limit. of SSDL.

www.interscience.wiley.com/journal/cem Copyright � 200
3.2. Discussion and conclusion

Linearity is one of the most important characteristics for
evaluation of accuracy and precision in assay validation. Various
methods have been proposed for evaluation of linearity. With
respect to the aggregate criterion of ADL, Kroll et al. [1]
improperly formulated the hypothesis for proving linearity as the
null hypothesis. As a result, the uncorrected Kroll method cannot
control the type I error in decision-making of conclusion for
linearity. Hsieh and Liu [2] proposed the corrected Kroll’s
procedures by reformulating hypothesis for proving linearity as
the null hypothesis. However, the shortcoming about the
unknown parameters m and s that need to be estimated is
still required. As a result, we proposed the exact test procedures
based on the aggregate criterion of SSDL. Simulation results show
that the empirical size and powers of the corrected Kroll’s and
parametric bootstrap methods are almost the same. This
phenomenon may result from the variances of the distribution
for both methods are estimated by the same estimator of residual
mean square obtained from the best-fitted polynomial model. On
the other hand, the GPQmethod not only can adequately control
the type I error rate at the nominal level but also maintain the
satisfactory performance of the power while the others method
cannot. Therefore, we recommend the proposed statistical
hypothesis in Equation (7) based on the aggregate criteria SSDL
in conjunction with the testing procedure derived from the GPQ
method for evaluating the linearity in assay validation. A Fortran
program complied by Compaq Visual Fortran 6.6 for implement-
thods

le statistic/
or allowable bound

Conclusion

0.0146
0.0434 Linear
0.2388
0.2 Quadratic
0.2664
0.2 Quadratic

8 John Wiley & Sons, Ltd. J. Chemometrics 2009; 23: 56–63



Statistical methods for evaluating the linearity
ing linearity evaluation based on the GPQ method, the bootstrap
approach and the corrected Kroll’s method are available for the
authors upon request.
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